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ABSTRACT

A novel effective method of calculation of line spectral
frequencies (LSF) is proposed. The method is based on
developed algorithm of full numerical solution of transcendental
equations which do not have multiple roots. This algorithm is
composed of two parts: effective location of intervals containing
single zero and successive refinement of root value by one of
standard rootfinding procedures. Different modifications of
proposed LSF calculation method are verified on real speech
signals. In oppose to majority of existing LSF computation
algorithms, proposed method provides arbitrary high accuracy,
guarantees stability of corresponding autoregressive filter and
does not require any a priori information about LSF location. It
is shown that developed method can be applied in real-time
applications.

1. INTRODUCTION

The most of modern speech compression methods are based on
autoregressive (AR) model of speech generation [1]. According
to this model, speech signal ����  is modeled as the result of

passing of excitation )(nw  through all-pole filter with

coefficients pkak ,...,1= , :
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The order of AR model �  is chosen, as a rule, from 8 to 20.
As is well known [2-4], direct quantization of AR

coefficients is inapplicable, because it leads to instability of
synthesis filter. The most of contemporary speech coders use
transformation of AR coefficients to the set of line spectral
frequencies (LSF), which code spectral information more
efficiently than other alternative transmission parameters.

At the same time, existing methods of LSF computation
make a compromise between amount and accuracy of
calculation. Acceptable speed of processing is often achieved at
the cost of introduction of inaccuracies in LSF computation. This
may lead, in particular, to instability of corresponding synthesis
filters and cause the loss of quality and intelligibility of
reconstructed speech [3, 4]. The probability of such failures is
especially high if AR models of relatively high order are used.

Taking mentioned difficulties into account, the goal of this
work is the development of LSF computation method, which is
more efficient in comparison with existing techniques. The
conceptual framework of proposed technique is a universal
method of solution of transcendental equations, which do not
have multiple roots. The resulting algorithm provides arbitrary
high accuracy of computations and guarantees stability of
corresponding AR filter. In oppose to many existing methods, it
does not need any a priori information on LSF location. Besides,
accuracies of computation of different frequencies do not depend
on each other and can be easily varied. Experiments with speech
signals show that proposed method can be applied in real-time
applications.

 2. LINE SPECTRAL FREQUENCIES

Let’s briefly discuss existing methodology of transformation of
AR coefficients to LSF. At first, whitening minimum-phase filter
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symmetric and antisymmetric filters:
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Removing of roots �±  leads to the following polynomials:
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All the roots of ��� ��  and ��� ��  lie on a unit circle, i.e.

have a form �
�

� ��
ω= . Line spectral frequencies are defined by

root angles which lie in the range ��	� π . The significant feature
of LSF is their ordering property [2-4]: frequencies
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� ������ �ωωω  corresponding to ��� ��  are interleaved with

frequencies ������
�

���
� ������ �ωωω  corresponding to ��� �� :
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It worth to note that LSF ordering property is a necessary and
sufficient condition for the stability of synthesis filter ��
� �� .

Substitution ���
��
� ω=+ −��  allows to transform

symmetric equations (3) into following trigonometric equations
for LSF:
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Existing methods for the solution of problem (5) use

evaluation of function ∑
=
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�� ωω  on a

reasonably large grid of points to obtain initial estimates of root
locations [5]. The main disadvantage of such methods is that
necessary size of grid cannot be predicted beforehand since the

roots of function ��
ω�

��  can be arbitrarily close to each other.
From the other hand, smaller step of grid will take much more
computation. Besides, this approach requires prior storage or
large calculation of trigonometric functions, which makes it
unsuitable for real-time applications.

That is why transcendental equations (5) are traditionally
transformed to the polynomial equations by substitution

���
�ω=�  (or ���
�� ω=� ) [2-4]. The values for multiple

argument ( ���
� ω� ) are expressed with the help of Chebyshev

polynomials �������
���
����
��� ������ == ω . This allows to

obtain following typical polynomial equations:
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The roots of equations (6) keep the ordering property, are
real and lie in the range (-1;1). After the roots are found, they are
mapped to ω -domain by nonlinear transformation

������
��=ω .
Methods, based on such approach to determination of LSF,

can be divided into two categories. The typical representative of
the first subgroup is the method of Kabal and Ramachandran [2].
As in the case of equations (5), the single-root intervals are
determined by evaluation of polynomial function on a large
predefined grid of points. The main disadvantage of this
approach is that for every AR order the step of grid δ  must be
estimated on a large speech database. At that, if two roots of one
of functions (6) will occur close than δ , this method will
become inapplicable (and the smaller value of δ  will take more
computation).

Another subgroup of methods [3, 4] exploit consequent
reduction of degree by deflation of equations (6). However the
use of deflation may increasingly lead to worse accuracy of each
subsequent zero. This becomes an especially serious problem
when working with high-order polynomials [5].

So, existing methods of LSF computation have many weak
points. To overcome the mentioned difficulties, in the next
section the universal method of solution of transcendental
equations is proposed. After that, application of method to LSF
problem is demonstrated. Although proposed method can be
applied immediately to the direct solution of equations (5), in
this work we limit ourselves to consideration of equations (6).

3. PROPOSED ALGORITHM AND ITS
APPLICATION TO LSF PROBLEM

In this section universal method of solution of transcendental
equations 	�� =��  is proposed. The only its limitation is the

continuous differentiability of function ����  and the absence of

multiple roots. After that, application of method to LSF problem
is demonstrated.

3.1. Preliminaries

So, we are interested in determination of all roots of equation
0)( =xf  on interval ],[ baX = . Assume, that constraint for

absolute value of � -th derivative is known:
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Consider some examples connected with LSF problem.
1) The constraint of order �  for function
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2) The constraint of order �  for function ∑
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equation (6) on interval (-1;1):
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Consider two statements, which can be proved by expansion
of ����  in Taylor series.

Lemma 1. If interval Xdc ⊂],[  for some �  has a property
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function )(xf  does not have roots on ],[ dc .

Lemma 2. If interval Xdc ⊂],[  for some �  has a property
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then derivative ���� ′  does not have roots on ],[ dc .
With the help of these lemmas we can analyze behavior of
)(xf  and ���� ′  on arbitrary interval ],[ dc .

For function )(xf  two situations are possible:

1)   )(xf  does not have roots on ��� �� ,

2) the situation with the constancy of sign of function )(xf  is
uncertain.

In a similar way, there are two possible situations for
derivative ���� ′ :

1)   ���� ′  does not have roots on ��� �� , i.e. )(xf  is monotonic

on ��� �� ,
2) the situation is uncertain.
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In following we will refer to number � , appearing in stated
above lemmas, as to approximation order. This parameter may
be different for )(xf  (where �≥� ) and for ���� ′  (where

�≥� ). The choice of this number depends on a specific
character of a problem and, as will be shown further, crucially
influences on the computational burden of algorithm. In this
work we will limit ourselves to the case of equal approximation
orders for )(xf  and ���� ′ .

3.2. Description of algorithm

Consider the initial interval ],[ ba . Let’s analyze behavior of

)(xf  and )(xf ′  on ],[ ba  with the help of lemmas, stated in
previous section. Following situations are possible.
a) )(xf  does not have roots on ],[ ba .

b) Situation for )(xf  is uncertain, but )(xf ′  does not have

roots on ],[ ba , i.e. )(xf  is monotonic on ],[ ba . Then the
presence of root on this interval can be verified by the sign of
product )()( bfaf . If 0)()( >bfaf , then there are no roots on

],[ ba . Otherwise, )(xf  has one root on this interval and the
value of root can be determined by any standard method of root
refinement, e.g. Newton’s or Newton-Raphson method.
c) If the situation is uncertain both for )(xf  and )(xf ′ , then

interval ��� ��  is divided on subintervals )](5.0 ,[ baa + ,

], )(5.0[ bba + , these subintervals must be analyzed in a similar
way and so on.

Due to assumption about the absence of multiple roots
(that’s true for most of practical situations and, in particular, for
LSF problem), on some stage of recursive division there will be
no intervals, where the situation is uncertain both for function
and its derivative. So, recursive division will be finished, all
single-root intervals will be identified and all roots will be found.

Note, that above mentioned methods of root refinement
exploit division by derivative )(xf ′ . In our case this operation is
completely “safe”, because proposed algorithm guarantees sign
constancy of derivative on each of extracted intervals. Besides,
on each of extracted single-root intervals derivatives of orders
from 1 to �−�  in middle point are available (see the conditions
of stated above lemmas). It allows to choose efficient initial
value for root refinement procedure.

The key characteristic of given algorithm, indicating the
speed of its work, is a number of recursive divisions of initial
interval ],[ ba . This parameter essentially depends on the chosen
approximation orders.

3.3. Application of proposed algorithm to the
computation of LSF

As can be seen from the description of algorithm, accuracies of
obtained zeros do not depend on each other and can be easily
varied. It means that application of proposed algorithm to
equations (5) or (6) guarantees both arbitrary high accuracy of
LSF calculation and monotony of resulting LSF (i.e. stability of
corresponding AR filter).

Resulting procedure of LSF calculation has following form.
Parameters pkak ,...,1= ,  are transformed [2] to coefficients

�	
� �			�
��
���′  of equation (6), corresponding to polynomial

����� . For the solution of this equation on interval �����−
constraints (8) are used. After the definition of intervals,

containing one root of function ∑
=

−′=
�

�
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� �
��

�

���
�� , exact

values of roots are determined by Newton’s method.
Obtained roots ��� 			��� −����  correspond to LSF

�� 			��� ωωω −�� . To compute the remaining frequencies

coefficients of equation (6), corresponding to �����  are

calculated. Due to the LSF ordering property (4) remaining roots

�� ��� �			�� �� −  belong to intervals

��� �� �� ,…, ��� �� −− �� �� , ���� �−��  respectively. Their values are

also determined by Newton’s method. At last, roots of equations
(6) are mapped to LSF by transformation �
�������=ω .

It worth to note, that described localization of LSF with the
help of �����  polynomial was found to be more

computationally efficient in comparison with �����  polynomial.

It can be explained by different distribution characters of LSF,
corresponding to �����  and �����  [2,3].

4. EXPERIMENTS

In this section proposed LSF calculation method is applied to the
processing of real speech signals. Different modifications of
method were evaluated for even AR orders from 8 to 20. Speech
data of 6 speakers (4 male and 2 female) with total length of 30
minutes were used in our experiments. All utterances were
digitized with sampling frequency 8000 Hz. Procedure for every
AR model order was as follows. On every time interval of 20 ms
(160 samples) AR coefficients were computed by autocorrelation
method [1]. Then obtained AR coefficients were transformed to
equivalent sets of LSF. At that attention was paid to average
number of recursive divisions of initial interval (table 1) and to
average number of arithmetic operations per second (table 2).
The convergence criterion was based on the value of function:

����� −<�� . For every AR order 
  approximation orders from

�  to ��
  were considered (derivatives of order, higher than

��
 , are equal to zero).
Table 1. Number of recursive divisions for different

approximation orders
p=8 p=10 p=12 p=14 p=16 p=18 p=20

Appr.
order

3 9.05 14.51 23.58 37.29 54.73 83.86 122.16

4 8.63 9.97 15.28 18.58 26.54 35.59 47.15

5 9.78 13.11 15.61 19.12 23.05 28.99

6 13.00 14.80 17.88 20.60 22.17

7 14.77 17.70 20.08 21.72

8 17.69 20.00 21.62

9 20.00 21.62

10 21.62
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Table 2. Number of arithmetic operations for different
approximation orders

p=8 p=10 p=12 p=14 p=16 p=18 p=20
Appr.
order

3 45530 86520 152200 257430 405080 657380 997360

4 47190 71940 122260 170320 259810 375640 527510

5 74510 115980 159650 218820 292200 393190

6 119860 160480 217940 283220 339130

7 165340 224070 287960 348060

8 230030 295910 358560

9 302700 368060

10 375390

Table 1 shows that increasing of approximation order leads
to reduction of recursive divisions. This fact can be explained by
more close approximation of function by Taylor series.
However, after some optimal approximation order calculations
described in lemmas 1 and 2 become too complicated and it
causes increasing of computational expenses. As can be seen
from table 2, optimal approximation order monotonically
increases with the growing of 
 . Optimal amount of elementary
operations per second varies from 45530 (at p=8) to 339130 (at
p=20).

For the largest AR model order �
=
  (and corresponding
optimal approximation order) maximum detected number of
recursive divisions was only 29. So, developed algorithm has no
time delays and is characterized by low computational expenses.
These results indicate that proposed method can be easily
implemented in real-time processing systems.

Now, let’s compare the efficiency of proposed algorithm
with method of Kabal and Ramachandran [2] since it is most
widely used in speech compression algorithms. The case of AR
order �
=
  will be considered. The necessary step of grid for

Kabal and Ramachandran method was found to be 
�	
=δ .
For the objectivity of comparison it is necessary to use

convergence criterion based on uncertainty of root position:
ε<− − �� ��� �� , where �−�� , ��  - approximations of root value,

obtained on successive iterations. Two requirements of accuracy

are considered: ��

−=ε  and ��


−=ε . Table 3 shows average
number of arithmetic operations per second for the method of
Kabal and Ramachandran and proposed method. Since Kabal
and Ramachandran used root refinement by bisection method,
we also consider combination of their technique with Newton’s
method. Computational expenses for the localization of single-
root intervals are also considered.

�able 3. Comparison of proposed algorithm with method of
Kabal and Ramachandran

Method Localization �
��

−=ε �
��

−=ε
Proposed method 39750 64550 76550

K.-R. method 61050 107500 177000

K.-R. + Newton method 61050 74980 87420

According to table 3, advantage of proposed method over
Kabal-Ramachandran’s is about 35% of operations during the
localization of roots. Also gains of 40% and 57% are obtained

for accuracies �
��

−=ε  and �
��

−=ε  respectively. There is also
an advantage over the combination of Kabal-Ramachandran
algorithm with Newton’s method. However, for practical
implementation in real-time systems it is necessary to estimate
maximum number of operations per one speech frame (in this
context method of Kabal and Ramachandran was always
superior over other existing methods, since its computational
expenses are constant). That is why we determined maximum
numbers of operations of proposed method for the localization of

roots and their computation with accuracies �
��

−=ε  and �
��

− .
These extreme values were found to be 1206, 1798 and 2200
respectively and they are lower than corresponding quantities for
the method of Kabal and Ramachandran (1221, 2150 and 3540).

Generally, a lot of practical problems require solution of
transcendental or polynomial equations. Most of existing
methods use predefined uniform grids of points, in which the
behavior of function is analyzed. The principal advantage of
proposed approach is that it exploits nonuniform grid, which is
formed adaptively for the analyzed function.

5. CONCLUSIONS

A novel method for the computation of line spectral frequencies
was proposed. For this purpose universal algorithm of solution
of transcendental equations which do not have multiple roots
was developed. The main parameters of proposed algorithm are
the approximation orders of function and its derivative. Different
modifications of this algorithm were applied to the solution of
LSF problem. It was shown that resulting method provides
arbitrary high accuracy, guarantees stability of corresponding
autoregressive filter and does not require any a priori
information about LSF location. Experiments with real speech
signals indicated that proposed method does not have time
delays and has low computational expenses. Advantage of
proposed technique over widely used method of Kabal and
Ramachandran was shown.
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