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ABSTRACT 

 
This paper addresses a parametric method based on High-
Order Ambiguity Function (HAF) to solve the problem of 
phase contamination of HF skywave radar signals 
corrupted by the ionosphere. When signal-to-noise ratio 
and data sequence available satisfy the predefined 
conditions, the ionospheric phase contamination may be 
modeled by the polynomial phase signal. As a new 
parametric tool for analyzing polynomial phase signal, 
HAF is applied to estimate polynomial phase model 
parameters and reconstruct the disturbance signal. Using 
the estimated reconstructed signal, compensation can be 
performed before coherent integration and the original 
radar return spectrum can be restored. A piecewise 
scheme is proposed to track rapid variation of the phase 
contamination in HAF method, and it can remove the 
Doppler spread effect caused by the ionosphere 
nonstationarity. Simulation is used to demonstrate the 
efficiency of the proposed method. 

 

1. INTRODUCTION 
 
High-frequency skywave over-the-horizon radar can 
provide a range-coverage of up to 4,000km by means of 
the refraction within the ionosphere. But the signal 
contamination suffered in double ionospheric transit. 
Especially, Doppler spread mechanism renders the sea 
clutter spectrum distorted and resolution of coherent 
integration technique that is widely applied in the radar 
systems is degraded extremely [1].  

The echo signal reflected by the sea surface has a pair 
of peaks in the Doppler domain, which is often known as 
the Bragg lines. In some applications of HF skywave 
radar such as remote sensing and surface surveillance, 
temporal nonlinear phase path variation often produces 
significant spread of the ionoshpheric propagated signals 
so that the Bragg lines and target echoes smear cross the 
Doppler frequency domain. Since the energy of the Bragg 
lines is so strong that slight spread of the first-order sea 
clutter spectrum can obscure the neighboring echo 
scattered by a slow moving surface vessels. The phase 

contamination is attributed to complex geophysical 
mechanisms [2,3].

To limit the Doppler spread effect and allow extended 
coherent integration time for good frequency resolution, it 
is necessary to estimate and compensate the raw radar 
signal by signal processing techniques before coherent 
integration. By virtue of the nonstationarity of the phase 
perturbation, instantaneous frequency estimation methods 
are introduced to solve this problem. Bourdillon and 
Parent etc. al have suggested some methods such as 
MESA (Maximum Entropy Spectrum Analysis) and 
energy weighted average phase differential estimator [4, 5, 
6].  

In this paper a piecewise parametric phase estimator 
based on high-order ambiguity function is proposed. HAF 
can identify the degree of the phase polynomial and 
estimate its coefficients.  HAF-based estimator has some 
attractive properties, such as computationally efficiency, 
robustness for deviations from the signal model to some 
extent, and estimation accuracy that is very close to the 
CRB [7]. Due to these attributes we can realize an 
instantaneous phase estimation algorithm, which is used 
to compensate the phase of the modulation. 
 

2. HIGH-ORDER AMBIGUITY FUNCTION 
 
In this paper, we consider the following model for a 
complex sampled signal s(n)  
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where 1-Nn0 ≤≤ , N is sample number, ∆  is the 
sample interval and coefficients ma are real. That is a 
model with constant amplitude and polynomial phase of 
order M. 

The M-th order high-order ambiguity 
function MHAF is defined as the discrete Fourier transform 
of high-order instantaneous moment MHIM . Let s(n)  be 
the form of (1). The operators ( )[ ]τ,HIM1 ns and 

( )[ ]τ,HIM2 ns are defined by [8] 
( )[ ] ( )nsns =τ,HIM1                                             (2) 

( )[ ] ( ) ( )ττ −= nsnsns *
2 ,HIM              (3) 
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where the delay parameterτ and the order of the operator 
M are positive integers. And higher-order operators are 
defined by 

( )[ ] ( )[ ][ ]τττ ,,HIMHIM,HIM 12 nsns MM −= .             (4) 
Here the asymmetric definition is used. The following two 
lemmas can be resulted from these definitions and are 
useful for the subsequent development. 
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Lemma 2: 
         

( )[ ] ( )[ ][ ][ ]ττττ ,,,,HIMHIMHIM,HIM 222 LL nsnsM =     (7) 
where the operator 2HIM is applied M-1 times. 

The following theorem shows that applying the 
operator of order M to a constant-amplitude polynomial-
phase signal of the same order transforms the broadband 
signal into a single tone with a frequency related to the m-
th order coefficient ma . 
Theorem 1: Let s(n)  be a polynomial-phase signal of 
order M given in (1). Then, for all positive integersτ  

( )[ ] ( ){ }00exp,HIM ϕωτ +∆= njnsM                    (8) 
where 1-Nn1)-(M ≤≤τ  and 
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The operator MHIM has the following properties: 
Property 1: 

( ) ( )[ ] ( )[ ] ( )[ ]τττ ,HIM,HIM,HIM 2121 nsnsnsns MMM = . (11) 
Property 2: For every real 0b  
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−∆−= M

M aM τϕ . 
The proofs of these properties are given in literature 

[8]. From property 3 and 4 it can be concluded that 
applying the operator of order M to a polynomial-phase 
signal of order lower than M, will produce a constant.  

Then the high-order ambiguity function of order M 
can be described as follow: 
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So we can conclude that MHAF of polynomial-phase 
signal of the same order will produce a single spectral line 
at non-zero frequency. By locating this line and estimating 
its frequency, we can obtain an estimate of the highest 
order polynomial coefficient. And applying MHAF to a 
polynomial-phase signal with order lower than M will 
result a spectral line at zero frequency (DC). 

 
3. IONOSPHERIC PHASE DECONTAMINATION 

ALGORITHM 
 
In this section, an ionospheric phase decontamination 
algorithm is addressed. Unlike those methods based on 
instantaneous frequency estimation techniques, the 
proposed algorithm is phase estimation method. It is not 
necessary to estimate the instantaneous frequency of the 
nonstationary phase distortion and then integrate the 
phase of the correction signal to compensate. The phase of 
correction signal can be estimated in a straightforward 
way.  

In practice, the first step is always to determine 
whether the observed signal is phase-contaminated or not. 
If the ionosphere is stationary, it is obvious that the Bragg 
lines locate at the fixed frequencies in the Doppler domain 
as described by Barrick [9]. Therefore, if the Bragg lines 
are not at the expected frequencies, we can conclude by 
and large that the phase modulation exists. 

Data filtering before estimation is an indispensable 
stage in most existing algorithms to remove the 
unexpected component. The filter bandwidth Bf  must be 
chosen carefully and it must be narrow enough to reject 
unwanted components but large enough to contain the 
component of interest. Generally the frequencies of the 
Bragg lines are used as the center frequency of filtering 
because they are much stronger than ordinary target 
echoes. But under some special conditions, other 
prominent echoes such as the backscatter of island and big 
surface vehicle can also be applied [2]. 

Now, filtered data can be applied in estimation of the 
phase contamination function. Using HAF method, the 
highest order used must be determined firstly. The 
operating range of the HAF algorithm is defined by [8] 
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From (16) and (17), the estimation of higher order 
parameter has higher signal-to-noise ratio requirement. 
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For the radar return from a certain range bin, there is not 
enough signal-to-noise ratio to perform the estimation of 
higher polynomial phase parameters. Through 
computation from expression above and a number of 
experiments, a model whose order is no more than five 
has been used. 

The delay parameter τ  in (3) is an important factor 
affecting the error accuracy. Care must be taken in 
selecting the parameter because it is limited by 

M
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1 πτ                                 (18) 

and  

1−
≤
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Nτ                                    (19) 

Formula (18) can be seen as the constraint of Nyquist 
criterion from (9) while formula (19) can be derived from 
Lemma 1 where τqn −  cannot exceed N.  

The HAF-based phase decontamination algorithm can 
be described as:  
1) Initializing the observed signal by letting Mm = and 

the m-th iteration sequence ( ) )(nynzm =  where y(n)  
is the data sequence received from the sensor array;  

2) Selecting a proper delay parameter Mτ  and 
computing the M-th order polynomial parameter by 
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4) Letting 1−= mm and turning step 2) to execute until 
1<m ;  

5) Estimating the parameter 0a  and 0b  by ML method, 
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4. EXPERIMENTAL RESULTS 

 
To illustrate the algorithms clearly, in the experiments we 
use a sinusoid phase model as the contamination function, 
which is defined as 

( ) ( ){ } 1-Nn0  2sinexp0 ≤≤−= njbnG πγβ              (20) 
where 0b  is an amplitude constant, β is the modulation 
index, and γ is the  sinusoid modulation frequency. The 
Doppler spread due to the phase model can be classified 
to two divisions: one is primary caused by the modulation 
index β  and the other by γ . The first kind of spread 
mechanism is easier estimated on account of the slowly 
fluctuating phase.  The Doppler spread due to the change 
of sinusoid modulation frequency can be eliminated by 
segmenting the data sequence to a few short sub-
sequences and then estimating them respectively [10].  

Fig.1 illuminates the resulting spectrum from the 
corruption model of (20) with 1b0 = , πβ = , and 

02.0=γ .  In this test, the filtering bandwidth Bf  is 
0.18Hz, the delay parameter τ is N/M for M=2,3 and 
N/(M+2) for 4M ≥ , the highest order M is 3, the segment 
number is 16, the FFT length in HAF algorithm is 1024 
(by zero-padding), and the land clutter at DC is applied as 
the filter central frequency criterion.  The forward and 
backward sliding window average method is also used in 
data sequence segmenting and the data overlapped rate is 
50%. The estimation of the phase contamination function 
is given in Fig.1 (a). It should be noted that at the cross 
point of two adjacent segments the accuracy is worse than 
other region. The error at the terminals of the data 
sequence depends on the estimation accuracy attribute of 
the polynomial phase model, and the detail has been 
described in [11]. 

The significant Doppler spread is observed in Fig.1 
(b), and the sea and land clutter dominated in energy can 
easily smear across the neighboring weak target. Under 
the condition with considerable spread, target detection is 
difficult to be accomplished. The corrected spectrum after 
estimation and compensation using HAF method is shown 
in Fig.1 (c). It can be observed that the spread spectrum 
peaks have been sharpened clearly and the target close to 
the positive first-order Bragg line can be visualized. 
Obviously the probability to detect the surface vehicle 
will increase. 

The error accuracy variation with the segment 
number is given in Fig.2 (a). When SNR is constant, the 
error gets to a minimum at about 16 with different highest 
orders. A consideration should be noted that it is not 
necessary to divide the observed sequence to several 
segments. Only when the Doppler spread due to the phase 
fast fluctuation dominates in the corrupted spectrum, 
segmenting becomes an effective scheme. Derived from 
(16), the validity of the HAF method is related to SNR, 
available sample number N and the highest order M of 
HAF. If the segment number becomes large and SNR and 
M are not changed, the data length must be short, and 
which would damage the estimation performance of the 
HAF algorithm. However, long data length cannot show 
the detail of the phase contamination, especially variation 
at short interval. There is a trade-off between tracking the 
non-stationarity of the ionosphere and achieving good 
estimation accuracy.   

A model with higher order can approximate the real 
continuous phase more accurately, but it requires more 
SNR, or else the HAF-based method would fail. When the 
phase contamination function fluctuates slowly, a lower 
order model may be sufficient.  

The error accuracy variations with the parameters 
shown in (20) are given in Fig.2 (b) and (c) respectively.  
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Fig.1 (a) estimated phase; (b) spectrum before correction; (c) 
spectrum after correction  
 
From these figures, we can conclude that the HAF-based 
method is more efficient for type-β  spread than for 

type-γ  case. With the increasing of the parameter γ , the 
error sum increases also and when 03.0>γ , the error sum 
is too large to estimate the phase.  And even the parameter 
β is over π2  and 01.0=γ  (where the spread is much 
wider than the spread with  03.0=γ and πβ = ), the 
estimated result can still be accepted.  
 

5. CONCLUSION 
 
It is shown in the paper that the parametric method that 
modeling and estimating the ionospheric phase 
contamination by polynomial phase signal is valid. When 
the whole phase modeling cannot be realized, a segment 
scheme may be applied. A trade-off relation is discussed 
on the choice of parameters, and after choosing good 
estimation accuracy can be achieved.  The spectrum 
quality after compensation is improved significantly.  

The variation of parameters of the phase 
contamination model is also discussed and corresponding 
analysis is given.  
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