AN EFFICIENT IMPLEMENTATION OF MULTI-PRIME RSA ON DSP
PROCESSOR

Anand Krishnamurthy, Yiyan Tang, Cathy Xu and Yuke Wang

Department of Computer Science
University of Texas at Dallas, Richardson, TX, 75083 USA
{axk017510, yiyan, cathy, yuke} @ utdallas.edu

ABSTRACT

RSA is a popular cryptography algorithm widely used in signing
and encrypting operations for security systems. Generally, the
software implementations of RSA algorithm are based on 2-prime
RSA. Recently multi-prime RSA has been proposed to speed up
RSA implementations. Both 2-prime and multi-prime
implementations require squaring reduction and multiplication
reduction of multi-precision integers. Montgomery reduction
algorithm is the most efficient way to do squaring and
multiplication reductions. In this paper, we present a new method
to implement the Montgomery squaring reduction, which speeds
up squaring reduction by 10-15% for various key sizes.
Furthermore, a multi-prime 1024-bit RSA signing operation is
implemented on TI TMS320C6201 DSP processor with the new
reduction method. As the result, signing operation can be finished
within 6ms, which is about twice faster than the RSA
implementation in [11] on the same DSP platform.

1 INTRODUCTION

RSA algorithm invented by Rivest, Shamir and Adleman in 1978
is the most popularly used security algorithm in public key
cryptosystems [1]. It’s widely used to secure network traffic, e-
mail, e-commerce and e-business systems for applications in
digital signatures and encryptions [2][3]. Since RSA is based on
arithmetic modulo of large numbers, which requires large number
of computations, fast implementation of RSA becomes vitally
important for the performance of cryptosystems. Under this
consideration, special-purpose hardware has been designed for
RSA [4]-[7], in which high speed can be achieved but suffers
from inflexibility. On the other hand, software solutions are
inherently flexible for all kinds of emerging cryptosystems but
comparatively slow. Hence it is necessary to develop efficient
methods to implement RSA over software platforms.

The software implementations of RSA are generally based on
2-prime RSA. Recently multi-prime RSA has been proposed to
speed up RSA implementations [8]. Both 2-prime and multi-
prime implementations require two major operations: squaring
reduction and multiplication reduction. Montgomery reduction
algorithm is the most efficient way to perform square and
multiplication reductions, on which most previous RSA
implementations [4]-[7][9]-[13] are based.

In this paper we introduce a new method to implement the
Montgomery squaring reduction. The new method restructures
the loop bodies in the squaring reduction to make more room for

0-7803-7663-3/03/$17.00 ©2003 IEEE

Il-413

software pipelining, hence speeds up the squaring reduction on
multi-functional-unit DSP architectures by 10-15% for various
key size comparing to [11]. Furthermore, an implementation of
1024-bit multi-prime RSA signing operation with the new
reduction method is done on TI TMS320C6201 DSP processor
for experimental purpose. The experimental result shows that the
signing operation can be finished within 6ms, which is almost
twice faster comparing to the implementation in [11] on the same
DSP processor.

The rest of paper is organized as follows: Section 2 introduces
the background of the basic RSA algorithm. The details of the
new method to implement the Montgomery squaring reduction
are described in Section 3. Section 4 presents the experimental
results. Finally the conclusions are drawn in Section 5.

2 BASIC RSA ALGORITHM

The RSA algorithm defines a mechanism to secure the message
exchanges in communication systems by providing two types of
services: authentication and data integrity [9]. Authentication
consists of signing and verifying operations to assure the
identities of the message sender. In the signing operation the
Sender takes the message M, his private signing key D and N
from the public key (E, N) to compute the signature S by:

S =M"modN (1)

The signing key D is much larger than the verifying key E.
Thus the performance of RSA relies on fast implementation of the

signing operation S =M "modN .
2.1 Applying CRT to 2-Prime and Multi-Prime RSA

Based on the property of the RSA algorithm, the modulus N is
the product of large prime numbers. Thus we can use Chinese
Remainder Theorem (CRT) to accelerate the computation.

In 2-prime CRT and 2-prime RSA, the modulus N=p-q,

where p, g are large prime numbers. The CRT suggests that the
computation can be separated into

S, =M"modp and S,=M"modqg
By applying Fermat’s theorem, we can obtain
S, =M"modp and S,=M" modg
where D1=Dmod(p—1)and D2 =D mod(q—1). Applying the
CRT, we can compute the result S in (1) as:
S=(S,cq+S,c,p)mod N 2)

ICASSP 2003

where ¢, =g~ mod p and ¢, = p” modq . The size of p and ¢ is

about half of N. Thus the size of the exponents is reduced to half
of the original size in 2-prime RSA.

In multi-prime CRT and RSA, we have S =M mod(p-gq-r) .

We can obtain S =M"modp, S§,=M"modg, and
S, =M " modr, where DI =Dmod(p—1), D2=Dmod(g—1)

and D3 = Dmod(r—1) . We can apply the CRT to retrieve S as
S =(S,cqr+S,c,pr+S,c,pg) mod N 3)

where ¢, =(rg)" modp, ¢, =(pr)" modg, c,=(gp)" modr.

Hence the size of the exponents is further reduced to one third of
the original. Based on above analysis, 1024-bit 2-prime and
multi-prime RSA can be done with 512-bit and 341-bit exponents
and modulus respectively.
2.2 Usage of m-ary Method

By applying the CRT, we can compute M " mod p instead of
M”modN , where the size of the exponent DI is only one third
of D. In this subsection, we explore the efficient implementation
for M " mod p based on the m-ary method, which can be done in
the following five steps:
1) Group the k-bit exponent DI into s = k/log, m groups. Each

to denote the

-1

group has log, m bits and use F,,F,,...,F,

decimal equivalent values of each group.
2) Pre-compute M'mod p where i =2,3,...m—1.
3) Initialization: tmp = M "™~ mod p
4) Loop for all the groups:
fori=s-21t00{
for j=1tolog,m{

tmp = (tmp Xtmp)mod p; 4)
}
if F # Othen

tmp = (tmpx M ")mod p; 5)

}
5) Save the result: S, = tmp;

In our implementation, m is equal to 16 so that DI has 512 bits
and s is 128 for 2-prime RSA and D/ has 352 bits and s is equal
to 88 for multi-prime RSA.

2.3 The Montgomery Algorithm

In the above steps, (4) is mapped to Montgomery squaring
reduction and (5) is mapped to Montgomery multiplication
reduction. The Montgomery reduction algorithm can be briefly
described as follows:

Given (AXB)modN where A, B, N are all sxw-bit wide
integers. Each of them is divided into s words with w bits for each
word. By defining R=2"" and A,B <N <R and by assuming

RXR'=1modN and RXR'-NxN"'=1
Montgomery reduction function according to [11] as
Input: A, B, R and N;

we have the

Output: T =(AXBXR")modN .
MontReduction(A,B,N,R,T) {

T = AXB;

m=(TxN")modR;

T=(T+mxN),

T=T/R,

if T > N then return (T — N) else return (T); (6)

}

Notice that the result of the above function is
(AXxBxR")YmodN instead of (AXB)modN . In order to get
(AxB)modN from the Montgomery Reduction function,
argument A has to be changed to (AXR)modN , which on the
other hand is computed by
MontReduction(A, R mod N,N,R,T) . The value of R’mod N
can be pre-calculated and m=(AXBxN"')modR can be
replaced by m=(AxBx-n')mod2” in multi-precision
implementation, where n, is the least significant word of N [13].

method,
obtained by

Applying the Montgomery reduction
tmp = (tmp X tmp) mod p (4) can be
Mont Reduction(MomReduction(tmp, R’ mod p, p, R,tmp),tmp, p, R,tmp)

, where tmp and p are k-bit integers, R =2".

3NEW METHOD TO IMPLEMENT
MONTGOMERY SQUARING REDUCTION
ALGORITHM

Previous method to implement the signing operation
S=M"modN in [11] is based on the 2-prime CRT. our
implementation is based on the multi-prime CRT. Furthermore
we introduce a new method to speed up the Montgomery squaring
reduction in the m-ary method. Montgomery squaring reductions
are log,m times more frequent than the Montgomery

multiplication reductions in the m-ary method. Thus it is more
important to optimize the Montgomery squaring reduction. The
target platform is TI TMS320C6201 DSP, which has eight
parallel function units. Software pipelining is the most common
and useful optimization technique to achieve better instruction
level parallelism and higher performance. The key idea of the
new method is to implement the Montgomery squaring reduction
algorithm in the way in which fits the software pipelining on DSP
processor the best.

In the following, we present different algorithms for
implementing MontReduction(A,A,N,R,T), where A, R and N
are inputs and the output is 7 =(AXAXR")mod N in Fig. 1 to

Fig. 5. We do not show the operation (6) since it is a common
operation for all the algorithms. We use the following general
notations: (X,Y) denotes a number which is the concatenation of
a pair of two words X and Y, sw denotes the number of words in
the multi-precision integers A and N, ie., A:(a, ..aaq,),

N:(n, ..nn), N':(' .n'n)); w denotes the number of

I1-414

bits in one word; R=(2")", s, denotes a 40-bit integer due to

long
the fact that long integers on fixed point DSP processors are 40-
bit long, and finally the size of T varies from sw+1 words to
2sw—1 words as according to the algorithm being used.

3.1 Previous Methods to Implement Squaring Reduction

We present two previous methods showing in Figure 1 from
[11] and Figure 2 from [10]. It’s easy to identify the redundancy
in Figure Isince the same value of ¢ xq, and a,Xa, has been

computed twice. To address the redundancy problem, some
efforts such as [10] make use of the repeated values (Fig. 2) to
design a specialized Montgomery squaring reduction. However,
both Fig. 1 and Fig. 2 have outer loops which cannot be
efficiently software pipelined. Figure 2 also introduces an ADD
function in the second outer loop to do the carry propagation,
which contains the costly loop itself.

Fig.1 Previous Method in [11]

for i=0 to sw-1 { fori=0to sw-1{
/* Outer Loop */ /* First Outer Loop */
(C.9=axa+1y (C t)=axa+t,;
m=(n,x S) mod 2%

forj=i+1to sw-1{
(C,S)=mxn,+S; /* Inner Loop */

Fig.2 Previous Method in [10]

C,=0; Spong=2XC,+ C+1t.;

for j=11to sw-1{ (B:fls):a/,;aj; "
/* Inner Loop */ (Cot,) =S+ 2X S;
(C, S)=a,xa/+C+t/; }

(C,t)=mx n+ S+C

[=C+2xC,

& (tl+sw+ 7 tl+sw)

s

(t by 1) =1, +C+Cp fori=0to sw-1{
} /* Second Quter Loop */
m=t;x ny'mod 2%,
for j=0to sw-1{
/* Inner Loop */
(Ct)=t +mx n+ C;

> it i+

ADD(t

i+sw?

C);
}

3.2 New Methods to Implement Squaring Reduction

Fig.3 Improved Squaring Reduction | Fig.4 SR with Merged Outer Loop

/* Separate Loop for &, x a,*/
for i=0 to sw-1 {(t_,,,, t,) = a;x a;}
for i=0 to sw-1 {
/* First Outer Loop */
C=0; C=0;
for j=i+1to sw-1 {
/* Inner Loop */
/* Redundancy is removed */

/* Separate Loop for g;x a;*/
for i=0 to sw-1 {(t,,,,, t,) = a;x a;}
for i=0 to sw-1 {
/* Outer Loop */
C=0; C=0;
for j=i+1to sw-1 {
/* First Inner Loop */
/* Redundancy is removed */

Spong=2X Cy+ C+ b Spng=2X C;+ C+
(C. S =axa; (Cy, S)=a;xa;
(Ct,)=Spg+2XS; (Ct) =S t2XS;

/* ADD function is replaced below */ /* ADD function is replaced below */

(prevear, t.,,)= C+2x C, (prevear, t,)= C+2x C,
+ t“sw + prevcar, + t1+sw + prevcar,
} m=t;x ny,"mod 2%,
tSW+SW = ISW+SW + pl’eVCaI‘} C = 0

for '=6 to sw-1{
/* Second Inner Loop */
(C, 8 =t ;+mxn+C;

precvar=0;

for i=0 to sw-1 {
/* Second Outer Loop */
m=t,x n,"mod 2"

for j=0 to sw-1 { /* ADD function is replaced below */

/* Inner Loop */ (prevecart, t,) = C + t. . + prevcarl
(C,S):t,.ﬂ.+mxn[+C; }
t,=S bowssw = Lswesw + PrEVCAr + preveart,

I+
!

/* ADD function is replaced below */
(prevcar, t,)= C+t, + prevcar,

i+sw/ i+sw

}

t + prevcar,

SWHSW T “swHsw

The motivation of the proposed method to implement the
Montgomery squaring reduction is to completely solve the
problem of the redundancy and maximize the power of software
pipelining. The key idea is instead of computing « xa, for i

Jj=1,....sw, as Figure 1 does, we compute only g xqa, for
i=1,...,sw, and j>i. We achieve this goal by three steps:

1) Use a separate loop to compute a, Xa,

2) Remove the ADD function
3) Restructure the loop to remove the redundancy

Multiplication on TI TMS320C6201 DSP is a multi-cycle
operation, which introduces delay slots to the program. To
maximize the power of software pipelining, we need to fill up
these delay slots as much as possible. Hence we move the
computation a,xXa, out of the first outer loop in Fig. 2.

Moreover, to deal with the carry propagation loop of function
ADD, we use a temporary variable prevcar to store the carry
produced in the outer loops. Thus the carry propagation loop is
consumed in the outer loops. By applying these two
improvements, we can obtain an implementation in Fig. 3.

To optimize the implementation further, we need to restructure
the loop structures in Fig.3. Since the software pipeline can be
only performed on the inner loop, we can merge the outer loops
together for better the software pipelining. It’s easy to see that the
computation of (C,z,,) in the inner loops shown in the Fig. 4 are
overlapping with each other. We can maximize the power of

software pipelining by remove the overlapping. Hence results the
implementation with coupled loops in Fig. 5.

Fig. 5 Squaring Reduction with Coupled Inner Loop
/* Separate Loop for a;x a;*/ Continue on the left column......
for i=0 to sw-1 {(t,;,, t,) = axa;} /* Redundancy is removed */
for i=0 to sw-1 { Sng=2%xCi+ C+ 5
/* Outer Loop */ (Cp, S)=axa;
m=t;x n,'mod 2%, (Cot,) = Sppg+ 2% S
for j=0to i{ (C,) =mxn+ S+C,
/* First Inner Loop */
(C, tw.) =l+mxn+ C; /* ADD function is replaced below */
(prevear, t,.)=C+2x C;+C,
C,=0;C,=0 + b, + prevcar,
for j=i+1to sw-1 { }
/* Second Inner Loop */ bowssw = Lowasw + PrEVCAN,

4 RESULTS

We have implemented the Montgomery squaring reduction with
different methods mentioned in the last section with 1024-bit,
512-bit, and 352-bit operands respectively. The experimental
results are listed in Table 1, in which we can observe about 13%,
11.5%, 11.1% maximum improvements in 352-bit, 512-bit and
1024-bit squaring reduction with the new methods respectively
comparing to the method used in [11].

Methods 1024-bit | 512-bit 352-bit
Prev. method in [11] 6262 1838 1001
Prev. method in [10] 6974 2090 1146
Improved (SR) 6220 1828 980
SR with merged outer loop 6026 1733 942
SR with coupled inner loops 5561 1625 867

Table 1 Execution speed for various squaring reductions on the DSP

The overall performance of the RSA with different methods to
implement the squaring reduction is reported in Table 2, from

Il -415

which we can see that the combination of the new methods
proposed in this paper and the multi-prime RSA results in
significant improvement over the same application in [11] on the
same DSP platform in terms of execution time by almost twice
faster.

Methods Non-CRT 2-prime Ml.lltl-
prime
Prev. method in [11] 40.07 ms 11.76 ms n/a
SR with coupled 36.5 ms 10.6 ms 6.06 ms
inner loops

Table 2 Execution time for different implementations of the signing operation

S CONCLUSIONS

We have presented a new method to implement the Montgomery
squaring reduction on the DSP platform. The new method
removes the redundancies existing in the previous
implementations and specifically optimized for the DSP
architecture by restructuring the loop body. A multi-prime 1024-
bit RSA algorithm is implemented on a TI TMS320C6201 DSP
processor with the new method. The experimental results show
that the squaring reduction is improved by 10-15% for various
key sizes and by 10% for 2-prime RSA comparing to the results
reported in [11]. Also by combining the new method with 1024-
bit multi-prime RSA, a signing operation can be finished within 6
ms, which is about twice faster than the RSA implementation in
[11] on the DSP platform.

REFERENCES

[1] R. L. Rivest, A. Shamir and L. Adleman, “A Method of
obtaining Digital Signatures and Public Key Cryptosystems,”
Comm. of ACM, vol. 21, no.2, pp. 120-126, Feb 1978.

[2] T. Unkasevie, M. Markovic and G. Dordevic, “Optimization
of RSA Algorithm Implementation on TI TMS320C54x Signal
Processors,” Proc. of TELSIKS 2001, pp. 603-606, Sept. 2001.

[3] D. Boneh and H. Shacham, “Fast variants of RSA,”
CryptoBytes, vol.5, no.1, pp. 1-9, 2002.

[4] S. E. Eldridge and C. D. Walter, “Hardware implementation
of Montgomery’s modular multiplication algorithm,” I[EEE
Trans. Comput., vol. 42, pp. 693-699, June 1993.

[5] C. C. Yang, T. S. Chang, and C. W. Jen, “A new RSA
cryptosystem hardware design based on Montgomery’s
algorithm,” [EEE Trans. Circuit and Systems II: Analog and
Digital Signal Processing, vol. 45, pp. 908-913, July 1998.

[6] T. Blum and C. Paar, “Montgomery modular exponentiation
on reconfigurable hardware,” Proc. 14™ IEEE Symp. On
Computer Arithmetic, pp. 70-77, 1999.

[7] T-W. Kwon, C-S. You, W-S. Heo, Y-K. Kang and J-R. Choi,
“Two Implementation Methods of a 1024-bit RSA
Cryptoprocessor Based on Modified Montgomery Algorithm,”
Proc. of ISCAS 2001, vol. 4, p.650-653, 2001.

[8] “PKCS #1 v2.0 Amendment 1: Multi-Prime RSA,” RSA
Laboratories, July 20, 2000.

[9] C. K. Koc, “High-Speed RSA Implementation,” RSA
Publications, ver. 2 1994.

[10] C. K. Koc, T. Acar, B.S. Kaliski, “Analyzing and Comparing
Montgomery Multiplication Algorithms,” IEEE Micro, vol. 16,
No. 3, pp. 26-33, June 1996.

Il-416

[11] K. Itoh, M. Takenaka, N. Torii, S. Temma, Y. Kurihara,
“Fast Implementation of Public-Key Cryptography on a DSP
TMS320C6201,” Proc. of CHES’ 99, pp. 61-71, 1999.

[12] P. Barrett, “Implementing the Rivest, Shamir, and Adleman
Public-Key Encryption Algorithm on a Standard Digital Signal
Processor,” Advances in Cryptology CRYPTO’86, vol. 263, pp.
311-323, 1987.

[13] S. R. Dusse, B. S. Kaliski, “A Cryptographic Library for the
Motorola DSP56000,” Advances in Cryptology-Eurocrypt’90, pp.
230-244, 1990.

[14] A. Selby and C. Mitchell, “Algorithms for software
implementations of RSA,” IEEE PROCEEDINGS, vol. 136, No.
3, pp.166-170, May 1989.

[15] D. E. Knuth, “The Art of Computer Programming:
Seminumberical Algorithms,” vol. 2. Reading, Sept. 1993.

[16] D. M. Gordon, “A Survey of Fast Exponentiation Methods,”
Journal of Algorithms 27, pp. 129-146, 1998.

[17] J. Bos and M. Coster, “Addition Chain Heuristics,” Proc. of
CRYPTO 89, No. 435, pp. 368-370, 1989.

[18] P.L. Montgomery, “Modular Multiplication without Trial
division,” Mathematics of Computation, vol. 44, pp. 519-524,
1985.

