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ABSTRACT

We address the problem of estimating parameters of K–
distribution. A recursive procedure based on the recursive
EM algorithm is derived to find the ML estimates. Re-
cursive EM is a stochastic approximation procedure with
a gain matrix derived from the augmented data. Under mild
conditions estimates generated by such procedure are char-
acterized by strong consistency and asymptotic normality.
Because of the simple structure of the augmented data, the
proposed algorithm has a simple implementation. Numeri-
cal results show that the proposed approach performs well
for various parameter sets.

1. INTRODUCTION

The K-distribution [4] is commonly used for clutter model-
ing in synthetic aperture radar (SAR) applications [8]. The
parameters of the K-distribution can be estimated by ap-
plying the maximum likelihood (ML) criterion using the
expectation-maximization (EM) approach [6].

Recursive estimation of the parameters of the K-distribution
is of practical importance in many radar related applica-
tions. Often data arrives piecemeal and recursive estimation
allows the parameter estimates to be updated as new obser-
vations become available. The algorithm in [6] cannot be
used for recursive estimation as it requires the entire obser-
vation sequence in each iteration. In this work we develop
a recursive estimation scheme using the recursive EM algo-
rithm [7]. In our derivation the parameters are assumed to
be constant. However, with proper choice of the step size
the proposed algorithm can be easily extended to the time–
varying case.

The recursive EM algorithm is a stochastic approxima-
tion procedure with a specialized gain matrix derived from
the augmented data of EM. Under mild conditions, the esti-
mates generated by such procedures are strongly consistent

and asymptotic normally distributed [2] [7]. Because of the
simple structure of the augmented data, the augmented in-
formation matrix is usually very easy to compute and invert.
Consequently, the resulted recursion has a very simple im-
plementation.

The remainder of this paper is organized as follows. In
Section 2 we give the problem formulation. In Section 3 we
provide some details of the recursive estimation techniques
and in Section 4 we apply it to the K-distribution. In Section
5 we provide simulation results and in Section 6 we give
some conclusions.

2. PROBLEM FORMULATION

Let y1, y2, . . . , yT be a sequence of independent observa-
tions of the K–distributed random variable Y . The under-
lying probability density function (p.d.f.) fY (y|ϑ) may be
derived by considering a generalized Rayleigh distribution
with a gamma–distributed mean parameter. We may write

fY (y|ϑ) =

∫ ∞

0

fY |W (y|w)f(w|ϑ)dw . (1)

The K–distribution results when

fY |W (y|w) =
2yN−1

(2w)N/2Γ(N/2)
exp(

−y2

2w
) (2)

i.e., the generalized Rayleigh distribution resulting from the
square root of the sum of the squares of N independent and
identically distributed (iid) Gaussian scalar random vari-
ables with zero mean and variance w. The gamma function
is denoted by Γ(·). The variance w is an observation of the
gamma distributed random variable W with the parameters
ϑ = [σ, α], i.e.,

fW (w|ϑ) =
σαwα−1

Γ(α)
exp(σw). (3)
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Substituting (3) and (2) into (1) and performing the integra-
tion using eq. (3.471(9)), p. 340 of [3] yields

fY (y|ϑ)=
yα−1+N/222−N/4−α/2σN/4+α/2

Γ(N/2)Γ(α)
Kα−N/2(

√
2σ y)

(4)
where Kη(·) is given by eq. (8.406), p. 952 of [3] and is
known as the modified Bessel function of the second kind
of order η. Equation (4) is the K–distribution with the pa-
rameter vector ϑ = [σ, α]. As in other studies, we do not
consider estimation of N as it corresponds to the number of
looks in SAR applications which is generally known. The
problem of interest is to find the ML estimate ϑ̂ based on
the data set {yt}T

t=1.

3. RECURSIVE EM ALGORITHM

We give a brief description of the recursive EM algorithm
in its most general form. The observation can be either a
vector or a scalar. Suppose y1, y2, . . . are independent ob-
servations, each with the underlying p.d.f. fY (y|ϑ), where
ϑ denotes an unknown parameter vector. The correspond-
ing augmented data z1, z2, . . . are characterized by the p.d.f.
fZ(z|ϑ). Let ϑt denote the estimate after t observations.
The following procedure is aimed at finding the extremum
ϑ∗ of log fY (y|ϑ) which would coincide with the maxi-
mum likelihood estimate,

ϑt+1 = ΠΘ[ϑt + at−β IEM(ϑt)−1γ(yt, ϑ
t)], (5)

where ΠΘ is the projection onto the constraint set Θ, a > 0
is a constant and

γ(yt, ϑ
t) = ∇ϑ log fY (yt|ϑ)|ϑ=ϑt , (6)

IEM(ϑt) = E

[

−∇ϑ∇T
ϑ log fZ(z|ϑ)|yt, ϑ

]

|ϑ=ϑt (7)

represent the gradient vector and the augmented information
matrix calculated at ϑt, respectively. ∇ϑ is a column gradi-
ent operator with respect to ϑ. (·)T represents the transpose
of a vector. The constraint set can be chosen as a hyper-
rectangle [a, b] defined by the lower bound a and the upper
bound b.

A proper choice of β depends on the following matrix

DEM(ϑ) =
1

2
I − aIEM(ϑ)−1I(ϑ), (8)

where

I(ϑ) = E

[

−∇ϑ∇T
ϑ log fY (y|ϑ)

]

(9)

denotes the Fisher information matrix corresponding to one
observation. I is an identity matrix with the dimension of
ϑ. Use β = 1 if DEM(ϑ) is a stable matrix. Otherwise
1/2 < β < 1. A matrix is called stable if all eigenvalues
have negative real parts.

If the initial estimate ϑ0 is close enough to ϑ∗ and the
conditions (a) E‖γ(yt, ϑ

t)‖2 <∞ and (b) 0 < IEM(ϑt) <
∞ are satisfied, ϑt converges with probability one to ϑ∗ [2].
For large t, the normalized error tβ/2(ϑt − ϑ∗) is normally
distributed with zero mean and a covariance matrix which
can be obtained by solving a matrix equation. As pointed
out by Titterington [7], recursion (5) will not lead to asymp-
totic efficiency. Asymptotic efficiency implies at same time
the best convergence rate achievable by such procedures.
However, compared to an optimal procedure

ϑt+1 = ϑt + t−1 I(ϑt)−1γ(yt, ϑ
t), (10)

the practical advantage of recursion (5) is that IEM(ϑt)−1

will usually be much easier to compute than I(ϑt)−1. Be-
sides, the optimal convergence rate can also be achieved by
recursive EM if an additional averaging step proposed by
Polyak [5] is undertaken.

4. RECURSIVE ESTIMATION

In this section we apply the recursive EM algorithm to es-
timate the parameters of K–distribution. We obtain the gra-
dient vector (6) by taking the first derivative of eq. (4). The
first and second component are given by

∂

∂σ
log fY(yt|ϑ)ϑ=ϑt =

1

σt
(
N

4
+

αt

2
)

−
yt[Kαt−N

2
−1(

√
2σtyt) + Kαt−N

2
+1(

√
2σtyt)]

2
√

2σtKαt−N

2

(
√

2σtyt)

(11)

and

∂

∂α
log fY (yt|ϑ)|ϑ=ϑt = log yt −

log 2

2
+

log σt

2
− Ψ(αt)

+
1

Kαt−N

2

(
√

2σtyt)

{

[
∂

∂α
Kα−N

2

(
√

2σ yt)]|ϑ=ϑt

}

,

(12)

respectively. Note that Ψ(·) is the digamma function de-
fined as the derivative of the log of the gamma function [1].
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The matrix IEM(ϑt) is derived from the augmentation
scheme proposed by Roberts [6]

z = [y, w]T . (13)

The augmented data specified above yields the correspond-
ing p.d.f.

fZ(z|ϑ) = fY |W (y|w)fW (w|ϑ). (14)

Equivalently,

log fZ(z|ϑ) = log fY |W (y|w) + log fW (w|ϑ). (15)

Clearly, log fZ(z|ϑ) depends on ϑ only through the sec-
ond term on the right hand side of eq. (15). The resulting
augmented information matrix

IEM(ϑt) =
1

σt





αt/σt −1

−1 Ψ′(αt)σt



 (16)

can be implemented easily. The trigamma function Ψ′(·) is
the second derivative of the log of the gamma function [1].

Occasionally, IEM(ϑt) may become nearly singular dur-
ing recursion and lead to numerical instability. To overcome
this problem, we suggest to check the conditional number
ct of IEM(ϑt). If ct is larger than a pre–selected constant
cmax, IEM(ϑt) will be replaced by the augmented matrix
IEM(ϑt−1) of the previous recursion.

5. SIMULATION RESULTS

In this section, we apply the proposed algorithm to sim-
ulated data and study its performance. Three parameter
sets, (1) [σref , αref ] = [1.0, 0.5], (2) [2.0, 1.0] and (3)
[3.0, 1.5] are considered. The initial estimates are given
by (1) [σ0, α0] = [1.3, 0.8], (2) [2.3, 1.3] and (3) [2.7, 1.8].
All three experiments use the same step size at−β = 0.2t−0.6.
We use a constraint set Θ with lower bound L = 0.1 and
upper bound U = 6 for both parameters. The data length
is T = 1000. Each experiment is run thourgh 200 Monte
Carlo trials. The functions Ψ(·), Ψ′(·) and ∂/∂αKα(·) are
implemented in the similar way as in [6].

The Mean Squared Error (MSE) versus number of re-
cursions are displayed in fig. 1, fig. 2 and fig. 3. Upper part
is the MSE of σ, lower part is the MSE of α. In general, the
MSE decreases with increasing number of recursions. In the
upper part of fig. 2 and fig. 3, one can observe that at the
beginning of the recursion, the MSE may increase slightly.
This can be seen as the transient behavior of the algorithm.
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Fig. 1. MSE versus number of recursions. σref = 1, αref = 0.5.

Upper: MSE of σ, lower: MSE of α.

In all three experiment, the MSEs of the σ estimates
are higher than those of the α estimates, although the dis-
tances to the reference parameters are the same, i.e. 0.3.
The sequence {αt} generated by the recursive procedure
has a better convergence rate than {σt}. Clearly, the con-
vergence rates are also influenced by the reference param-
eters. For the same number of recursions, the first exper-
iment has the lowest MSE. The third experiment has the
largest MSE. The MSEs [σMSE, αMSE] after 1000 recur-
sions are (1) [0.0072, 0.00065], (2) [0.04, 0.0053] and (3)
[0.0827, 0.0164]. This implies that the proposed algorithm
provides quite accurate estimates.

6. CONCLUSION

This work deals with recursive estimation of K–distribution
parameters. A recursive procedure based on the recursive
EM algorithm was developed to find the ML estimates. Be-
cause of the simple structure of the augmented data, the
resulting algorithm has a simple implementation. By nu-
merical results we show that this procedure has good con-
vergence behavior and provides accurate estimates. Various
parameter sets lead to different convergence rates.
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Fig. 2. MSE versus number of recursions. σref = 2, αref = 1.
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Fig. 3. MSE versus number of recursions. σref = 3, αref = 1.5.
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