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ABSTRACT

This paper addresses a parametric method based on High-
Order Ambiguity Function (HAF) to solve the problem of
phase contamination of HF skywave radar signals
corrupted by the ionosphere. When signal-to-noise ratio
and data sequence available satisfy the predefined
conditions, the ionospheric phase contamination may be
modeled by the polynomial phase signal. As a new
parametric tool for analyzing polynomial phase signal,
HAF is applied to estimate polynomial phase model
parameters and reconstruct the disturbance signal. Using
the estimated reconstructed signal, compensation can be
performed before coherent integration and the original
radar return spectrum can be restored. A piecewise
scheme is proposed to track rapid variation of the phase
contamination in HAF method, and it can remove the
Doppler spread effect caused by the ionosphere
nonstationarity. Simulation is used to demonstrate the
efficiency of the proposed method.

1. INTRODUCTION

High-frequency skywave over-the-horizon radar can
provide a range-coverage of up to 4,000km by means of
the refraction within the ionosphere. But the signal
contamination suffered in double ionospheric transit.
Especially, Doppler spread mechanism renders the sea
clutter spectrum distorted and resolution of coherent
integration technique that is widely applied in the radar
systems is degraded extremely [1].

The echo signal reflected by the sea surface has a pair
of peaks in the Doppler domain, which is often known as
the Bragg lines. In some applications of HF skywave
radar such as remote sensing and surface surveillance,
temporal nonlinear phase path variation often produces
significant spread of the ionoshpheric propagated signals
so that the Bragg lines and target echoes smear cross the
Doppler frequency domain. Since the energy of the Bragg
lines is so strong that slight spread of the first-order sea
clutter spectrum can obscure the neighboring echo
scattered by a slow moving surface vessels. The phase
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contamination is attributed to complex geophysical
mechanisms [2,3].

To limit the Doppler spread effect and allow extended
coherent integration time for good frequency resolution, it
is necessary to estimate and compensate the raw radar
signal by signal processing techniques before coherent
integration. By virtue of the nonstationarity of the phase
perturbation, instantaneous frequency estimation methods
are introduced to solve this problem. Bourdillon and
Parent etc. al have suggested some methods such as
MESA (Maximum Entropy Spectrum Analysis) and
energy weighted average phase differential estimator [4, 5,
6].

In this paper a piecewise parametric phase estimator
based on high-order ambiguity function is proposed. HAF
can identify the degree of the phase polynomial and
estimate its coefficients. HAF-based estimator has some
attractive properties, such as computationally efficiency,
robustness for deviations from the signal model to some
extent, and estimation accuracy that is very close to the
CRB [7]. Due to these attributes we can realize an
instantaneous phase estimation algorithm, which is used
to compensate the phase of the modulation.

2. HIGH-ORDER AMBIGUITY FUNCTION

In this paper, we consider the following model for a
complex sampled signal s(n)

o) = by exp{ S a (nA)m} )

m=0
where 0 <n<N-1, N is sample number, A is the
sample interval and coefficients a,, are real. That is a
model with constant amplitude and polynomial phase of
order M.

The M-th order high-order ambiguity
function HAF, is defined as the discrete Fourier transform
of high-order instantaneous moment HIM,, . Let s(n) be
the form of (1). The operators HIMl[s(n), r] and
HIM, [s(n), 7] are defined by [8]

HIMl[s(n), T] = s(n (@)
HIMz[s(n), T] = S(n)s*(n - T) 3)
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where the delay parameter 7 and the order of the operator
M are positive integers. And higher-order operators are
defined by
HIM , [s(n). 7] = HIM,[HIM,, _ [s(n). 7], 7] . 4)

Here the asymmetric definition is used. The following two
lemmas can be resulted from these definitions and are
useful for the subsequent development.

Lemma 1:

HIM  [s(n). 7] = Aﬁ;[s (n - qr)}{Mq_l] (%)

where
$ _ s(n), qis even,
0 (n) - {s*(n), qis odd, ©)
Lemma 2:

HIM, [s(n), 7] = HIM, [HIM, [ HIM, [s(n), 2] -, 7). 7] (7)
where the operator HIM, is applied M-1 times.

The following theorem shows that applying the
operator of order M to a constant-amplitude polynomial-
phase signal of the same order transforms the broadband
signal into a single tone with a frequency related to the m-
th order coefficienta, .

Theorem 1: Let s(n) be a polynomial-phase signal of
order M given in (1). Then, for all positive integers r

HIM,, [s(n), T] = exp{j(a;OnA + ¢0} ®)
where (M -1)r <n < N-1 and
ay = M(@)" " ay ©)
g0 = (M 1) (@) ay
-0.5(0 = )M (A} ay, (10)

The operator HIM,, has the following properties:
Property 1:
HIM y, [, (n)s5 (1), 7] = HIM  [s (n), 7JHIM  [55 (n). 7] . (11)
Property 2: For every real b,

ZM*I

HIM, [bo.7] = 3 . (12)
Property 3: For K =0,1,....M - 2
[ K
HIM,, exp{j Zam(nA)m}, r} =1. (13)

m=0

Property 4:
[ M-1
HIM,, exp{j Z a,, (nA)m }, Z} = exp{j¢0} (14)
m=0

where ¢, = (M 1) (d)" 'a),_; .
The proofs of these properties are given in literature
[8]. From property 3 and 4 it can be concluded that
applying the operator of order M to a polynomial-phase
signal of order lower than M, will produce a constant.
Then the high-order ambiguity function of order M
can be described as follow:

HAF), [s(n), w, 7] = NZIHIMM [s(n). ] exp{~ jant} ~ (15)
nZ(M —l)r

So we can conclude that HAF, of polynomial-phase
signal of the same order will produce a single spectral line
at non-zero frequency. By locating this line and estimating
its frequency, we can obtain an estimate of the highest
order polynomial coefficient. And applying HAF, to a
polynomial-phase signal with order lower than M will
result a spectral line at zero frequency (DC).

3. IONOSPHERIC PHASE DECONTAMINATION
ALGORITHM

In this section, an ionospheric phase decontamination
algorithm is addressed. Unlike those methods based on
instantaneous frequency estimation techniques, the
proposed algorithm is phase estimation method. It is not
necessary to estimate the instantaneous frequency of the
nonstationary phase distortion and then integrate the
phase of the correction signal to compensate. The phase of
correction signal can be estimated in a straightforward
way.

In practice, the first step is always to determine
whether the observed signal is phase-contaminated or not.
If the ionosphere is stationary, it is obvious that the Bragg
lines locate at the fixed frequencies in the Doppler domain
as described by Barrick [9]. Therefore, if the Bragg lines
are not at the expected frequencies, we can conclude by
and large that the phase modulation exists.

Data filtering before estimation is an indispensable
stage in most existing algorithms to remove the
unexpected component. The filter bandwidth f; must be

chosen carefully and it must be narrow enough to reject
unwanted components but large enough to contain the
component of interest. Generally the frequencies of the
Bragg lines are used as the center frequency of filtering
because they are much stronger than ordinary target
echoes. But under some special conditions, other
prominent echoes such as the backscatter of island and big
surface vehicle can also be applied [2].

Now, filtered data can be applied in estimation of the
phase contamination function. Using HAF method, the
highest order used must be determined firstly. The
operating range of the HAF algorithm is defined by [§]

MK (M, SNR) < 2—]\2 (16)
M-1 P
- M -1 i
K(M,SNR):Ml(i]( q ] i!(Lj -1 (17
q=0| i=0 i SNR

From (16) and (17), the estimation of higher order
parameter has higher signal-to-noise ratio requirement.

Il - 406




For the radar return from a certain range bin, there is not
enough signal-to-noise ratio to perform the estimation of
higher  polynomial phase parameters. = Through
computation from expression above and a number of
experiments, a model whose order is no more than five
has been used.

The delay parameter 7 in (3) is an important factor
affecting the error accuracy. Care must be taken in
selecting the parameter because it is limited by

M-1 U
T <— (18
M|ay|a™ )
and
N
< 19
TS— (19)

Formula (18) can be seen as the constraint of Nyquist
criterion from (9) while formula (19) can be derived from
Lemma 1 where n — g7 cannot exceed N.

The HAF-based phase decontamination algorithm can
be described as:
1) Initializing the observed signal by letting m = M and

the m-th iteration sequence zm(n) = y(n) where y(n)

is the data sequence received from the sensor array;
2) Selecting a proper delay parameter 7, and

computing the M-th order polynomial parameter by
i, = arg maquPTm 2" (n), @, rm]U / (m!(rmA)’”_l);
w
3) Getting the (m-1)-th iteration
2" Yy = 2" () exp{— Jan, (nA)'"};
4) Letting m = m —1and turning step 2) to execute until

m<1l;
5) Estimating the parameter a, and b, by ML method,

N-I A N-I
ag = arg{Zzo(n)} and b, = Zzo(n)/N.
n=0

n=0
4. EXPERIMENTAL RESULTS

sequence by

To illustrate the algorithms clearly, in the experiments we
use a sinusoid phase model as the contamination function,
which is defined as
G(n) = by exp{-jBsin(2mm} 0 <n < N-1 (20)

where b, is an amplitude constant, S is the modulation
index, and yis the sinusoid modulation frequency. The
Doppler spread due to the phase model can be classified
to two divisions: one is primary caused by the modulation
index B and the other by y . The first kind of spread
mechanism is easier estimated on account of the slowly
fluctuating phase. The Doppler spread due to the change
of sinusoid modulation frequency can be eliminated by
segmenting the data sequence to a few short sub-
sequences and then estimating them respectively [10].

Fig.1 illuminates the resulting spectrum from the
corruption model of (20) with by =1, S=7n, and

y =0.02. In this test, the filtering bandwidth fj is

0.18Hz, the delay parameter 7 is N/M for M=2,3 and
N/(M+2) for M = 4, the highest order M is 3, the segment
number is 16, the FFT length in HAF algorithm is 1024
(by zero-padding), and the land clutter at DC is applied as
the filter central frequency criterion. The forward and
backward sliding window average method is also used in
data sequence segmenting and the data overlapped rate is
50%. The estimation of the phase contamination function
is given in Fig.1 (a). It should be noted that at the cross
point of two adjacent segments the accuracy is worse than
other region. The error at the terminals of the data
sequence depends on the estimation accuracy attribute of
the polynomial phase model, and the detail has been
described in [11].

The significant Doppler spread is observed in Fig.1
(b), and the sea and land clutter dominated in energy can
easily smear across the neighboring weak target. Under
the condition with considerable spread, target detection is
difficult to be accomplished. The corrected spectrum after
estimation and compensation using HAF method is shown
in Fig.1 (c). It can be observed that the spread spectrum
peaks have been sharpened clearly and the target close to
the positive first-order Bragg line can be visualized.
Obviously the probability to detect the surface vehicle
will increase.

The error accuracy variation with the segment
number is given in Fig.2 (a). When SNR is constant, the
error gets to a minimum at about 16 with different highest
orders. A consideration should be noted that it is not
necessary to divide the observed sequence to several
segments. Only when the Doppler spread due to the phase
fast fluctuation dominates in the corrupted spectrum,
segmenting becomes an effective scheme. Derived from
(16), the validity of the HAF method is related to SNR,
available sample number N and the highest order M of
HAF. If the segment number becomes large and SNR and
M are not changed, the data length must be short, and
which would damage the estimation performance of the
HAF algorithm. However, long data length cannot show
the detail of the phase contamination, especially variation
at short interval. There is a trade-off between tracking the
non-stationarity of the ionosphere and achieving good
estimation accuracy.

A model with higher order can approximate the real
continuous phase more accurately, but it requires more
SNR, or else the HAF-based method would fail. When the
phase contamination function fluctuates slowly, a lower
order model may be sufficient.

The error accuracy variations with the parameters
shown in (20) are given in Fig.2 (b) and (c) respectively.
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(a) estimated phase

(b) spectrum before correction

(c) spectrum after correction

Fig.1 (a) estimated phase; (b) spectrum before correction; (c)
spectrum after correction

From these figures, we can conclude that the HAF-based
method is more efficient for [ -type spread than for
y - type case. With the increasing of the parameter y , the
error sum increases also and when y > 0.03, the error sum
is too large to estimate the phase. And even the parameter
B is over 2 and y = 0.01 (where the spread is much
wider than the spread with y =0.03 and 8 =7n), the
estimated result can still be accepted.

5. CONCLUSION

It is shown in the paper that the parametric method that
modeling and estimating the ionospheric phase
contamination by polynomial phase signal is valid. When
the whole phase modeling cannot be realized, a segment
scheme may be applied. A trade-off relation is discussed
on the choice of parameters, and after choosing good
estimation accuracy can be achieved. The spectrum
quality after compensation is improved significantly.

The variation of parameters of the phase
contamination model is also discussed and corresponding
analysis is given.
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