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ABSTRACT

Making use of the network side time-of-arrival (TOA) mea-
surements, we propose a low-complexity high-accuracy al-
gorithm to estimate the location of a target mobile station
(MS). Under a factor graph framework, the proposed al-
gorithm efficiently exchange soft information among local
processing units in the mobile switching center (MSC) to
iteratively purify the estimate of the MS location. Numeri-
cal results show that the proposed algorithm not only enjoys
advantages of low complexity, suitablefor integrated-circuit
implementation, but it is also able to achieve performance
very close to the optimum achievable bound, the maximum
likelihood (ML) bound.

1. INTRODUCTION

Wireless geolocation technology is considered a key en-
abling technology [1], because it has great potential to pro-
mote many other related applicationsthat could significantly
expand the wireless user base. Third generation (3G) wire-
less communication systems [1] have been among the first
to adopt location strategiesin their standards. Position loca-
tion (PL) methods for cellular systems can be divided into
two categories. handset-based and network-based methods.
Wireless geolocation techniques to locate a mobile station
(MS) in awirel ess communi cation system make use of mea-
surements on time of arrival (TOA), angle of arrival (AOA),
or their combinations [2]. This paper concentrates on the
TOA-based PL techniques applied to the network side.

In the TOA-based PL techniques, each TOA measure-
ment made at a base station (BS) producesacircle, centered
at that BS. The target MS is supposed to be located on the
circle. Making use of at least three circles produced by TOA
measurements at three different BSs, one can identify the
two-dimensional (2-D) location of the MS as the intersec-
tion of these circles. A traditional way to solve the problem
is to calculate the least square (LS) solution after applying
the Taylor series linearization (TS-LS) [3] on the lines of
position (LOP). The TS-LS agorithm can provide reason-
ably accurate location estimates, but it requiresan initial lo-
cation guess and may suffer from the convergence problem
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if the initial guess is not good enough. Alternatively, Caf-
fery [4] proposed a simple geometrical approach in which
linear LOPs, rather than circular LOPs, are used to deter-
mine the location of the MS. However, the accuracy of the
geometrical algorithm isrelatively low.

In this paper, we propose alow-complexity high-accura-
cy novel iterative algorithm, which takes into consideration
the stochastic properties of the measurement errors. To ef-
fectively utilize the available information, based on a factor
graph [5] framework, soft information is exchanged among
local processing units in the proposed agorithm to obtain
the location estimates of the target MS. Numerical results
show that the proposed algorithm not only enjoys advan-
tages of low complexity, easy for implementation, but it is
also able to achieve performance very close to the optimum
achievable bound, the maximum likelihood (ML) bound.

This paper is organized as follows. The proposed PL al-
gorithm is devel oped in Section 2-4. Simulation results that
compare the performance bounds and the estimation errors
of various location algorithms, including the proposed one,
arethen given in Section 5.

2. FACTOR GRAPH

Factor graph is a bipartite graph that expresses how a com-
plicated global function, or global task, of many variables
factorsinto the product of several simplelocal functions, or
simple local tasks. Factor graph consists of two kinds of
nodes, variable nodes and agent (function) nodes. An edge
connects a variable node 2 and an agent node ¢g;, hamed
after its associated loca function g; (), if and only if = is
an argument of g; (-). Fig. 1 shows a simple factor graph
representation of g (z1, 22, x3,24) = g1 (21, %2) - g2 (72) -
g3 (z2,x3,x4) With agent nodes g, g2, g3 and variablenodes
1, T2, T3, 4. The solution of the variablesto the problem
described by the factor graph is usually obtained through
an iterative soft informati on-passing procedure based on the
sum-product algorithm, to be briefly described next.

The rules for computing soft information are described
as follows: 1) A piece of soft information passed from a
variable node to an agent node is simply the direct prod-
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uct of all the soft information coming to the variable node
from all the other neighboring agent nodes. For example, as
shown in Fig. 1, the soft information passed from z to g3
isgiven by

SI(z2,93) = SI(g1,x2) - SI(g2,22), 1)

where Sl (a, b) denotesthe soft information passed from node
a tonode b. 2) A piece of soft information passed from an
agent node to a variable nodeis the product of alocal func-
tion associated with the agent node and all the soft informa-
tion coming to the agent node from al the other neighbor-
ing variable nodes, summarized over the variable associated
with the variable node receiving soft information. In Fig. 1,
the soft information passed from g3 to > can be expressed

as
51(93;372) = //93(3?2,173,1?4)'
T3 T4
SI(z3,g3) - SI(z4,93) dws dzs, (2)

where g3 (z2, 3, x4) isthe associated local function, or the
constraint rule of the agent node g5 to define the mutual
relation among x o, 3 and x4.

With these two rules, soft information are iteratively
passed around among neighboring nodes. Let the overall
soft information of avariable node be defined as the product
of all incoming soft information, e.g., the soft information
of x» can bewritten as

SI(z2) = SI(g1,72) - SI(g2,22) - SI(g3,z2). (3)

Fig. 1. An examplefactor graph.

3. SYSTEM MODEL

Let us first construct an appropriate factor graph model for
the PL system. In order to reduce the complexity of the

2-D MS location problem, based on the geometrical rela-
tionship, we divide the TOA-base PL system into two main
groups, xz—coordinate group and y—coordinate group, il-
lustrated in Fig. 2. Each main group contains IV subgroups,
where N is the total number of involved BSs. Each sub-
group describes both the direction and the distance of the
target MS as related to the associated BS in the referred co-
ordinate. The two main groups are then connected through
agent nodes {C; }.

For the purpose of staying low complexity, as will be
made clear in the next section, we assume Gaussian statis-
tics for al the variables in Fig. 2. Under this assumption,
Ax; and Ay;, the signed relative distance estimate from the
MSto theit” BSin the referred coordinate can be described
as

ai:1727"'7N7 (4)

Az =X; — T+ nag;
where (X, Y;) is the known exact coordinate vector of the
ith BS; (z,y) is the unknown exact location of the target
MS; and the estimation errors n A, and na,, are assumed
to be zero-mean Gaussian random variables with variances
0., ad o, , respectively. Given the MS location esti-
mate z and 7, (4) can be slightly modified as

AIl:Xl—f‘i-nAz .

= ‘5i=1,2,---,N. (5
{ Ay, =Y, =Y+ nay, ! ©)

On the other hand, given Az; and Ay;, the MS location
estimate can be written as

{QZXi_AmiJF"Az" i=1,2,,N. (6

g:E_Ayz_i'nAyl

For convenience, we usethe notation V' (z, m, o) to repre-
sent a Gaussian pdf, with z being the dummy variable and
with m and o2 being the mean and variance, respectively.

4. SOFT INFORMATION CALCULATION

We first describe how to obtain the initial pdf guess of the
MS location Z and 7 followed by the descriptions in de-
tails of the operations conducted by each nodein Fig. 2. In
the very beginning, a rough MS location (z(0),%(0)) can
be estimated with an arbitrary 3-BS geometrical agorithm.
Based on the rough MS location estimate, we then project
the variance of the range measurement error o onto the
x—coordinate axis and the y—coordinate axis, respectively,
to obtain the variances 03, and o, ., respectively, in the
x—direction and in the y—direction. Thus, with z(0), (0),
0hs;» and o, available and with Gaussian pdf assump-
tion of z and ¥, the initial pdf guesses of z, i are given as

N(fo,f(o),aizi) and/\/(ﬂo,gj(o),aiyi), respectively.
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Fig. 2. Factor graph representations of the proposed TOA-
based PL system.

After initialization, we next introduce the operation car-
ried out by each variable node and each agent node in Fig.
2 asfollows.

1. Variable nodes z and i: Based on (1), the soft informa-
tion passed from variable node Z to agent node A ; in the k"
iteration is a Guassian pdf of z* and can be expressed as

= I st(4%,2%) @
J#i

SI (z*, A¥)

with its initial
value being N(EEO, z(0), Uzmj) and the superscript k& de-

notes the iteration index. Note that the product of any J
Gaussian pdf’sisalso Gussian and can be simply derived as

(]

where SI (A%, z*) is a Gaussian pdf of z*

J
[IN(@m.od) x Nwmct) @

=1

1 K1
_ZZZ_Q
—1 9;

From (8) and (9) the calculation of (7) is just simple
arithmetic. A similar procedure, as that described above for
variable node z, can be applied to variable node /.

2. Variable nodes Ax; and Ay;: According to (1) again,
variable node Az; directly passes Gaussian pdf’s of Ax;,

SI (Axk, A¥) = SI(CF, Axh) (10)

where

AT

j=1

©)

ﬁv|§

and

SL(aak,C) =sL(45,008), @)

as the soft informati on between agent nodes A; and C;;. Itis
the same for variable node Ay; with respect to agent nodes
3. Agent nodes A; and B;: Based on (2), the soft informa-
tion passed from agent node A ; to variable node Ax; inthe
kth iteration isaGaussian pdf of Az* and can be expressed
as

SL(af, Aat) = [ ga,(Bat| 7)1 (@, 1) dz*
k

. (12)
On the other hand, the soft information passed from vari-
able node A; to agent node z in the k" iteration is again a
Gussian pdf of z¥ and can be expressed as

SI(Af,ﬁ’”’):/ g4 (3| Ach) - ST (Axk, AY) diat.
Aa:f

(13
Note that the left hand sides of (12) and (13) are still Gaus-
sian, becausetheintegration of the product of any two Gaus-
sian pdf’sis Gaussian and can be calculated as [5]

/ N(y,—z+ B,02) - N'(z,my,02) dz

— 00

< N(y,—ms + 8,02 + o}). (14)

Therefore, (12) and (13) can be easily computed via (14).
Again, asimilar procedure, asthat described abovefor agent
node A;, can be applied to agent node B;.

4. Agent node C;: The agent node C; plays an important
rolein converting the soft information from the z —coordinate
tothey—coordinate, and viceversa. Accordingto the Pytha-
gorean law, the constraint rule between variable node Az ;
and variable node Ay;, can be described by acircle,

(Ayh). (15)

In order to keep the soft informati on passed from agent node
C; to variable node Ay; Gaussian, some approximation has
to be made: Let usdraw atangent on the circle (15) with the
x—coordinate ¢ of the contact point (¢%, ¢) being theMS
relative location estimate, i.e., the mean value of Az # with
a Gaussian pdf from (11). We thus obtain alinear constraint
between Az* and Ay¥ to locally approximate (15). The
linear equation of the tangent can be written as

Ayf =& Daf + (g — € qh) (16)

where i = +/d; — ¢F and £ = —q} /%. Note that, by
observing the d|str|but|0n of SI (Axk Ck) we can easily
decide whether q is a positive number or a negative one.
Since Sl (Azk, C’“) is Gaussian and (16) is a linear map-
ping, the soft information passed from agent node C'; to
variable node Ay; is also Gaussian and can be expressed
as

& = (Ack) +

SI(CF, AyEtY) = N(Ayk, ¢k, k), @a7)
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where n¥ is the variance of the Gaussian soft information
SI (Az¥, CF). Similarly, thesoft informationSI (CF, Az¥)
passed from agent node C; to variable node Ax; can be cal-
culated in away similar to the procedure above.

In each round of iteration, accordingto (3), theMSloca
tion estimate can be updated by the product of the soft infor-
mation coming from all the edges connected to the variable
nodesz and 7, ST (&%) = [}, SI (4¥,2*) and SI (7*) =
H;.V: L ST(Bj,g"). After theiteration procedure converges,
the decision on the M S location can be made as the mean
value of the Gaussian distributions, SI(z*) and SI(y*). To
highlight the low-complexity characteristics of the proposed
system, the required operations for each node in the factor
graph are summarized in Table 1. It isclearly shownin Ta-
ble 1 that only the means and the variances of the incoming
Gaussian pdf’s need to be processed to produce the mean
and variance of the outgoing Gaussian pdf, and only very
little calculation is needed in each node. The distributed na-
ture of factor graph also makes the proposed system highly
suitable for integrated-circuit implementation.

5. SSIMULATION RESULTS

In this section, we demonstrate the performance improve-
ment of the PL system introduced by the proposed algo-
rithm through simulations. For comparison, we aso test
two existing algorithms, the geometrical algorithm and the
geometrical-algorithm-aided TS-LS agorithm (G-TS-LS).
Note that the G-TS-L S a gorithm uses the sol ution obtained
from the geometrical agorithm, instead of a random coor-
dinate vector of the MS location, as its initial guess in the
TS-LS agorithm. On the other hand, we aso numerically
evaluatetwo performancebounds, the L S bound and the ML
bound derived in [6], to clarify the performance differences
among these algorithms. In our simulations, the scenario of
cellular system is a standard hexagonal cellular system and
theradius of each cell is assumed to be 5 km.

Simulation results in Fig. 3 show that the proposed a-
gorithm not only always outperforms the geometrical ago-
rithm, the G-TS-LS algorithm, and the LS bound, but it
also approaches the optimal ML bound. We can aso find
that if more BSs are considered, the proposed algorithm ap-
proaches the ML bound even more closely. This is obvi-
ously because more intertwined iterative exchange of soft
information helps reduce the suffering from the large mea-
surement errors produced by some BSs.
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