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ABSTRACT

Algorithmsareconsideredfor searchingwideareaforward-
looking infrared imageryfor military vehicles. Wide area
searchhastypically beenhandledby usinga simpledetec-
tion algorithmwith low computationalcostto searchtheen-
tire imageor setof images,followedby a clutter rejection
algorithmthatanalyzesonly thoseportionsof theimagethat
aremarkedby thedetectionalgorithm.We startwith a fea-
turebaseddetectorandaeigen-neuralbasedclutterrejecter,
andexaminea numberof architecturesfor combiningthese
modulesto maximizejoint performance.Thearchitectures
consideredincludea clutterrejectionthresholdmethodand
a nonlinearlearning-basedcombination.The performance
of thearchitecturesarecomparedusingasetof severalthou-
sandrealimages.

1. INTRODUCTION

Empoweredby theadvancesin computercapabilityandim-
age processingtechnology, automatic target recognition
(ATR)systemsarebecominganessentialpartof many imag-
ing systems.Thedevelopmentof robustATR systemsmust
still overcomea numberof well-known challenges,includ-
ing the large numberof target classesand aspects,long
andvaryingviewingrange,obscuredtargets,clutteredback-
grounds,variousgeographicandweatherconditions,sen-
sornoise,andvariationscausedby translation,rotation,and
scalingof thetargets.For theexperimentspresentedin this
paper, the input imageswereobtainedby forward-looking
infrared(FLIR) sensors.For thesesensors,the signatures
of thetargetswithin thesceneareseverelyaffectedby rain,
fog, andfoliage[1]. Two of thesharperimagesin our data
setareshownin Figure1,with differentfieldsof view, view-
ing ranges,andnumberof targets.
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Fig. 1. A pairof FLIR sceneswith differentcharacteristics.
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Fig. 2. Detection-recognitionmodulesin anATR system.

Thedetection-classificationmodules,shownin Figure2,
areusuallythemostimportantcomponentsin anATR sys-
tem. Thetargetdetectoroperateson thewholeinput image
andidentifiestheregionsthatmightcontaintargets.In order
to locatedifficult targets,thetargetdetectorusuallyoperates
at a non-zerofalsealarmrate. As exemplifiedby Figure2,
a target detectorhasfound the real target, but hasalsose-
lecteda numberof backgroundregionsaspotentialtargets.
To enhancetheperformanceof thesystem,aclutterrejecter
maybeaddedto rejectmostof thefalse-alarmsproducedby
thedetector, while eliminatingonly afew of thetargets.Be-
causethenumberof false-alarmsisgreatlyreduced,thesub-
sequenttargetclassifiermayperformits N-classrecognition
task much more accuratelyand efficiently. In this paper,
we proposea combinedautomatictarget detection/clutter
rejectionalgorithm that maximizesthe detection-rejection
performanceonFLIR imagery.
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2. MULTI-STAGE TARGET DETECTOR

Ourtargetdetectorconsistsof threedistinctstages.Thefirst
stageis calledrangegatedetector(RGD),whosefunctionis
to detectspatialanomaliesbasedonseverallocalizedimage
features.In thesecondstage,theseanomaliesarefurtherex-
aminedby a morecomplicatedclutterrejecterthatwe refer
to asEIGMLP in this paper. Finally, the informationpro-
ducedby theRGD andEIGMLP arecombinedin thethird
stageby anevidenceintegrator.

2.1. First Stage: Range Gate Detector

This detectoris namedrange gate becausethe detection
processisperformedoverasetof overlappinggatesorzones
alongtheline of sight.Thelocalfeaturesincorporatedin the
RGDwereselectedby intuition, whicharecomputationally
simpleandfunctionallymonotonicin nature.The features
thatwe usein RGD aremaximumgraylevel, contrastbox,
averagegradientstrength,andlocal variation.

Themaximumgraylevel,
������ � , is thehighestgraylevel

within a roughlytarget-sizedrectanglecenteredat thepixel�	��

���
. Its valueat pixel

����
����
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where & �	(,

*��
is the gray level value of the pixel in the(

-th columnand
*

-th row, -/. 0 �	��

���
is the neighborhood

surroundingthe pixel
����
����

and delimited by a rectangle
capableof enclosingthelargesttargetin thedataset.

Thecontrast-boxfeature,
�21

, measurestheaveragegray
level over a target-sizedregion, andcomparesit to the av-
eragegray level of the local background. This featureis
computedas:
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where -/. 0 is the sametarget-sizedneighborhooddefined
above, - 698%:

is a larger rectanglethat engulfsbut excludes
all the pixels of -/. 0 , while

* . 0 and
*7698%:

is the numberof
pixelsin -2. 0 and - 698%:

, respectively.
Thegradientstrengthfeature,

�@?
, waschosenbecause

man-madeobjectstendto show sharperinternaldetail than
naturalobjects,even whenthe averageintensityis similar.
This featureis calculatedas:
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and A
698%:D�	(,
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is definedsimilarly.

Finally, the local variationfeature,
�@N

, waschosenbe-
causeman-madeobjectoftenshow greatervariationin tem-
peraturethannaturalobjects.It is computedas:
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and O 6�8D:
and

P76�8D:
aredefinedsimilarly for the - 6�8D:

.
For eachinput image,thestrengthof eachfeatureis first

computedfor eachpixel location. Thenthe featurevalues
arenormalizedacrosstheimage,sothatthefeaturevalueat
eachpixel representsthenumberof standarddeviationsthat
the pixel standsapartfrom the valuesfor the samefeature
acrosstheimage.ThenormalizedR -th featurevalueatpixel�	��

���

is calculatedas:
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where
X

is thesizeof thefeatureimage.
After thenormalization,all featuresimagesarelinearly

combinedinto aconfidenceimage:Z ��� � � 4
Y TL[ T S�/T��� � (11)

wherethefeatureweights [ T aredeterminedusinga linear
fitting algorithm.Theconfidencevalueof eachpixel is then
mappedby a monotonicscalingfunction \ �=�

into a value
between0 and1 for convenience:

\ � Z ��� � � � 3 5^]`_"acbed fg

(12)

where h is a constant.
Figure 3 shows the internal featureimagesfor all the

local featuresdescribedabove,aswell astheresultingcon-
fidenceimage,when the RGD operateson the left image
in Figure1. To determinethe detectionlocationsfrom the
scaledconfidenceimage \ � Z �

, the pixel location associ-
atedwith themaximumconfidencevalueis first chosenand
designatedasthe first detection.Thenthe confidenceval-
uesof all pixelssituatedwithin a target-sizedneighborhood
aroundthepeakpixel aresetto zero,so that thesearchfor
subsequentdetectionswill not choosea pixel locationcor-
respondingto the sametarget again. The processis then
repeatedfor a predefinednumberof detections.
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Fig. 3. The internalRGD representationsof the left image
in Figure1, which correspondto (a)

���
, (b) large

�21
, (c)

small
� 1

, (d)
� ?

, (e)
� N

, and(f) linearly combinedmapof
thesefive features.

2.2. Second Stage: EIGMLP Clutter Rejecter

Thefunctionof aclutterrejecteris to furtherexaminethose
locationsindicatedby thedetector. Theclutterrejectional-
gorithmcanbe morecomputationallyintensive, becauseit
examinesonly a smallportionof theinput image.Because
of thelimited diversityof thetrainingset,dimensionalityre-
ductionis essentialto achievegoodperformanceby thesub-
sequentneuralclassifier. Withoutdimensionalityreduction,
a typical learning algorithm would over-fit training data,
resulting in a sharpdifferencebetweentraining and test-
ing performance.Our eigen-neural-basedclutter rejecter,
EIGMLP, usesaneigenspacetransformationto performthe
dimensionalityreductionanda back-endMLP (BMLP) to
rejectclutterandaccepttargets.As shown in Figure4, we
implementthe whole EIGMLP asa neuralnetwork struc-
ture by concatenatingthe eigenspacetransformationto the
input layerof theBMLP.

The principal componentanalysis(PCA) [2] is oneof
the most well-known eigenspacetransformationmethods.
Basedonstatisticalpropertiesof vectorrepresentations,the
PCA is aptlyusedastheinitial methodof eigenspacetrans-
formationin ourEIGMLP clutterrejecter. Wefirst compute
thePCA eigenvectorsby performinglinearalgebraicoper-
ationson the covariancematrix of the vectorizedregions
of interestidentifiedby the RGD. The resultingeigenvec-
tors are thenusedto initialize the transformationlayer of
theEIGMLP, while theBMLP is initializedwith smallran-
dom weights. After a quick training on the BMLP with
a frozen transformationlayer, the EIGMLP is further op-
timized by allowing changeson the transformationlayer
basedon theerrorsignalsback-propagatedfrom theBMLP
classifier. The purposeof this optimizationis to incorpo-
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Fig. 4. An EIGMLP thatconsistsof a transformationlayer
anda back-endMLP.

rate classinformation in the designof the transformation
layer. During thejoint optimizationprocess,all theweights
in EIGMLP aregraduallyadjusted,usinga variety of gra-
dient descent-basedalgorithms,so that the overall error is
reducedat theoutputnodeof theBMLP.

2.3. Third Stage: Evidence Integrator

The third andfinal componentof our multi-stagedetector
is an evidenceintegrator, whosefunction is to producethe
final detectionoutput by combiningthe outputsfrom the
previoustwo stages.Theseoutputsincludetheinternalfea-
ture values,as well as the output valuesof the RGD and
EIGMLP. Several internal featurevaluesof the RGD and
theEIGMLP outputvaluecomprisethebestfeatureor evi-
dencesetfor theintegrator, in termsof reachingthehighest
detectionperformanceon ourdataset.

The featuresmay be combinedin a numberof ways.
Oneof thesimplestarchitecturesusestheEIGMLP output
as a thresholdswitch to the RGD output. Whenever the
EIGMLP outputfor aregionof interestidentifiedby RGDis
higherthana predefinedthresholdvalue,thecorresponding
RGDoutputpassesandemergesasthefinal detectionresult.
Otherwise,thatRGD detectionis deemedasunreliableand
discardedfrom furtherconsideration.

In addition,we combinethesefeaturesnon-linearlyvia
anevidence-combiningMLP (ECMLP).TheECMLPis just
anothersimpleMLP, whosestructureis very similar to that
of the BMLP. Supposewe usethe bestfive featurevalues
from the RGD andthe outputvalueof the EIGMLP, then
the ECMLP would needonly 6 input nodesplus a biasin-
put. Sucha small MLP is easyto train, provided the two
classes(target versusclutter) in the training dataareade-
quatelyseparable.The output of the ECMLP is the final
target-likelihoodassessmenton thegiveninputchip for our
targetdetector.
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Fig. 5. Thedetectionperformancefor the training (above)
andtesting(bottom)set.

3. EXPERIMENTAL RESULTS

We testedtheproposedmulti-stagedetectoron a challeng-
ing setof FLIR images,two of whichareshown in Figure1.
The imagesweretakenwith differentfieldsof view, sothe
sizeof thetargetsvariesgreatlyacrosstheframes,occupy-
ing areasthatcoveredanything from a few pixelsto a third
of the frame. We randomlyselected1,756and878 frames
asthetrainingandtestingset,respectively.

First,weusedtheRGD,operatingwith thefive features
shown in Figure3, to performthedetectiontask. For each
frame, the RGD identifies10 most potential target areas.
Thesedetectionresultswerecomparedto the ground-truth
locationsof thecorrespondingtargetsandcategorizedasei-
ther a hit or a falsealarm. By varying the thresholdfor
acceptableconfidencevalues,thuschangingthehit rateand
falsealarmrate,we wereableto plot thereceiveroperating
characteristic(ROC)curvesfor thetrainingandtestsets.As
shown in Figure5, thehorizontalaxisof theseplots repre-
sentsthe averagenumberof falsealarmsper frame,while
the verticalaxis representsthe percentageof all legitimate
targetsin the dataset that werecorrectlydetectedat vari-

ousconfidencethresholds.Basedon theROC curvesof the
RGD,thefirst stagedetectorcorrectlylocatedabout90per-
centof all legitimatetargetsat 1 falsealarmperframerate,
in eitherthetrainingor thetestingset.

The secondsetof experimentsinvolved the training of
EIGMLP clutter rejectersbasedon the regionsof interest
identified by the RGD. Using the RGD-detectedareason
the training frames,we trainedseveralEIGMLP clutter re-
jectersthatwereconfigureddifferentlyin termsof thenum-
ber of eigenspaceprojectionsthat the BMLP might con-
sider. We chosethe configurationtrainedwith the top-20
projectionvalues,basedon the trade-off betweencompu-
tationalcostandperformance.Basedon theresultingROC
curvesplottedin Figure5, wecanobservemarkedimprove-
mentsof EIGMLP over theRGD resultsfor boththetrain-
ing and testingsets,especiallyat the operatingzonethat
permitsvery few false-alarms.

In the third setof experiments,we studiedthe perfor-
manceof the evidenceintegrationstage. As a simpleap-
proachto combinetheevidencesproducedby theRGDand
EIGMLP modules,weacceptedany RGDdetectionthatre-
sultedin anEIGMLP outputvalueof 0.5 or higher. Other-
wise,thatRGD detectionwasdiscarded.As shown in Fig-
ure5, theshortenedROCcurvesof this integrationareeven
betterthanthoseof theEIGMLP, especiallyfor the testing
set.For example,at0.1falsealarmperframerate,thetrain-
ing hit rateachieved by RGD, EIGMLP, and thresholding
integrationis 44.69,83.59,and91.11percent,respectively.
On the testingset,their respective hit rateis 45.36,64.43,
and82.90percentat thesamefalsealarmrate.

Finally, we trainedan ECMLP that non-linearlycom-
binedthe five RGD featuresandthe outputof EIGMLP to
form thefinal detectiondecisions.TheROC curvesin Fig-
ure5 show thatthedetectionperformanceof theECMLPis
thehighestamongall of thearchitecturestestedhere,at all
confidencevalues.Thetrainingandtestinghit rateachieved
by ECMLP at 0.1 falsealarmper framerate is 91.88and
87.54percent,respectively. It is evident from the testing
curvesthat the ECMLP not only outperformedthe thresh-
oldingschemeatlow falsealarmrates,it alsohadtheability
to find thosehardesttargetsif higherfalsealarmratescould
betolerated.
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