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ABSTRACT Lip movement is a natural by-product of the speaking act.

In this paper we present a bimodal audio-visual speaker identifi-InNformation inherent in lip movement has so far been exploited
cation system. The objective is to improve the recognition perfor- Mostly for the speech recognition problem, establishing a one-to-
mance over conventional unimodal schemes. The proposed sys@n€ correspondence with the phonemes of speech and the visemes
tem exploits not only the temporal and spatial correlations exist- ©f i movement. Itis quite natural to assume that lip movement
ing in speech and video signals of a speaker, but also the crossWould also characterize an individual as well as what that indi-
correlation between these two modalities. Lip images extracted Vidual is speaking. Only few articles in the literature incorporate
for each video frame are transformed onto an eigenspace. The obliP information for the speaker identification problem [4, 5, 6].
tained eigenlip coefficients are interpolated to match the rate of the/Although these works demonstrate some improvement over uni-
speech signal and fused with mel frequency cepstral coefficientsmdal techniques, they use a decision-fusion strategy and hence
(MFCC) of the corresponding speech signal. The resulting joint do not fully exploit the mutual dependency between I|p_movement
feature vectors are used to train and test a Hidden Markov Model2"d speech [4, 5]. A recent work addresses data-fusion between
(HMM) based identification system. Experimental results are also face and multiple speech features [7], but does not investigate the

included for demonstration of the system performance. correlation between different modalities. In this paper we pro-
pose an HMM-based speaker identification scheme for joint use

of the lip sequence and the audio signal of a speaking individual
with data-fusion, i.e. early integration of audio and visual features
[8]. In the joint feature vector, transform domain coefficients in

1. INTRODUCTION

Biometric person identification, in the most general case, refers toan einenspace of lio images constitute the visual part and MECCS
identification of a person from a set of candidates using her/his gensp P 9 P

biometric data. Different biometric signals such as faces, voice, const:ute the §Ud'° p"’%”- foll . . he iof
fingerprints, signature strokes, iris and retina scans can be used T € paperis orggnlzed as follows. Section 2 describes the joint
to perform this identification task. It is generally agreed that no 2udio-video processing scheme that we propose for robust speaker
single biometric technology will meet the needs of all potential |dentn_‘|cat|0n. The problem of extracting features _from fiudlo-only
identification applications. Although the performance of several of and video-only data, the methodology employed in fusion of these

these biometric technologies have been studied individually, thereun'm‘?_dal features as well as th? desgrlptlon of our HMM-based
is little work reported in the literature on the fusion of the results classifier are all addressed in this section. Performance results of

of various biometric identification technologies [1]. the proposed system is demonstrated in Section 3 and finally conc-

A particular problem in multi-modal biometric person identi- luding remarks are given in Section 4.
fication, which has a wide variety of applications, is the speaker
identification problem where basically two modalities exist: au- 2 BIMODAL SPEAKER IDENTIEICATION
dio signal (voice) and video signal. Speaker identification, when

pelrforme;j ove; audio strea_rgs, L_sf_pr(t)_babla one of th% mostt natu-ln this study a text-dependent bimodal speaker identification sys-
ral ways to perform person identincation. FOWEVer, Video Sream o, i considered. The bimodal database consists of audio and

IS aLso ant_llrln_portant S]?Lt‘)Fce otf_bltf)m?tnc |nforrr:1at|ofn, n WQ'CT video signals belonging to individuals of a certain population. Each
we have stit images of biometric tealures such as face an aSOperson in this database utters a predefined secret phrase that may
the temporal motion information such as lip, which is correlated

ith th dio st Most ker identificati ; | vary from one person to another. The objective is, given the data of
wi € audio stream. Most speaker identiicalion Systems rely 5, nxnown person, to find whether this person matches someone
on audio-only data [2]. Even assuming ideal noiseless conditions,

; . . ~>in the database or not. The system identifies the person if there
such systems are far from being perfect for high security applica-

i Th b tion is al lid f : . | is a match and rejects if not. Hence the problem can be thought
lons. - The same observation IS aiso valld for Systems using only ¢ 4q o N-class recognition problem, including also a reject class.
visual data, where poor picture quality or changes in lighting con-

o L ~ " Such an identification system addresses problems of unauthorized
ditions significantly degrade performance [3]. A better alternative y P

is th f both modalities i inale identificati h use of computer and communication systems and multilevel ac-
IS the use ot both modalilies In a singie 1dentilication scheme. cess control. In the case of a secret phrase specific to each indi-

This work has been supported by TUBITAK under the project Vidual, the system provides two levels of security, thus seems to
EEEAG-101E038. be more reliable. However, the proposed system should also be
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robust against false identity claims. Our goal is to fully exploit the The eigenlip coefficients, when computed for every franoé a
spatial and temporal correlations existing in a video stream andgiven lip sequence, constitute the visual feature vector that will be
thereby to characterize the biometric properties of a speaker. Wedenoted byf; :

consider two different scenarios: in the first one each speaker ut- £ = [wi,wa, - ,wpl. ()
ters her/his name whereas in the other each speaker utters the same ) ) . )
6-digit number. Beside being an efficient and powerful representation, the ad-

Hidden Markov Models [9] are reliable structures to model vantage of the eigenlip approach is that it works simply on inten-

human hearing system, and thus they are widely used for speecfily values. This improves the robustness of the overall scheme
recognition and speaker identification problems [2, 9, 10]. The as compared tc_> technl_ques that require more SOph'St'Cated met-
temporal characterization of an audio-video stream can also suci10ds such as lip tracking for extraction of some geometric fe‘”?“
cessfully be modeled using a Hidden Markov Model (HMM) struc- tUres, €.g. lip contours as in [13]. With the eigenlip approach, it

ture, where state transitions model temporal correlations and Gaus=°‘Uffices to employ a simple lip d_etection process _for extracting lip
sian classifiers model signal characteristics. In this work a word- frames from face images. The disadvantage of this approach is that

level continuous-density HMM structure is built for the speaker it is generally sensitive to rotation and lighting conditions, though

identification task using the HTK library [11]. Each speaker in small rigid motions of the hea_d and small changes in illumination
the database population is modeled using a separate HMM anda" be tolerated up to a certain measure.

is represented with the feature sequence that is extracted over the

audio-video stream while uttering the secret phrase. First a world2 2. Fusion of Audio and Visual Features

HMM model is trained over the whole training data of the po-

pulation. Then using the world HMM model as the initial state, Mel frequency cepstral coefficients (MFCC) give good discrimi-
each HMM associated to a speaker is trained over some repetination of speech data; hence they are widely used to represent au-
tions of the audio-video utterance of the corresponding speaker. Indio streams in HMM-based speech recognition and speaker iden-
the identification process, hypothesis testing is performed betweerification systems. MFFCs can be computed from the log filter-
the best match of the population and the world model for the given bank magnitudes using the Discrete Cosine Transform (DCT). The
audio-video utterance of an unknown subject. The subject is eitherMFCC vectorey, at time indexk is defined as,

rejected or identified to be the speaker with the best match based

on a likelihood ratio test. Ck

Y,

IDCT({Y;li =0,1,..,1—1}), and (4)
> " log|S (n)[Hi(n) )

2.1. Extraction of Visual Features

The eigenface technique [3], or more generally the principal com- WhereSi (n) is then-th Fourier transform coefficient of theth
ponent analysis, has proven itself as an effective and powerful toolSPeech frame T‘Hl’ is thei-th mel frequency window. The audio
for recognition of still faces. The core idea is to reduce the dimen- féature vectoffy’ for the k-th frame is formed as a collection of
sionality of the problem by obtaining a smaller set of features than MFCCs, the first and the second delta MFCCs [2]:
the original dataset of intensities. In principal component analysis,
every image is expressed as a linear combination of some basis
vectors, i.e. eigenimages that best describe the variation of inten-
sities from their mean. When a given image is projected onto this  The proposed audio-visual fusion scheme is based on the early
lower dimensional eigenspace, a set of eigenimage coefficients igntegration model [8] where the integration is performed in the
obtained, that gives a parametrization for the distribution of the feature space to form a composite feature vector of acoustic and
signal. visual features. Classification is implemented by using these com-
In our case, each original dataset is a lip image obtained from posite vectors. This model makes thg assumption of conditi_onal
video sequences of speaking individuals. We will represent eachdePendence between acoustic and visual data. The acoustic fea-
lip image by a set oéigenlip coefficients as referred in [12]. Ob- tures_ that are cho_sen t_o be MFCCs and the_vnsugl featu_res that are
taining principal components of the lip signal, i.e. eigenlips, can ©Ptained by the eigenlip approach, as explained in Section 2.1, are
be thought of as an eigenvalue problem. Suppose that the training?®mPined to form the joint audio-visual features. Thus we expect
set consists o}/ mean-removed lipimage vectoss, £1, ..., £ar. 0 better exploit the temporal correlation of audio-video streams

Then the eigenlipsi; for m = 0,1, ..., M, can be computed as for robust performance, especially in the presence of environmen-
the eigenvectors of the foIIowing; covariance matx tal noise. The structure of the fusion scheme is outlined in Fig.

1. The synchronous audio and video streams are processed sepa-
M rately. The lip areas are cropped from the video stream to form
U= 1 Z L bT . (1) a str_eam of _Iip imag_es at a rate of 15 fps us_ing the ha_nd labeled
M~ localization information. A subset of these lip images is used to
create an eigenspace of dimensjorThe eigenlip coefficients are

8 =[ci Ack AAcy]. (6)

Each eigenlipu,, is associated to an eigenvalug,. Principal computed by projecting every lip image of a given video stream
components are the firgteigenlips that have.,, >> 0. Usu- onto the eigenspace.
ally the reduced dimensignis much smaller thai/ and thej-th As the audio features are extracted at a rate of 100 fps and the
eigenlip coefficientv; is obtained by the following projection: visual features are extracted at a rate of 15 fps, a rate synchroniza-
tion should be performed prior to the data fusion. Let the audio
wj = ujTe for j=0,1,...,p. (2) and the visual features be represented at time ins% and
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i seconds, respectively, i.e., Scenario Subjects Repetitions|| Total
male | female || train | test

1

£ = f“(kﬁ) for k=0,1,2,... @) || Subjectsname] 31 | 7 ]| 10 [ 10 ]| 760 |
. 1 | 6-digitnumber]] 31 | 7 || 4 [ 6 | 380 ]
f, = f,(i——=) for ¢=0,1,2,.... (8)
15

The visual features can be computed using linear interpolation overTable 1. The distribution of the data collected for the two different
thef, sequence to match the 100 fps rate, scenarios.

- ~ 1 . .

fk _ fv i _ i it 41

v (k100) (1 ak)fv +akfv 5 (9)
wherei* = |2£] anday, = 3£ — i*. Hence the joint audio-

visual featuref®, is formed by combining the MFCCs, the first
and second delta MFCCs and the interpolated visual feaffires
for the k-th audio-visual frame:

£y, = £, £)]. (10)

= gl

=]

| DECISION
|

Fig. 2. Sample images from the acquired audio-visual database.

Fig. 1. Feature extraction and fusion flow.
head at a rate of 15 fps and the audio stream has 16 kHz sampling
As observed from Fig.1, the overall proposed scheme consistsrate. The acoustic noise, which is added to the speech signal to
of two independent identification tasks performed with audio-only observe the identification performance under adverse conditions,
and fused audio-visual features. For the final decision, a Bayesians picked to be a mixture of office and babble noise.
classifier is incorporated to combine the two decisions obtained in The audio stream is processed over 10 msec frames centered
this way. Bayesian classifier uses likelihood ratios to measure theon 25 msec Hamming window. The MFCC feature veatqr, is

reliability of the two separate identification results. formed from 13 cepstral coefficients including thia gain coef-
ficient using 26 mel frequency bins. The resulting audio feature
3. EXPERIMENTAL RESULTS vector, f’; of size 39, includes the MFCC vector and the first and

the second delta MFCC vectors.

The database that have been used to test the performance of the Each video stream is at most 1 second in duration and dur-
proposed speaker identification system is briefly described in Tab-ing this time it is assumed that the subject does not considerably
le 1, where the distributions of the test and training data collected move her/his head. Hence, hand labeled lip regions can be used to
disjointly for two different scenarios are given. The audio-visual crop 120 x 128 lip frames to form the lip sequence for each vi-
data have been acquired using Sony DSR-PD150P video cameraual stream. An eigenspace of dimensiois computed using the
at Multimedia Vision and Graphics Laboratory of Kbmiversity. training part of the lip sequence set. The eigenspace dimension
Samples from this database are displayed in Fig. 2. In addition tois set to bep = 20, as this value is observed to be sufficient for
the database displayed in Taldl a set of impostor data is collected the desired performance of the identification system. The system’s
for the first scenario. In the collection of impostor data each sub- performance starts to degradeysis further decreased. The visual
ject utters five different names from the population. However in feature vectorsf?, which are used in both training and testing of
the second scenario all the utterances not belonging to the subjedhe HMM-based classifier, are obtained by projecting each lip im-
are used as impostor data. age of the database onto this eigenspace and thereby computing

The presented experimental results have all been obtained usthe eigenlip coefficients.
ing the HTK tool version 3.0, each speaker being represented by  The identification results are shown in Table 2, where we ob-
a 6-state left-to-right HMM structure. The acquired video data serve the equal error rates at varying levels of acoustic noise for
is first split into segments of secret phrase utterances. The vi-the two scenarios: the secret phrases are the person’s name and
sual and the audio streams are then separated into two parallethe fixed 6-digit number (348572), respectively. The unimodal
streams, where the visual stream has gray-level video frames of(video-only and audio-only) and bimodal (audio-visual with and
size 720 x 576 pixels containing the frontal view of a speaker’s without Bayesian classifier) equal error rates are displayed on the
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EER (%)
Noise || Audio | Video | Audio | Bayesian
Level Only | Only | Visual | Decision
Scenario 1: Subject’'s name
clean 299 | 20.21| 3.17 2.58
15dB | 4.28 | 20.21| 4.12 3.67
10dB || 8.86 | 20.21| 4.91 4.10
5dB 18.32 | 20.21| 6.56 5.7
0dB 34.01 | 20.21| 10.87 8.5
Scenario 2: Fixed 6-digit number
clean 1.61 5.55 2.11 1.41
21dB || 4.31 5.55 2.14 1.61
18dB || 8.82 5.55 2.18 1.75
15dB || 24.06 | 5.55 2.22 1.90
12dB || 44.04 | 5.55 2.77 2.40

Table 2. Speaker identification results: equal error rates at varying
noise levels.

same table to better observe the improvement obtained by audio-
visual data fusion. In the audio-only case the identification perfor-
mance degrades rapidly with decreasing SNR. This degradation is
stronger for the fixed 6-digit number scenario in which identifica-
tion task is expected to be harder since all impostor speakers utter
the same 6-digit number. In the video-only case the identification
performance is observed to be poorer for the first scenario. This is
mainly due to the sensitivity of this scenario to the impostor data
since in this case the HMM structure models not only the personal
biometric lip movements but also the lip movements correspond-
ing to the speech content.

The overall performance is improved with the incorporation
of visual information, though this improvement is lower at high
SNR levels. The bimodal identification performance is signifi-
cantly higher than the audio-only and the video-only cases at lower
SNR levels. Thus the bimodal system seems less sensitive to noise
level. The identification performance of the bimodal system is
further improved with the incorporation of the Bayesian classi-
fier; this improvement does not seem to be significant, however
the Bayesian approach guarantees the overall performance to re-
main at least as good as the audio-only performance.

4. CONCLUSIONS

We have presented a bimodal (audio-visual) speaker identification

system that improves the recognition performance over unimodal[10]

schemes. The data fusion of audio and video information, to train

a HMM-based classifier, has availed us with the possibility of fully [11]

exploiting the correlations existing between two modalities. Hence
the proposed technique, as verified with the experiments, seems to

be more reliable for security systems as compared to unimodal[lz]

approaches. Furthermore, the use of eigenlip coefficients com-
puted directly from intensity values appears to be a promising at-
tempt in achieving a robust and practical speaker identification sys-
tem. Such an eigenlip representation avoids inevitable robustnes
problems of the systems relying rather on geometric features that
require sophisticated and mostly unreliable image analysis tasks,
such as segmentation and lip tracking.
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[13]

There are problems and further issues to be addressed. First,
currently lip frames are extracted from video stream by hand la-
beling; this process should be automatized by a simple but effec-
tive lip detection method using spatial and motion information.
Second, the training and test database should be enriched both in
terms of total population and variety for a more reliable perfor-
mance analysis. The variety in database refers mainly to changing
environmental conditions such as lighting and background, and to
including video sequences where the head of the speaker may un-
dergo arbitrary rigid motion. This would allow us to better mea-
sure the tolerance of our system to head rotation and changing il-
lumination. In this respect, methodologies that would enforce the
overall scheme for invariance to such properties has to be explored.
All these issues and problems are currently under investigation.
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