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ABSTRACT

Performance of any tracking algorithm depends upon the model
selected to capture the target dynamics. In real world applications,
no apriori knowledge about the target motion is available. More-
over, it could be a maneuvering target. The proposed method is
able to track maneuvering or nonmaneuvering multiple point tar-
gets with large motion (£20 pixels) using multiple filter bank in
an IR image seguence in the presence of clutter and occlusion due
to clouds. The use of multiple filters is not new, but the novel
idea here is that it uses single-step decision logic to switch over
between filters. Our approach does not use any apriori knowledge
about maneuver parameters, nor does it exploit a parameterized
nonlinear model for the target trgjectories. Thisisin contrast to:
(i) Interacting Multiple Model (IMM) filtering which required the
maneuver parameters, and (ii) Extended Kalman Filter (EKF) or
Unscented Kalman Filter (UKF), both of which require a parame-
terized model for the trgjectories. We compared our approach for
target tracking with IMM filtering using EKF and UKF for non-
linear trgjectory models. UKF uses the nonlinearity of the target
model, where as afirst order linearization is used in case of EKF.
RMS for the predicted position error (RMS-PPE) obtained using
our proposed methodology is significantly less in case of highly
maneuvering target.

1. INTRODUCTION

Target tracking in the presence of multiple targets and clutter is
paramount in any InfraRed Search and Track system. Different
methods to track multiple targets based on Multiple Hypothesis
Tracking, Joint Probabilistic Data Association have been proposed
([11,[2],[3]) respectively. All these methods are computationally
expensive and have little scope for real time application. In real
life application, target may be maneuvering. It is difficult to track
the target trajectory using one particular type of filter. We pro-
pose a multiple point target tracking algorithm using afilter bank
for each target without utilization of any apriori knowledge about
target dynamics. This technique is capable of tracking both ma-
neuvering or nonmaneuvering targets. In the proposed agorithm,
filter switch-over from maneuvering to nonmaneuvering and vice-
versais performed using single-step decision logic, instead of dou-
ble decision logic [4]. The proposed tracking agorithm is efficient
in terms of computation. Itis able to track targetsin real time.

Our approach does not use any apriori knowledge about ma-
neuver parameters, nor does it exploit a parameterized nonlinear
model for the target trgjectories. Thisisin contrast to: (i) IMM fil-
tering [5] which required the maneuver parameters, and (ii) EKF
or UKF [6], both of which require a parameterized model for the
trajectories.
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We have also compared our approach with the IMM agorithm
[7], consisting of constant acceleration (CA), Singer's maneuver
model (SMM) and coordinated turn (CT) model. In our simula-
tion, to preserve the nonlinearity associated with the CT model
we have also used UKF. In simulation, before the image is passed
to the tracking algorithm, it is assumed that clutter and noise are
removed using a target detection technique developed in [8]. A
tracking algorithm updates or deletes existing tracks. It is possible
to initiate new tracks if image sequence is preprocessed to form
a candidate target list using target detection module. If no mea
surement is associated with a track for several consecutive image
frames, then the filter bank for that target is eliminated and the
track isterminated.

2. TRACKING MULTIPLE MANEUVERING TARGETS
USING MULTIPLE FILTER BANK

In the presence of multiple targets, data association is required to
update existing tracks and to initiate anew track. Many techniques
have been presented ([1], [2]) pertaining to radar tracking applica-
tion. The nearest neighbor method is the most common technique
used for data association. Data assignment is made based on min-
imum distance, i.e. minimum error measure value. Generaly, the
innovation error (the difference between predicted and observed
position) is used as an error measure.

The validation region (gate) isformed based on thisinnovation
error and data assignment is made using sub-optimal or optimal
algorithms[9]. Innovation based nearest neighbor data association
is briefly described. The current set of measurements z(k) at time
instant k are validated using the validation gate. It isformed based
on innovation using the following procedure [2]. The predicted
measurement is given by

2(k +1|k) = H(k 4+ 1)&(k + 1|k) 1)

The true measurement at time & + 1, conditioned upon Z*, is as-
sumed to be normally distributed, and is given as,

pla(k+1)|Z2¥] = Na(k +1);2(klk + 1),s(k+1)] (2

where Z* = {2(i), 0 < k} isthe set of measurement and s(k+1)
is the innovation covariance matrix defined as,

s(k+1) = E[z(k + 1|k)Z (k + 1]k)|2"] ®3)

Based on this, aregion is defined in the measurement space where
the measurement will be found with high probability:

VE)={z:2"(k+1)s "(k+1Dz(k+1) <& (D)
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where Z(k + 1) = z(k + 1) — z2(k + 1|k) isthe innovation and
¢ is a parameter obtained from tables of the chi-square distribu-
tion with number of degrees of freedom equal to the dimension
of measurement. Error measure value calculation is done for each
measurement with respect to every target in the validation gate.
Thisis followed by Munkres optimal data assignment algorithm
[9], which is used to assign an observation to atrack. The assump-
tion made in the Munkres' algorithm is that only one observation
isassigned to asingle track. If Munkres' agorithm does not asso-
ciate any observation to a currently existing track, it is considered
as an occlusion of the target. If no measurement is associated with
atrack over for several consecutive image frames, then the filter
bank for that target is eliminated and track is terminated.

2.1. Proposed multiplefilter bank method

In areal application, target may be nonmaneuvering or maneuver-
ing. Using a single tuned filter, it is difficult to track the target
trajectory. The performance of the nonmaneuvering model based
tracking filter degrades when the target maneuvers, on the other
hand the performance of the maneuver based filter degrades when
thereisno maneuver. We propose a method to track multiple point
target movement using multiple filter bank. The filter bank con-
sists of different types of filters. For example, in a bank of two
filters, one could be a constant velocity filter and the other could
be based on amaneuver model. Thisapproach isdifferent from the
multiple model approach because no apriori knowledge of maneu-
ver parameters are assumed. For example, in case of coordinated
turn model, the value of angular turn rate parameter is required.
An approach based on the use of multiple filters has been ex-
plored earlier [4]. But in the proposed method switch-over be-
tween thefiltersin the bank is based on single-step decision logic,

and consequently, iscomputationally more efficient and performance-

wise more robust. The proposed method differs from the earlier
approach in the following ways:

1. Only one step decision logic is required instead of double de-
cision logic, which makes real time implementation feasible.

2. A dlidingwindow memory isused to storethelast few innova-
tion errors. Innovations over the past few iterations character-
ize the observations quite well. It provides a better measure
to take a decision about the behavior of a target at the next
time instant.

3. The state of the target is estimated at every timeinstant using
current available observations. It avoids the concatenation of
observations and consequently, there is no delay in decision
making.

4. Theneed for matrix inversion or some power of the transition
matrix is eliminated since the state estimation is available at
every instant.

5. Reinitidization of a filter during the switch-over is not re-
quired, since al the filters update their states continuously
with the current set of observations.

The constant acceleration or constant velocity based Kalman filter
is able to track nonmaneuvering targets. Hence, it is preferred
that at least one of the filters in the filter bank should be based
on constant acceleration or constant velocity model. The constant
acceleration model performs well when an acceleration is in the
direction of velocity. It does not work with highly maneuvering
target. Therefore, we add one more filter; a Kalman filter based on

Singer’s model [10], which is used to track maneuvering targets.
In this model, the acceleration is modeled as colored noise [2].
From our simulations, we observe that afilter bank with two filters,
one based on constant acceleration model and the other based on
acceleration being modelled as colored noise, is able to track both
nonmaneuvering and maneuvering targets.

2.2. Single step decision logic

We present a single step decision logic, which provides a measure
to characterize the behavior of the target in the absence of any
apriori information.

1. At every iteration, an observation is given to al the filters
in the filter bank and they update their states independent of
each other.

2. Theinnovation error is accumulated over the past iterations
for each filter in the filter bank. It is averaged and compared
with that of the other filter.

Let the average innovations error ae; for i-th filter at time instant
k be defined as

1 k
aei(k) =~ Z vi(m) %)

m=k—s+1

where v;(m) is the RMS value of innovation, which is given by
(4), for i-th filter at time instant m. Here s is size of diding win-
dow. Switch-over takes place from filter 7 to filter j if ae; (k) >
aej(k) at time instant k. The above steps make it possible to
track both maneuvering and nonmaneuvering multiple point tar-
gets simultaneously without any apriori knowledge about the tar-
get movement.

3. SSIMULATION RESULTS

Synthetic IR images were generated using real time temperature
data [11]. Intensity at different points in images is a function of
temperature, surface properties and other environmental factors.
We use Gardner’s method to synthesize IR clouds. For simulation,
the generated frame sizeis 1024 x 256 and very high target move-
ment of +£20 pixels per frame. Maneuvering trgjectories are gen-
erated using B-Spline function. It is important to note that these
generated trajectories do not follow any specific model.

Figure 1 depicts the tracks formed using the proposed scheme
for IR clips:3 (ir18.i). All three targets are maneuvering and there
is no apriori knowledge about the maneuvering parameters. Mul-
tiple nonmaneuvering point targets tracking result is presented in
Figure 2 for IR clips:1 (irl). The root mean square (RMS) inno-
vation error in the position of a target number 2 in IR clips:3 is
shown in Figure 3(a). The RMS innovation error in position of a
target number 3 in IR clips:1 is shown in Figure 3(b). It shows
that innovation error over the past few iterations is sufficient to
characterize the behavior of the target, i.e. to decide whether it is
maneuvering or not, and consequently, helps to switch-over from
nonmaneuvering filter to maneuvering filter.

Table | represent RM S predicted position error for the targets
in different IR clips using our proposed method, where filter bank
consists of constant acceleration (CA) filter and Singer’s maneuver
model (SMM) filter, named as CASMM approach. 'Tr.” represents
target trajectory number in respective IR clip. We have aso tested
our approach by adding coordinated turn model (CT) along with
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Fig. 1. Target Trajectories at frame number 29 (IR clips:3)

Fig. 2. Target Trajectories at frame number 29 (IR clips:1)
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Fig. 3. RMSInnovation Error

CA and SMM (CASMMCT approach). In our simulation, to test
single step switch over logic, an active filter isinitialized as SMM
in case of nonmaneuvering targets and as CA for maneuvering tar-
gets. Figure 4 shows switch over of the filter from CA to SMM
filter for three maneuvering targetsin IR clips:3.

In table I, we depict the combined RMS-PPE for different

IMM filtering approaches, (i) IMM using discrete models for CA,
SMM and CT, abbreviated as IMM_Dis filtering approach, (ii)
IMM using the same three models with EKF being used for CT
model, abbreviated as IMM_EKF and (iii) IMM using the same
three model with UKF being used for CT model, abbreviated as
IMM_UKF. The CASMM filtering approach gives less error in
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Fig. 4. Single step filter switch over (IR clips:3)

comparison with the other approaches for two IR video clipsirl8.i
and ir50_i (refer table |, RMS-PPE for SMM in CASMM filtering
approach) with substantially lessamount of computations and with
only two filtersin the filter bank.

Due to space limitation, model probability plots for IMM fil-
tering using UKF and EKF are not included. It showsthat asingle-
step decision logic is sufficient to switch over from CA filter to
SMM and it can be compared with plots for evolution of the model
probabilities in case of IMM approach. For the proposed method
CASMM, RMS-PPE=8.4065, for IMM_EKF RMS-PPE=11.9056
and for IMM_UKF RMS-PPE=12.0032 is obtained for target 1 in
IR clips:3 (irl8.i), which consists of highly maneuver targets.

[ RMS Position Error Table - |

[Tr. ] CASMM | CASMMCT I
[ I CA ] SMM ]| CA ] SMM [ CTumn ]
[ Sequence ir18.i I
1 29.2858 | 8.4065 || 19.5274 | 8.4065 | 26.6414
2 23.8033 | 7.5490 || 29.2858 | 7.5490 | 22.8071
3 10.9325 | 8.6224 || 23.8033 | 8.4291 | 19.5274
[ Sequence ir49_ I
1 3.7155 | 2.3760 3.7155 | 2.3760 9.1296
2 45295 | 28121 45295 | 2.8121 9.2744
[ Sequence ir50_i I
1 4.8520 | 2.2176 4.8520 | 2.2176 8.5792
2 3.6508 | 1.9787 3.6508 | 1.9787 7.7607

[ Combined RMS Position Error Table - [ (IMM) ||

[ Tr. [ IMMDis | IMM_EKF | IMM_UKF ||
l Sequence irl8.i I
1 8.4898 11.9056 12.0032
2 7.5492 10.4007 10.4453
3 8.0187 7.7725 7.8390
[ Sequence ir49_i I
1 1.8974 2.0316 2.0571
2 2.2631 21712 2.0730
[ Sequence ir50_i ]
1 2.2572 2.4465
2 2.0195 2.1692

4. CONCLUSION

RMS for the predicted position error (RMS-PPE) obtained using
our proposed methodology is significantly less in case of highly
maneuvering target. As demonstrated through simulation, it can
track even highly maneuvering multiple point targets. The single-
step decision logic to switch-over between filters based on inno-
vations, avoids the calculation of the model probability and com-
bined state estimation as required in the IMM filtering approach.
The proposed method is computationally less demanding as com-
pared to IMM filtering using EKF or UKF. Most importantly, it
does not require any apriori knowledge about target dynamics. Use
of multiple filter bank using a single-step decision logic to switch
over between the filters gives a better result for tracking targetsin
presence of multiple target and clutter.
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