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ABSTRACT 

RSA is a popular cryptography algorithm widely used in signing 
and encrypting operations for security systems. Generally, the 
software implementations of RSA algorithm are based on 2-prime 
RSA. Recently multi-prime RSA has been proposed to speed up 
RSA implementations. Both 2-prime and multi-prime 
implementations require squaring reduction and multiplication 
reduction of multi-precision integers. Montgomery reduction 
algorithm is the most efficient way to do squaring and 
multiplication reductions. In this paper, we present a new method 
to implement the Montgomery squaring reduction, which speeds 
up squaring reduction by 10-15% for various key sizes.  
Furthermore, a multi-prime 1024-bit RSA signing operation is 
implemented on TI TMS320C6201 DSP processor with the new 
reduction method. As the result, signing operation can be finished 
within 6ms, which is about twice faster than the RSA 
implementation in [11] on the same DSP platform. 

 

1 INTRODUCTION 
RSA algorithm invented by Rivest, Shamir and Adleman in 1978 
is the most popularly used security algorithm in public key 
cryptosystems [1]. It’s widely used to secure network traffic, e-
mail, e-commerce and e-business systems for applications in 
digital signatures and encryptions [2][3]. Since RSA is based on 
arithmetic modulo of large numbers, which requires large number 
of computations, fast implementation of RSA becomes vitally 
important for the performance of cryptosystems. Under this 
consideration, special-purpose hardware has been designed for 
RSA [4]-[7], in which high speed can be achieved but suffers 
from inflexibility. On the other hand, software solutions are 
inherently flexible for all kinds of emerging cryptosystems but 
comparatively slow. Hence it is necessary to develop efficient 
methods to implement RSA over software platforms.  

The software implementations of RSA are generally based on 
2-prime RSA. Recently multi-prime RSA has been proposed to 
speed up RSA implementations [8]. Both 2-prime and multi-
prime implementations require two major operations: squaring 
reduction and multiplication reduction. Montgomery reduction 
algorithm is the most efficient way to perform square and 
multiplication reductions, on which most previous RSA 
implementations [4]-[7][9]-[13] are based. 

In this paper we introduce a new method to implement the 
Montgomery squaring reduction. The new method restructures 
the loop bodies in the squaring reduction to make more room for 

software pipelining, hence speeds up the squaring reduction on 
multi-functional-unit DSP architectures by 10-15% for various 
key size comparing to [11]. Furthermore, an implementation of 
1024-bit multi-prime RSA signing operation with the new 
reduction method is done on TI TMS320C6201 DSP processor 
for experimental purpose. The experimental result shows that the 
signing operation can be finished within 6ms, which is almost 
twice faster comparing to the implementation in [11] on the same 
DSP processor. 

 The rest of paper is organized as follows: Section 2 introduces 
the background of the basic RSA algorithm. The details of the 
new method to implement the Montgomery squaring reduction 
are described in Section 3. Section 4 presents the experimental 
results. Finally the conclusions are drawn in Section 5. 

 

2 BASIC RSA ALGORITHM 
The RSA algorithm defines a mechanism to secure the message 
exchanges in communication systems by providing two types of 
services: authentication and data integrity [9]. Authentication 
consists of signing and verifying operations to assure the 
identities of the message sender. In the signing operation the 
Sender takes the message M, his private signing key D and N 
from the public key (E, N) to compute the signature S by: 

NMS D mod=    (1) 

The signing key D is much larger than the verifying key E. 
Thus the performance of RSA relies on fast implementation of the 
signing operation NMS D mod= .  

2.1 Applying CRT to 2-Prime and Multi-Prime RSA 
Based on the property of the RSA algorithm, the modulus N is 

the product of large prime numbers. Thus we can use Chinese 
Remainder Theorem (CRT) to accelerate the computation.  

In 2-prime CRT and 2-prime RSA, the modulus qpN ⋅= , 
where p, q are large prime numbers. The CRT suggests that the 
computation can be separated into 

pMS D mod1 =   and qMS D mod2 =   

By applying Fermat’s theorem, we can obtain 

pMS D mod1

1 =   and qMS D mod2

2 =    

where )1(mod1 −= pDD and )1(mod2 −= qDD . Applying the 
CRT, we can compute the result S in (1) as: 

NpcSqcSS mod)( 2211 +=    (2) 
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where pqc mod1

1

−=  and qpc mod1

2

−= . The size of p and q is 
about half of N. Thus the size of the exponents is reduced to half 
of the original size in 2-prime RSA. 

In multi-prime CRT and RSA, we have )(mod rqpMS D ⋅⋅= .  

We can obtain pMS D mod1

1 = , qMS D mod2

2 = , and 

rMS D mod3

3 = , where )1(mod1 −= pDD , )1(mod2 −= qDD  

and )1(mod3 −= rDD . We can apply the CRT to retrieve S as 

NpqcSprcSqrcSS mod)( 332211 ++=   (3) 

where prqc mod)( 1

1

−= , qprc mod)( 1

2

−= , rqpc mod)( 1

3

−= . 
Hence the size of the exponents is further reduced to one third of 
the original. Based on above analysis, 1024-bit 2-prime and 
multi-prime RSA can be done with 512-bit and 341-bit exponents 
and modulus respectively.  

2.2 Usage of m-ary Method 

By applying the CRT, we can compute pM D mod1  instead of 

NM D mod , where the size of the exponent D1 is only one third 
of D. In this subsection, we explore the efficient implementation 
for pM D mod1  based on the m-ary method, which can be done in 
the following five steps: 

1) Group the k-bit exponent D1 into mks 2log=  groups. Each 

group has m2log  bits and use 110 ...,,, −sFFF  to denote the 
decimal equivalent values of each group. 

2) Pre-compute pM i mod  where 1...,,3,2 −= mi . 

3) Initialization: pMtmp SF mod1−=  

4) Loop for all the groups: 

}
)5(;mod)(

0
}

)4(;mod)(

{log1
{02

2

pMtmptmp

thenFif

ptmptmptmp

mtojfor

tosifor

iF

i

×=
≠

×=
=
−=

 

5) Save the result: ;1 tmpS =  

In our implementation, m is equal to 16 so that D1 has 512 bits 
and s is 128 for 2-prime RSA and D1 has 352 bits and s is equal 
to 88 for multi-prime RSA. 
2.3 The Montgomery Algorithm 
In the above steps, (4) is mapped to Montgomery squaring 
reduction and (5) is mapped to Montgomery multiplication 
reduction. The Montgomery reduction algorithm can be briefly 
described as follows: 

Given NBA mod)( ×  where A, B, N are all ws × -bit wide 
integers. Each of them is divided into s words with w bits for each 
word. By defining wsR ×= 2  and RNBA <<,  and by assuming 

NRR mod11 =× −  and 111 =×−× −− NNRR  we have the 
Montgomery reduction function according to [11] as  

Input: A, B, R and N; 

Output: NRBAT mod)( 1−××= . 

),,,,(ReductionMont TRNBA  { 

;BAT ×=  
;mod)( 1 RNTm −×=  

);( NmTT ×+=  

;/ RTT =  

);()( TreturnelseNTreturnthenNTif −≥  

} 
Notice that the result of the above function is 

NRBA mod)( 1−××  instead of NBA mod)( × . In order to get 

NBA mod)( ×  from the Montgomery Reduction function, 

argument A has to be changed to NRA mod)( × , which on the 
other hand is computed by 

),,,mod,(ReductionMont 2 TRNNRA . The value of NR mod2  

can be pre-calculated and RNBAm mod)( 1−××=  can be 

replaced by wnBAm 2mod)( 1

0

−−××=  in multi-precision 

implementation, where 0n  is the least significant word of N [13].  

Applying the Montgomery reduction method, 
ptmptmptmp mod)( ×=  (4) can be obtained by 

( )tmpRptmptmpRppRtmp ,,,),,,,mod,(ReductionMontReductionMont 2

, where tmp and p are k-bit integers, kR 2= . 

 

3 NEW METHOD TO IMPLEMENT 
MONTGOMERY SQUARING REDUCTION 

ALGORITHM 
Previous method to implement the signing operation 

NMS D mod=  in [11] is based on the 2-prime CRT. our 
implementation is based on the multi-prime CRT. Furthermore 
we introduce a new method to speed up the Montgomery squaring 
reduction in the m-ary method. Montgomery squaring reductions 
are m2log  times more frequent than the Montgomery 
multiplication reductions in the m-ary method. Thus it is more 
important to optimize the Montgomery squaring reduction. The 
target platform is TI TMS320C6201 DSP, which has eight 
parallel function units. Software pipelining is the most common 
and useful optimization technique to achieve better instruction 
level parallelism and higher performance. The key idea of the 
new method is to implement the Montgomery squaring reduction 
algorithm in the way in which fits the software pipelining on DSP 
processor the best. 

In the following, we present different algorithms for 
implementing ),,,,(ReductionMont TRNAA , where A, R and N 

are inputs and the output is NRAAT mod)( 1−××=  in Fig. 1 to 
Fig. 5. We do not show the operation (6) since it is a common 
operation for all the algorithms. We use the following general 
notations: ),( YX  denotes a number which is the concatenation of 
a pair of two words X and Y, sw denotes the number of words in 
the multi-precision integers A and N, i.e., )...(: 011 aaaA sw− , 

)...(: 011 nnnN sw− , )''...'(: 011

1 nnnN sw−
− ; w denotes the number of 

(6) 
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bits in one word; swwR )2(= , longs  denotes a 40-bit integer due to 

the fact that long integers on fixed point DSP processors are 40-
bit long, and finally the size of T varies from sw+1 words to 

12 −sw  words as according to the algorithm being used. 

3.1 Previous Methods to Implement Squaring Reduction 
We present two previous methods showing in Figure 1 from 

[11] and Figure 2 from [10]. It’s easy to identify the redundancy 
in Figure 1since the same value of 

ij aa ×  and ji aa × has been 

computed twice. To address the redundancy problem, some 
efforts such as [10] make use of the repeated values (Fig. 2) to 
design a specialized Montgomery squaring reduction. However, 
both Fig. 1 and Fig. 2 have outer loops which cannot be 
efficiently software pipelined. Figure 2 also introduces an ADD 
function in the second outer loop to do the carry propagation, 
which contains the costly loop itself. 

for i=0 to sw-1 {
    /* Outer Loop */
    (C, S) = ai x a0 + t0;
    m = (n0 x S) mod 2w;
    (C1, S) = m x n0 + S;
    C1 = 0;
    for j = 1 to sw-1 {
        /* Inner Loop */
        (C, S) = ai x aj + C + tj;
        (C1, tj-1) = m x nj + S + C1;
    }
    (tsw, tsw-1) = tsw + C + C1;
}

for i = 0 to sw-1 {
    /* First Outer Loop */
    (C, ti+i) = ai x ai + ti+i;
    for j = i + 1 to sw-1 {
        /* Inner Loop */
        slong = 2 x C1 + C + ti+j;
        (C1, S) = ai x aj;
        (C, ti+j) = slong + 2 x S;
    }
    (ti+sw+1, ti+sw) = C + 2 x C1;
} C = 0;
for i = 0 to sw-1 {
    /* Second Outer Loop */
    m = ti x n0' mod 2w;
    for j = 0 to sw-1 {
        /* Inner Loop */
        (C, ti+j) = ti+j + m x nj + C;
    }
    ADD(ti+sw, C);
}

Fig.1 Previous Method in [11] Fig.2 Previous Method in [10]

 
3.2 New Methods to Implement Squaring Reduction 

/* Separate Loop for ai x ai */
for i=0 to sw-1 { (ti+i+1, ti+i) = ai x ai; }
for i=0 to sw-1 {
/* First Outer Loop */
    C=0; C1=0;
    for j=i+1 to sw-1 {
    /* Inner Loop */
    /* Redundancy is removed */
        slong = 2 x C1 + C + ti+j;
        (C1, S) = ai x aj;
        (C, ti+j) = slong + 2 x S;
    }
    /* ADD function is replaced below */
    (prevcar, ti+sw) = C + 2 x C1
                           + ti+sw + prevcar;
}
tsw+sw = tsw+sw + prevcar;
precvar = 0;
for i=0 to sw-1 {
    /* Second Outer Loop */
    m = ti x n0' mod 2w;
    for j=0 to sw-1 {
        /* Inner Loop */
        (C, S) = ti+j + m x nj + C;
        ti+j = S;
    }
    /* ADD function is replaced below */
    (prevcar, ti+sw) = C + ti+sw + prevcar;
}
tsw+sw = tsw+sw + prevcar;

/* Separate Loop for ai x ai */
for i=0 to sw-1 { (ti+i+1, ti+i) = ai x ai; }
for i=0 to sw-1 {
/* Outer Loop */
    C=0; C1=0;
    for j=i+1 to sw-1 {
    /* First Inner Loop */
    /* Redundancy is removed */
        slong = 2 x C1 + C + ti+j;
        (C1, S) = ai x aj;
        (C, ti+j) = slong + 2 x S;
    }
    /* ADD function is replaced below */
    (prevcar, ti+sw) = C + 2 x C1
                           + ti+sw + prevcar;
    m = ti x n0' mod 2w;
    C = 0;
    for j=0 to sw-1 {
        /* Second Inner Loop */
        (C, S) = ti+j + m x nj + C;
    }
    /* ADD function is replaced below */
    (prevcar1, ti+sw) = C + ti+sw + prevcar1;
}
tsw+sw = tsw+sw + prevcar + prevcar1;

Fig.3 Improved Squaring Reduction Fig.4 SR with Merged Outer Loop

 

The motivation of the proposed method to implement the 
Montgomery squaring reduction is to completely solve the 
problem of the redundancy and maximize the power of software 
pipelining. The key idea is instead of computing 

ij aa × for i, 

j=1,…,sw, as Figure 1 does, we compute only 
ij aa ×  for 

i=1,…,sw, and  j>i. We achieve this goal by three steps: 

1) Use a separate loop to compute ii aa ×  

2) Remove the ADD function 
3) Restructure the loop to remove the redundancy 
Multiplication on TI TMS320C6201 DSP is a multi-cycle 

operation, which introduces delay slots to the program. To 
maximize the power of software pipelining, we need to fill up 
these delay slots as much as possible. Hence we move the 
computation ii aa ×  out of the first outer loop in Fig. 2. 
Moreover, to deal with the carry propagation loop of function 
ADD, we use a temporary variable prevcar to store the carry 
produced in the outer loops. Thus the carry propagation loop is 
consumed in the outer loops. By applying these two 
improvements, we can obtain an implementation in Fig. 3. 

To optimize the implementation further, we need to restructure 
the loop structures in Fig.3. Since the software pipeline can be 
only performed on the inner loop, we can merge the outer loops 
together for better the software pipelining. It’s easy to see that the 
computation of ),( jitC +  in the inner loops shown in the Fig. 4 are 

overlapping with each other. We can maximize the power of 
software pipelining by remove the overlapping. Hence results the 
implementation with coupled loops in Fig. 5. 

/* Separate Loop for ai x ai */
for i=0 to sw-1 { (ti+i+1, ti+i) = ai x ai; }
for i=0 to sw-1 {
/* Outer Loop */
    m = ti x n0' mod 2w;
    for j=0 to i {
    /* First Inner Loop */
        (C, ti+j) = ti+j + m x nj + C;
    }
    C1 = 0; C2 = 0
    for j=i+1 to sw-1 {
        /* Second Inner Loop */

Continue on the left column…...
    /* Redundancy is removed */
        slong = 2 x C1 + C + ti+j;
        (C1, S) = ai x aj;
        (C, ti+j) = slong + 2 x S ;
        (C2, ti+j) = m x nj + S + C2;
    }
    /* ADD function is replaced below */
    (prevcar, ti+sw) = C + 2 x C1+ C2
                           + ti+sw + prevcar;
}
tsw+sw = tsw+sw + prevcar;

Fig. 5 Squaring Reduction with Coupled Inner Loop

 
 

4 RESULTS 
We have implemented the Montgomery squaring reduction with 
different methods mentioned in the last section with 1024-bit, 
512-bit, and 352-bit operands respectively. The experimental 
results are listed in Table 1, in which we can observe about 13%, 
11.5%, 11.1% maximum improvements in 352-bit, 512-bit and 
1024-bit squaring reduction with the new methods respectively 
comparing to the method used in [11]. 

Methods 1024-bit  512-bit 352-bit 
Prev. method in [11] 6262  1838  1001  
Prev. method in [10] 6974  2090  1146  
Improved (SR) 6220  1828  980  
SR with merged outer loop 6026  1733  942  
SR with coupled inner loops 5561  1625  867  

 
The overall performance of the RSA with different methods to 
implement the squaring reduction is reported in Table 2, from 

Table 1 Execution speed for various squaring reductions on the DSP 
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which we can see that the combination of the new methods 
proposed in this paper and the multi-prime RSA results in 
significant improvement over the same application in [11] on the 
same DSP platform in terms of execution time by almost twice 
faster. 

Methods  Non-CRT 2-prime Multi-
prime 

Prev. method in [11] 40.07 ms 11.76 ms n/a 
SR with coupled 
inner loops 

36.5 ms 10.6 ms 6.06 ms 

 

5 CONCLUSIONS 
We have presented a new method to implement the Montgomery 
squaring reduction on the DSP platform. The new method 
removes the redundancies existing in the previous 
implementations and specifically optimized for the DSP 
architecture by restructuring the loop body. A multi-prime 1024-
bit RSA algorithm is implemented on a TI TMS320C6201 DSP 
processor with the new method. The experimental results show 
that the squaring reduction is improved by 10-15% for various 
key sizes and by 10% for 2-prime RSA comparing to the results 
reported in [11]. Also by combining the new method with 1024-
bit multi-prime RSA, a signing operation can be finished within 6 
ms, which is about twice faster than the RSA implementation in 
[11] on the DSP platform. 
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