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ABSTRACT

A novel effective method of calculation of line spectra
frequencies (LSF) is proposed. The method is based on
developed agorithm of full numerical solution of transcendental
equations which do not have multiple roots. This algorithm is
composed of two parts: effective location of intervals containing
single zero and successive refinement of root value by one of
standard rootfinding procedures. Different modifications of
proposed LSF calculation method are verified on rea speech
signals. In oppose to magjority of existing LSF computation
algorithms, proposed method provides arbitrary high accuracy,
guarantees stability of corresponding autoregressive filter and
does not require any a priori information about LSF location. It
is shown that developed method can be applied in real-time
applications.

1. INTRODUCTION

The most of modern speech compression methods are based on
autoregressive (AR) model of speech generation [1]. According
to this model, speech signal s(n) is modeled as the result of

passing of excitation w(n) through al-pole filter with
coefficients a,k =1,...,p:

s(n) = =5 ays(n— k) +w(n). L
k=1

The order of AR model p ischosen, asarule, from 8 to 20.

As is wel known [2-4], direct quantization of AR
coefficients is inapplicable, because it leads to instability of
synthesis filter. The most of contemporary speech coders use
transformation of AR coefficients to the set of line spectra
frequencies (LSF), which code spectral information more
efficiently than other alternative transmission parameters.

At the same time, existing methods of LSF computation
make a compromise between amount and accuracy of
calculation. Acceptable speed of processing is often achieved at
the cost of introduction of inaccuraciesin LSF computation. This
may lead, in particular, to instability of corresponding synthesis
filters and cause the loss of quality and intelligibility of
reconstructed speech [3, 4]. The probability of such failures is
especialy high if AR models of relatively high order are used.

0-7803-7663-3/03/$17.00 ©2003 IEEE

Il - 457

Taking mentioned difficulties into account, the goal of this
work is the development of LSF computation method, which is
more efficient in comparison with existing techniques. The
conceptual framework of proposed technique is a universa
method of solution of transcendental equations, which do not
have multiple roots. The resulting algorithm provides arbitrary
high accuracy of computations and guarantees stability of
corresponding AR filter. In oppose to many existing methods, it
does not need any a priori information on LSF location. Besides,
accuracies of computation of different frequencies do not depend
on each other and can be easily varied. Experiments with speech
signals show that proposed method can be applied in real-time
applications.

2. LINE SPECTRAL FREQUENCIES

Let's briefly discuss existing methodology of transformation of

AR coefficients to LSF. At first, whitening minimum-phase filter
P

A(z) =1+ ,Zakz_k (p=2M) is converted into following
=1

symmetric and antisymmetric filters:

Hu(2) = 4(:) =774,
Removing of roots +1 leadsto the following polynomials:

)

P
Gp(2) = zng-k, m=12(gy" =g =1). 3

All the roots of Gy(z) and G,(z) lie on a unit circle, i.e.

have aform z;, = ¢'“ . Line spectral frequencies are defined by
root angles which lie in the range (0;77) . The significant feature
of LSF is their ordering property [2-4]: frequencies
wf“,w&”,...,wﬁ corresponding to Gy(z) are interleaved with

frequencies (>, w{?.....w?) corresponding to G,(z):

WV <af? <ol < <..<wf) <w?. (4)
It worth to note that LSF ordering property is a necessary and
sufficient condition for the stability of synthesisfilter 1/ A(z).

Substitution  z+z"' =2cos(w) alows to transform

symmetric equations (3) into following trigonometric equations
for LSF:
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M
ro(’") + ; rk(m) coskw =0

Existing methods for the solution of problem (5) use
M

RE“)=ry+ Y rcoskw on a
k=1

reasonably large grid of points to obtain initial estimates of root

locations [5]. The main disadvantage of such methods is that

necessary size of grid cannot be predicted beforehand since the

(m=12). (5)

evaluation of function

roots of function R(e'”) can be arbitrarily close to each other.
From the other hand, smaller step of grid will take much more
computation. Besides, this approach requires prior storage or
large calculation of trigonometric functions, which makes it
unsuitable for real-time applications.

That is why transcendental equations (5) are traditionally
transformed to the polynomial equations by substitution
x=cos(w) (or x=2cos(w)) [2-4]. The values for multiple

argument (cos(nw) ) are expressed with the help of Chebyshev
polynomias 7,,(x) = cos(nw) = cos(narccos(x)) . This allows to

obtain following typical polynomial equations:
M

; r]:(m)xM—k =0

The roots of equations (6) keep the ordering property, are
real and liein the range (-1;1). After the roots are found, they are
mapped to w-domain by nonlinear transformation
W = arccos(x) .

Methods, based on such approach to determination of LSF,
can be divided into two categories. The typical representative of
the first subgroup is the method of Kabal and Ramachandran [2].
As in the case of equations (5), the single-root intervals are
determined by evaluation of polynomia function on a large
predefined grid of points. The main disadvantage of this
approach is that for every AR order the step of grid & must be
estimated on a large speech database. At that, if two roots of one
of functions (6) will occur close than &, this method will
become inapplicable (and the smaller value of & will take more
computation).

Another subgroup of methods [3, 4] exploit consequent
reduction of degree by deflation of eguations (6). However the
use of deflation may increasingly lead to worse accuracy of each
subsequent zero. This becomes an especially serious problem
when working with high-order polynomials[5].

So, existing methods of LSF computation have many weak
points. To overcome the mentioned difficulties, in the next
section the universal method of solution of transcendental
equations is proposed. After that, application of method to LSF
problem is demonstrated. Although proposed method can be
applied immediately to the direct solution of equations (5), in
this work we limit ourselves to consideration of equations (6).

(m=12). (6)

3. PROPOSED ALGORITHM AND ITS
APPLICATION TO LSF PROBLEM

In this section universal method of solution of transcendental
equations f(x) =0 is proposed. The only its limitation is the
continuous differentiability of function f(x) and the absence of
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multiple roots. After that, application of method to LSF problem
is demonstrated.

3.1. Preliminaries

So, we are interested in determination of all roots of equation
f(x)=0 on interval X =[a,b] . Assume, that constraint for
absolute value of ; -th derivative is known:

sup f(f)(x)‘ <M, @)

xOa,b]
Consider some examples connected with LSF problem.

1) The constraint of order for  function

M
f(x)=n+ /Zrk coskx inequation (5):
=

M .
Mj-=zkf|rk\.
k=0

M
2) The constraint of order j for function f(x) = ; nxMk in

equation (6) on interval (-1;1):
M=)
M, = Z(M—k)(M—k—1)...(M—k—j+1)\r,; | )
=0

Consider two statements, which can be proved by expansion
of f(x) inTaylor series.
Lemma 1. If interval [c,d] O X for some ; has a property

Oserans S pi0se sl -of Mo
S105(c+a)] Z 7 2

=1

or

LrPseraf@-of v @-o
S103e+d)l Z 2kt B 2/ 1

=1
function f(x) doesnot haverootson [c,d] .
Lemma 2. If interval [c,d] O X for some ; has a property

SrPserafd -y @-oy
+ 7 <

>0, then

"10.5(c +d)] + - 0 or

S0 3exd) ,; 267Nk — 1)) 271 - 1!
Lr0nserafd -y a-ey

F10.5(c +d)]- — s >0,
- 2k -1y 2771 - 1)1

then derivative f'(x) doesnot haverootson [c,d] .

With the help of these lemmas we can analyze behavior of
f(x) and f'(x) onarbitrary interval [c,d] .

For function f(x) two situations are possible:
1) f(x) doesnot haverootson [c,d],
2) the situation with the constancy of sign of function f(x) is
uncertain.

In a similar way, there are two possible situations for
derivative f'(x):
1) f'(x) doesnot haverootson [c,d],i.e. f(X) ismonotonic
on [¢,d],
2) thesituation isuncertain.




In following we will refer to number ;j , appearing in stated
above lemmas, as to approximation order. This parameter may
be different for f(x) (where j=1) and for f'(x) (where
Jj=2). The choice of this number depends on a specific
character of a problem and, as will be shown further, crucialy
influences on the computational burden of agorithm. In this
work we will limit ourselves to the case of equal approximation
ordersfor f(x) and f'(x).

3.2. Description of algorithm

Consider the initial interval [a,b]. Let's analyze behavior of
f(x) and f'(x) on [a,b] with the help of lemmas, stated in
previous section. Following situations are possible.

a) f(x) doesnot have rootson [a,b] .

b) Situation for f(x) is uncertain, but f'(x) does not have
roots on [a,b], i.e. f(x) is monotonic on [a,b]. Then the
presence of root on this interval can be verified by the sign of
product f(a)f(b).If f(a)f(b) >0, then there are no roots on
[a,b] . Otherwise, f(x) has one root on this interval and the
value of root can be determined by any standard method of root
refinement, e.g. Newton’s or Newton-Raphson method.

c) If the situation is uncertain both for f(x) and f'(x), then
interval [a,b] is divided on subintervas [a, 0.5(a+b)],
[0.5(a+Db),b], these subintervals must be analyzed in a similar
way and so on.

Due to assumption about the absence of multiple roots
(that's true for most of practical situations and, in particular, for
LSF problem), on some stage of recursive division there will be
no intervals, where the situation is uncertain both for function
and its derivative. So, recursive division will be finished, al
single-root intervals will be identified and all roots will be found.

Note, that above mentioned methods of root refinement
exploit division by derivative f'(x) . Inour case this operationis
completely “safe”, because proposed algorithm guarantees sign
constancy of derivative on each of extracted intervals. Besides,
on each of extracted single-root intervals derivatives of orders
from1to j—1 in middle point are available (see the conditions
of stated above lemmas). It allows to choose efficient initial
value for root refinement procedure.

The key characteristic of given agorithm, indicating the
speed of its work, is a number of recursive divisions of initial
interval [a,b]. This parameter essentially depends on the chosen
approximeation orders.

3.3. Application of proposed algorithm to the
computation of L SF

As can be seen from the description of algorithm, accuracies of
obtained zeros do not depend on each other and can be easily
varied. It means that application of proposed algorithm to
equations (5) or (6) guarantees both arbitrary high accuracy of
LSF calculation and monotony of resulting LSF (i.e. stability of
corresponding AR filter).

Resulting procedure of LSF caculation has following form.
Parameters g,k =1...,p are transformed [2] to coefficients
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r,:(z), k=0....M of equation (6), corresponding to polynomial
F,(z). For the solution of this equation on interval [-11]

constraints (8) are used. After the definition of intervals,
M

containing one root of function f(x) :Zr,é(z)xM | exact
=0

values of roots are determined by Newton's method.
Obtained  roots correspond to LSF

Wy, Wp—»,....0, . To compute the remaining frequencies

Xl.X3...., xp—l

coefficients of equation (6), corresponding to F.(z) are
calculated. Due to the LSF ordering property (4) remaining roots

X3s X2 s X belong to intervals

[x5 x3] i [x =35 X p1 1, [xp—13 1] respectively. Their values are
a so determined by Newton's method. At last, roots of equations
(6) are mapped to L SF by transformation cw = arccos(x) .

It worth to note, that described locdlization of LSF with the
help of F,(z) polynomiad was found to be more

computationally efficient in comparison with F(z) polynomial.

It can be explained by different distribution characters of LSF,
correspondingto F,(z) and F.(z) [2,3].

4. EXPERIMENTS

In this section proposed L SF calculation method is applied to the
processing of real speech signals. Different modifications of
method were evaluated for even AR orders from 8 to 20. Speech
data of 6 speakers (4 mae and 2 female) with total length of 30
minutes were used in our experiments. All utterances were
digitized with sampling frequency 8000 Hz. Procedure for every
AR model order was as follows. On every time interva of 20 ms
(160 samples) AR coefficients were computed by autocorrelation
method [1]. Then obtained AR coefficients were transformed to
equivalent sets of LSF. At that attention was paid to average
number of recursive divisions of initial interval (table 1) and to
average number of arithmetic operations per second (table 2).
The convergence criterion was based on the value of function:

\ f (’x)\ <107 . For every AR order p approximation orders from

3 to p/2 were considered (derivatives of order, higher than
p/2, areequa to zero).

Table 1. Number of recursive divisions for different
approximation orders

3 9.05 | 1451 | 2358 | 37.29 | 54.73 | 83.86 | 122.16

4 8.63 | 997 | 15.28 | 18.58 | 26.54 | 35.59 | 47.15
5 9.78 | 13.11 | 15.61 | 19.12 | 23.05 | 28.99
6 13.00 | 14.80 | 17.88 | 20.60 | 22.17
7
8
9

14.77 | 17.70 | 20.08 | 21.72
17.69 | 20.00 | 21.62
20.00 | 21.62
10 21.62




Table 2. Number of arithmetic operations for different

approximation orders
B -8 (=10 p=12]p=14[p=16 [ p=18 [ p=20 |

Appr.

order
3 | 45530 | 86520 [152200|257430|405080(657380|997360
4 | 47190 | 71940 (122260|170320|259810(375640|527510
5 74510 (115980|159650(218820|292200(393190
6 119860|160480|217940(283220(339130
7 165340|224070(287960| 348060
8 230030|295910( 358560
9 302700(368060
10 375390

Table 1 shows that increasing of approximation order leads
to reduction of recursive divisions. This fact can be explained by
more close approximation of function by Taylor series.
However, after some optima approximation order calculations
described in lemmas 1 and 2 become too complicated and it
causes increasing of computational expenses. As can be seen
from table 2, optimal approximation order monotonicaly
increases with the growing of p . Optimal amount of elementary
operations per second varies from 45530 (at p=8) to 339130 (at
p=20).

For the largest AR model order p =20 (and corresponding
optimal approximation order) maximum detected number of
recursive divisions was only 29. So, developed algorithm has no
time delays and is characterized by low computational expenses.
These results indicate that proposed method can be easily
implemented in real-time processing systems.

Now, let's compare the efficiency of proposed algorithm
with method of Kabal and Ramachandran [2] since it is most
widely used in speech compression algorithms. The case of AR
order p =10 will be considered. The necessary step of grid for

Kaba and Ramachandran method was found to be 6 =0.02 .

For the objectivity of comparison it is necessary to use
convergence criterion based on uncertainty of root position:
| X —xp—1 |< €, Where x,_;,x;, - approximations of root value,

obtained on successive iterations. Two requirements of accuracy

are considered: £ =107 and € =107 . Table 3 shows average
number of arithmetic operations per second for the method of
Kaba and Ramachandran and proposed method. Since Kaba
and Ramachandran used root refinement by bisection method,
we also consider combination of their technique with Newton’s
method. Computational expenses for the localization of single-
root intervals are also considered.

Table 3. Comparison of proposed algorithm with method of
Kaba and Ramachandran

M ethod Localization | € =107 | =107
Proposed method 39750 64550 76550
K.-R. method 61050 107500 | 177000
K.-R. + Newton method 61050 74980 87420
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According to table 3, advantage of proposed method over
Kabal-Ramachandran’s is about 35% of operations during the
localization of roots. Also gains of 40% and 57% are obtained

for accuracies £ =107 and € =107 respectively. Thereis aso
an advantage over the combination of Kabal-Ramachandran
algorithm with Newton's method. However, for practical
implementation in real-time systems it is necessary to estimate
maximum number of operations per one speech frame (in this
context method of Kabal and Ramachandran was always
superior over other existing methods, since its computational
expenses are constant). That is why we determined maximum
numbers of operations of proposed method for the localization of

roots and their computation with accuracies € =10~ and 107 .
These extreme values were found to be 1206, 1798 and 2200
respectively and they are lower than corresponding quantities for
the method of Kabal and Ramachandran (1221, 2150 and 3540).

Generaly, a lot of practica problems require solution of
transcendental or polynomial equations. Most of existing
methods use predefined uniform grids of points, in which the
behavior of function is analyzed. The principal advantage of
proposed approach is that it exploits nonuniform grid, which is
formed adaptively for the analyzed function.

5. CONCLUSIONS

A novel method for the computation of line spectral frequencies
was proposed. For this purpose universal agorithm of solution
of transcendental equations which do not have multiple roots
was developed. The main parameters of proposed algorithm are
the approximation orders of function and its derivative. Different
modifications of this agorithm were applied to the solution of
LSF problem. It was shown that resulting method provides
arbitrary high accuracy, guarantees stability of corresponding
autoregressive filter and does not require any a priori
information about LSF location. Experiments with real speech
signals indicated that proposed method does not have time
delays and has low computational expenses. Advantage of
proposed technique over widely used method of Kabal and
Ramachandran was shown.
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