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ABSTRACT

Algorithmsareconsideredor searchingvide areaforward-
looking infraredimageryfor military vehicles. Wide area
searchhastypically beenhandledby usinga simpledetec-
tion algorithmwith low computationatostto searcttheen-
tire imageor setof images followedby a clutter rejection
algorithmthatanalyze®only thoseportionsof theimagethat
aremarked by the detectionalgorithm. We startwith afea-
turebaseddetectorandaeigen-neurabasedtlutterrejecter
andexaminea numberof architecturegor combiningthese
modulesto maximizejoint performanceThe architectures
consideredncludea clutterrejectionthresholdmethodand
a nonlinearlearning-based@ombination. The performance
of thearchitecturesrecomparedisingasetof severalthou-
sandrealimages.

1. INTRODUCTION

Emponeredby theadvancesn computercapabilityandim-
age processingtechnology automatictarget recognition
(ATR) systemsarebecominganessentiapartof mary imag-
ing systemsThedevelopmenbf robustATR systemsmust
still overcomea numberof well-known challengesinclud-
ing the large numberof tamet classesand aspects,jong
andvaryingviewing range pbscuredargets clutteredback-
grounds,variousgeographicand weatherconditions,sen-
sornoise,andvariationscausedy translationyotation,and
scalingof thetargets. For the experimentgresentedn this
paper the input imageswere obtainedby forward-looking
infrared (FLIR) sensors.For thesesensorsthe signatures
of thetargetswithin the scenearesererelyaffectedby rain,
fog, andfoliage[1]. Two of the sharpelimagesin our data
setareshavnin Figurel, with differentfieldsof view, view-
ing rangesandnumberof targets.
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Fig. 2. Detection-recognitiomodulesin anATR system.

Thedetection-classificatiomodulesshavnin Figure2,
areusuallythe mostimportantcomponentsn an ATR sys-
tem. Thetargetdetectoroperateon thewholeinputimage
andidentifiestheregionsthatmightcontaintargets.In order
to locatedifficult targets thetargetdetectomusuallyoperates
atanon-zerofalsealarmrate. As exemplifiedby Figure 2,
a target detectorhasfound the real target, but hasalsose-
lecteda numberof backgroundegionsaspotentialtargets.
To enhanceheperformancef thesystemaclutterrejecter
maybeaddedo rejectmostof thefalse-alarmgroducedy
thedetectoyrwhile eliminatingonly afew of thetargets.Be-
causehenumberof false-alarmss greatlyreducedthesub-
sequentargetclassifiermayperformits N-classrecognition
task much more accuratelyand efficiently. In this paper
we proposea combinedautomatictarget detection/clutter
rejectionalgorithm that maximizesthe detection-rejection
performancen FLIR imagery
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2. MULTI-STAGE TARGET DETECTOR

Ourtarmgetdetectorconsistf threedistinctstagesThefirst
stagds calledrangegatedetecto(RGD), whosefunctionis
to detectspatialanomaliedbasedn severallocalizedimage
featuresin thesecondstagetheseanomaliesrefurtherex-
aminedby a morecomplicatedclutterrejecterthatwe refer
to asEIGMLP in this paper Finally, the information pro-
ducedby the RGD andEIGMLP arecombinedin the third
stageby anevidenceintegrator

2.1. First Stage: Range Gate Detector

This detectoris namedrange gate becausethe detection
processs performedbverasetof overlappinggatesor zones
alongtheline of sight. Thelocalfeaturesncorporatedn the
RGD wereselectedy intuition, which arecomputationally
simpleandfunctionally monotonicin nature. The features
thatwe usein RGD aremaximumgray level, contrastox,
averagegradientstrengthandlocal variation.

Themaximumgraylevel, Fg,y, is thehighestgraylevel
within aroughlytarget-sizedrectanglecenteredat the pixel
(x,y). Its valueatpixel (x, y) is definedas:

0 _

Fot = (B8 g T (00 @)
where f(m,n) is the gray level value of the pixel in the
m-th columnandn-th row, Ni,(z,y) is the neighborhood
surroundingthe pixel (z,y) and delimited by a rectangle
capableof enclosingthelargesttargetin the dataset.

Thecontrast-boxeature F'!, measuretheaveragegray
level over a target-sizedregion, and comparest to the av-
eragegray level of the local background. This featureis
computedas:
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where Ny, is the sametarget-sizedneighborhooddefined
above, Ny, is alargerrectanglethat engulfsbut excludes
all the pixels of Nj,, while ny, andngy is the numberof
pixelsin N;, and Ny, respectiely.

The gradientstrengthfeature, 2, was chosenbecause
man-madebjectstendto shav sharpelinternaldetailthan
naturalobjects,even whenthe averageintensityis similar.
Thisfeatureis calculatedas:
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where Gin(m,n) = |[f(m,n)— f(m,n+1)|,
+ [f(m,n) = f(m+1,n)|, (4)

andGys(m, n) is definedsimilarly.

Finally, the local variationfeature,F3, waschosenbe-
causanan-madebjectoftenshowv greatewariationin tem-
peraturghannaturalobjects.It is computedas:
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and Ly andueys aredefinedsimilarly for the Noys.

For eachinputimage thestrengthof eachfeatureis first
computedfor eachpixel location. Thenthe featurevalues
arenormalizedacrosgheimage,sothatthefeaturevalueat
eachpixel representthenumberof standardleviationsthat
the pixel standsapartfrom the valuesfor the samefeature
acrosgheimage.Thenormalizedk-th featurevalueat pixel
(z,y) is calculatedas:
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whereS is thesizeof thefeatureimage.
After the normalizationall featuresmagesarelinearly
combinednto aconfidencemage:

Py = Zwkpﬁ,y (11)
vk

wherethe featureweightsw;, aredeterminedusingalinear
fitting algorithm. The confidencevalueof eachpixelis then
mappedby a monotonicscalingfunction () into a value
betweerD and1 for corvenience:

¢(¢z,y) =1- ea¢'m’y s (12)

whereq is a constant.

Figure 3 shows the internal featureimagesfor all the
local featuresdescribedhbore, aswell astheresultingcon-
fidenceimage,whenthe RGD operateson the left image
in Figure1. To determinethe detectionlocationsfrom the
scaledconfidenceimage ¢(®), the pixel location associ-
atedwith the maximumconfidencevalueis first choserand
designatedasthe first detection. Thenthe confidenceval-
uesof all pixelssituatedwithin atarget-sizecheighborhood
aroundthe peakpixel aresetto zero,sothatthe searchfor
subsequentetectionswill not choosea pixel locationcor-
respondingto the sametarget again. The processis then
repeatedor a predefinechumberof detections.
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Fig. 3. TheinternalRGD representationsf the left image
in Figure 1, which correspondo (a) F°, (b) large F*, (c)
smallF!, (d) F?, (e) F3, and(f) linearly combinedmapof
thesefive features.

2.2. Second Stage: EIGMLP Clutter Rejecter

Thefunctionof aclutterrejecteris to furtherexaminethose
locationsindicatedby the detector The clutterrejectional-
gorithm canbe more computationallyintensve, becauset
examinesonly a smallportion of theinputimage.Because
of thelimited diversityof thetrainingset,dimensionalityre-
ductionis essentiato achieze goodperformancédy thesub-
sequenheuralclassifier Without dimensionalityreduction,
a typical learning algorithm would overfit training data,
resultingin a sharpdifferencebetweentraining and test-
ing performance. Our eigen-neural-basedutter rejecter
EIGMLP, usesaneigenspacéansformatiorto performthe
dimensionalityreductionanda back-endMLP (BMLP) to
rejectclutterandaccepttargets. As shavn in Figure4, we
implementthe whole EIGMLP as a neuralnetwork struc-
ture by concatenatinghe eigenspacéransformatiorto the
inputlayerof the BMLP.

The principal componentanalysis(PCA) [2] is one of
the most well-known eigenspaceransformationmethods.
Basedon statisticalpropertiesof vectorrepresentationshe
PCAis aptly usedastheinitial methodof eigenspac&ans-
formationin our EIGMLP clutterrejecter We first compute
the PCA eigervectorsby performinglinear algebraicoper
ationson the covariancematrix of the vectorizedregions
of interestidentified by the RGD. The resultingeigervec-
tors are then usedto initialize the transformationlayer of
the EIGMLP, while the BMLP is initialized with smallran-
dom weights. After a quick training on the BMLP with
a frozen transformationlayer, the EIGMLP is further op-
timized by allowing changeson the transformationlayer
basedntheerrorsignalsback-propagateftom the BMLP
classifier The purposeof this optimizationis to incorpo-
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Fig. 4. An EIGMLP thatconsistof a transformatioriayer
andaback-endVILP.

rate classinformationin the designof the transformation
layer. During thejoint optimizationprocessall theweights
in EIGMLP aregraduallyadjustedusinga variety of gra-

dientdescent-basedlgorithms,so that the overall error is

reducedat the outputnodeof the BMLP.

2.3. Third Stage: Evidence Integrator

The third andfinal componenif our multi-stagedetector
is an evidenceintegrator, whosefunctionis to producethe
final detectionoutput by combiningthe outputsfrom the
previoustwo stagesTheseoutputsincludetheinternalfea-
ture values,aswell asthe outputvaluesof the RGD and
EIGMLP. Serveral internal featurevaluesof the RGD and
the EIGMLP outputvaluecomprisethe bestfeatureor evi-
dencesetfor theintegrator, in termsof reachingthe highest
detectionperformancen our dataset.

The featuresmay be combinedin a numberof ways.
Oneof the simplestarchitecturesisesthe EIGMLP output
as a thresholdswitch to the RGD output. Whenever the
EIGMLP outputfor aregionof interesidentifiedby RGDis
higherthana predefinedhresholdvalue,the corresponding
RGD outputpassesndemepgesasthefinal detectiorresult.
OtherwisethatRGD detectionis deemedasunreliableand
discardedrom furtherconsideration.

In addition,we combinethesefeaturesnon-linearlyvia
anevidence-combining/LP (ECMLP). TheECMLPis just
anothersimpleMLP, whosestructureis very similar to that
of the BMLP. Supposewe usethe bestfive featurevalues
from the RGD andthe outputvalue of the EIGMLP, then
the ECMLP would needonly 6 input nodesplus a biasin-
put. Sucha small MLP is easyto train, provided the two
classeqtarget versusclutter) in the training dataare ade-
quatelyseparable. The output of the ECMLP is the final
target-likelihoodassessmern the giveninput chip for our
targetdetector
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Fig. 5. Thedetectionperformancdor the training (above)
andtesting(bottom)set.

3. EXPERIMENTAL RESULTS

We testedthe proposednulti-stagedetectoron a challeng-
ing setof FLIR imagesjwo of whichareshovnin Figurel.
Theimagesweretakenwith differentfields of view, sothe
sizeof thetargetsvariesgreatlyacrosshe frames,occupy-
ing areaghatcoveredanything from afew pixelsto athird
of the frame. We randomlyselectedl,756and878 frames
asthetrainingandtestingset,respectiely.

First,we usedthe RGD, operatingwith thefive features
shawn in Figure 3, to performthe detectiontask. For each
frame, the RGD identifies 10 most potentialtarget areas.
Thesedetectionresultswere comparedo the ground-truth
locationsof the correspondingargetsandcategorizedasei-
ther a hit or a falsealarm. By varying the thresholdfor
acceptableonfidenceraluesthuschanginghe hit rateand
falsealarmrate,we wereableto plot therecever operating
characteristiROC) curvesfor thetrainingandtestsets.As
shown in Figure5, the horizontalaxis of theseplotsrepre-
sentsthe averagenumberof falsealarmsper frame, while
the vertical axis representshe percentagef all legitimate
targetsin the datasetthat were correctly detectedat vari-

ousconfidencehresholdsBasedon the ROC curvesof the
RGD, thefirst stagedetectorcorrectlylocatedabout90 per
centof all legitimatetargetsat 1 falsealarmperframerate,
in eitherthetrainingor thetestingset.

The secondsetof experimentsnvolved the training of
EIGMLP clutter rejectershasedon the regions of interest
identified by the RGD. Using the RGD-detectecareason
thetraining frames,we trainedseseral EIGMLP clutterre-
jectersthatwereconfigureddifferentlyin termsof thenum-
ber of eigenspaceprojectionsthat the BMLP might con-
sider We chosethe configurationtrainedwith the top-20
projectionvalues,basedon the trade-of betweencompu-
tationalcostandperformanceBasedon the resultingROC
curvesplottedin Figure5, we canobsene markedimprove-
mentsof EIGMLP over the RGD resultsfor boththetrain-
ing and testing sets, especiallyat the operatingzone that
permitsvery few false-alarms.

In the third setof experiments,we studiedthe perfor
manceof the evidenceintegration stage. As a simple ap-
proachto combinethe evidenceproducedoy theRGD and
EIGMLP moduleswe accepteagny RGD detectiorthatre-
sultedin an EIGMLP outputvalueof 0.5 or higher Other
wise, that RGD detectionwasdiscarded As shovn in Fig-
ure5, theshortenedrOC curvesof this integrationareeven
betterthanthoseof the EIGMLP, especiallyfor the testing
set.For example,at0.1falsealarmperframerate,thetrain-
ing hit rate achieved by RGD, EIGMLP, and thresholding
integrationis 44.69,83.59,and91.11percentrespectiely.
On thetestingset, their respectie hit rateis 45.36,64.43,
and82.90percentatthe samefalsealarmrate.

Finally, we trainedan ECMLP that non-linearlycom-
binedthe five RGD featuresandthe outputof EIGMLP to
form thefinal detectiondecisions.The ROC curvesin Fig-
ure5 shaw thatthe detectiorperformancef the ECMLPis
the highestamongall of the architecturesestedhere,at all
confidencevalues.Thetrainingandtestinghit rateachieved
by ECMLP at 0.1 falsealarm per framerateis 91.88and
87.54 percent,respectiely. It is evident from the testing
curvesthatthe ECMLP not only outperformedhe thresh-
oldingschemaetlow falsealarmrates,t alsohadtheability
to find thosehardestargetsif higherfalsealarmratescould
betolerated.
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