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ABSTRACT

We have al heard the term “cracking the genomic code”’, but is
DNA acodein the information theoretic sense? The coined term
“genetic code” maps nucleotide triplets (codons) to amino acids.
However, this is in computer coding sense because a codon
instruction is performed to output an amino acid sequence. In
this paper, we examine methods to detect redundant coding
structurein DNA. First, afinite field framework for a nucleotide
symbolic sequence is presented then approaches to finding
sequence structure associated with error correcting codes are
examined. We compare a previously proposed parity-check
vector search method to a novel subspace partitioning a gorithm.
The subspace partitioning algorithm is a genera approach to
finding any linear coding redundancy. Our method provides an
easy way of visudizing coding potential in DNA sequences as
shown from the test data.

1. INTRODUCTION

Since the introduction of the Watson-Crick model of DNA,
scientists have been trying to make sense of the long sequence,
millions long for simple organisms and billions long for complex
ones, composed of four bases. Since the introduction of
Shannon’s mathematical theory of communication, many
scientists have tried to explain DNA within an information
theoretic framework [4]. Claude Shannon’s PhD thesis [9] was a
mathematical theory of genetics. It is appropriate that his
information theories are now applicable to his origina interests.

1.1. The Channel

Communication channel models have been paraleled to DNA
processes. In one doctrine, the channel is assumed to be the
amino acid trandation from nucleotide triplets [4]. In May et.
al, the channel is the actud replication process [8]. The latter is
good for mutation modeling since transcription and copying of
DNA is a noisy process. “Proof-reading” mechanisms are
observed during DNA replication, and when the activity of these
polymerase mechanisms are blocked, error rates increase from
10e-6 to 10e-3 [3]. We use a model similar to May's since
errors occur directly on the DNA strand in replication while
errors in the trandation process can aso occur in the formation
of amino acids and proteins. In our framework, DNA is the
medium in which genetic information is transmitted from
generation to generation.
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Figure 1: Our noisy channel model of genome replication with
underlying coding assumption

1.2. Nucleotide Representation

Whenever one attempts to tie mathematical theory to the
genome, the most important assumption is the representation of
the nucleotides. There are severa forms proposed and adapted
to the type of analysis. Assessing the purine/pyrimidine
structure, one can represent the purines(A and G) and the
pyrimidines(C and T) with a binary representation. For four
bases, one can choose a simple representation such as A=1, C=2,
G=3, T=4 and use modul o operations, but thisimplies a structure
on the nucleotides such that T>A and C>G [10]. For amodel of
the trandation process, Anastassou defined a complex
representation: A= 1+, T= 1-j, C= -1+, G= -1+j [1]. The
geometric interpretation of this representation still imposes
constraints such that the Euclidean distance between A and C is
greater than the distance between A and T, yet for the nucleotide
quantization to amino acids, it was useful. Also, one can use
indicator sequences (binary sequences representing the locations
of each base in the nucleotide sequence) producing a four-
dimensional representation yielding an efficient representation
for spectral analysis [1]. When modeling processes in RNA, a
fifth base, Inosine, can be taken into account [8].

In this paper, we will map nucleotides to a finite field
of four, GF(4). This places on DNA the following Galois field
properities: the elements are commutative under addition and
both commutative and associative under multiplication as well as
having an identity element and multiplicative inverses. Since
GF(4) is an extension field of GF(2), we can create labels for the
bases (Figure 2) using GF(2)’ s primitive polynomial:

0’+0+1=0
This abstraction of elements to integer labels makes finite field
theory an attractive framework.

1.3. Problem Formulation

In Figure 1, we assume that the DNA is the sequenced genomic
data available in GenBank [5], and our god is to examine the
dashed-line encompassed area and uncover the encoder scheme;
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in other words, we wish to infer structure from the noisy output
to retrieve the origind genetic information.  Also, if our
assumption is correct and DNA is encoded in alinear redundant
fashion, our analysis will uncover it. In this system, we know
nothing about the encoder nor the origina information, thus,
system identification and deconvolution methods cannot be
used. We will assume that the encoder is linear and try to
characterize it given such output.

a’=1=1=C
=g 2T
0’=a+le 3 G
0=0-0< A

Figure 2: Exponential root representation, polynomial
representation, numerical 1abel, and nucleotide label

1.4. (n,n-1) Code Search

Liebovitch et. a. introduced a single parity bit search [6]. A
formal motivation for the approach can be derived from Theorem
4-8 from Wicker [11]: “A vector c is a code word in C if and
only if cH™=0." Thus, given a DNA frame vector cC, each
row in H, the parity-check matrix, must span the nullspace of C,
the full sequence. If h, isarow vector of H, then c-h, =0, ie

the parity-check matrix will be a set of orthogonal codesto c. If
there is one common h, amongst alcOC, then the DNA
sequence is encoded in a single-bit parity-check fashion.

In the existence of a parity-check code, a diding
window will move frame by frame down a DNA sequence and
will have one or more identical parity-check vectors orthogonal
to each frame. See Figure 3 for an illustration of how the
sequenced is windowed. If anucleotide isinserted or deleted in
the replication process, a frame shift error is introduced into the
sequence and will cause the parity-check window to lose sync.

In order to exhaustively search for single bit parity-
check codes with frame offset error possibilities, we decided to
take the approach further and calculate the parity-check vector
orthogona to most frames including al frames offsets. Then
each frame that contains this codeword is plotted and one can
visualize from the graph if there is single bit parity-check vector
common to each codeword over aregion (See Figure 4a).

This approach reveals codewords that happen to be
orthogonal to a parity-check vector by chance and should be
compared against a sequence which has the same alphabet
composition (see Section 2 for more on alphabet information
content). A comparison of a random sequence is shown (Figure
4b). From the two plots, it is shown that an (n,n-1) code
corresponding to a specific parity-check vector cannot be found.
From simulations, we observed that the frequency of the most
common parity-check vector directly relates to the entropy of the
sequence (see Section 2 for explanation of sequence entropy).

This experiment provides context for the complexity of
the problem. For this search, a type of code must be assumed.
Thus, there is a need for a general approach such as Section 3 to
discern an (n,k) coding structure from DNA sequence content.

2. GC CONTENT INTRODUCES REDUNDANCY
By investigating measures of entropy, we can look at basic

measures of information content. The entropy of a sequence is
maximized when all four nucleotides are equi-probable:

H == pilog,(p) @

41 1 .
=-» —log,(=) = 2bits
2;4 92(4) I

In many species, the bases are not equiprobable, but temperature
dependent. Three bonds exist in C and G bases while only two
existin Aand T. Thus, it takes more energy to make C and G,
and it has been found that GC content is higher in warm-
environment organisms than cold-environment. For example,
Micrococcus Lysodeikticus[4] has the following base
frequencies:.  Pr(C)=Pr(G)=.355 and Pr(A)=Pr(T)=.145.
Therefore, the entropy for this organism utilizing the first part of
(1), is 1.87 bits, which implies redundancy from thisimbalance.
For our example data, a segment from the E. coli K-12
MG1655 coding region sequence has the following composition:
N(A)/N=.262, N(C)/N=.281, N(T)/N=.206, N(G)/N=.25.
Therefore, it is nearly at maximum entropy with 1.99 bits.

3. SUBSPACE PARTITIONING FOR (N,K) CODES

Our primary goal is to identify and characterize any linear
constraints that might appear in regions of a sequence. Lacking
the benefit or prior knowledge regarding the location, duration,
or dimensionality of subspace partitioning in the sequence, we
propose a method that generates a complete orthogonal basis set
oriented to a local region of data. The basis set is used to
decompose the sequence (equivdent to a coordinate
transformation).  The consistent presence of nulls in the
transformed sequence indicates both the presence and the
dimension of linear subspace partitioning in the data.

The first assumption is a fixed codeword length, n.
The DNA eements are grouped into a matrix, V = [vy Vo . W]
where the length of the entire DNA sequence isN [On and v; is
length n. The alignment of the frames relative to the starting
point will be referred to as the framing offset. A choice of a
particular framing offset will be referred to as the frameset, or
open reading frames as called in the biological literature. Given
the frame length n, there are n unique framesets.

Framing Offset GTAGTCGAATGTCATTGCTGAT....
0 T'GTA] [ GTC] [ GAA] [ TGT] [ CAT] [ TCT] ...
1 [ TAG [ TCGE [ AAT] [ GTC] [ ATT] [ GCT] ...
2 [AGT] [CGA] [ATG [TCA] [TTG [ CT] ...

Figure 3: Illustration of vector framing for n=3.

We apply the Gram-Schmidt algorithm using finite
field operations to the sequence of vectorsto yield a complete set
of orthogonal basis vectors, {e,&,,---€,}. In the event that the
entire sequence consists of vectors lying in a subspace of
dimension less than n, we introduce random vectors and
continue to iterate Gram-Schmidt until the basis set is complete.
This yields a transform matrix G that is clearly full-rank, as it
consists of n orthonormal vectors.

Once an orthogonal basis is formed from the first j
frames of data, the v;’s for i>] are decomposed into components
of each of the basis vectors. This is simply a coordinate
transformation and can be described by:
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where G =|.* 2

Provided that the data has been framed correctly when
applying the Gram-Schmidt algorithm, a linear coding
redundancy can be detected by noting consistent null coordinates
over aregion in the transformed sequence of length-n vectors,
{tutz,...,tng}.  This null detection would indicate a subspace of
the actua n-dimensional space exists.

Knowing nothing of the dimension or alignment of the
data, we must apply the algorithm for many codeword lengths.
For a given codeword length and for a given locality in the
sequence, we apply the algorithm n times to account for each
framing offset. For each of the n iterations, the vector frameset
is offset by one element of the sequence to guarantee that if
length-n codewords are present in the sequence, one of the
framesets will be properly aligned.

Algorithm Outline

1. Obtain the orthonormal basis, {e;e,....e.}, by Gram-
Schmidt orthogonalization of j number of v; frameswhere
j = n. Formthe transform matrix, G, fromthis set.

2. Decompose the sequence into its basis components,
{tuts,...ty }, across all possible framing offsets.

3. Note the persistence of nullsin t's. Calculate confidence
by comparing against the probability of sequential sets of
randomly chosen vectors having the same subspace
partitioning.

It should be noted that on finite fields, non-zero
element vectors can have an inner product of zero (the additive
identity element of the field), thus self-orthogona vectors can
exist. The situation sometimes arises in which a subspace is
characterized entirely by self-orthogonal basis vectors. For this
reason, the coordinates in the transformed vector sequence
associated with these self-orthogonal basis vectors are aways
zero. In this case the decomposition cannot proceed and the
algorithm must be terminated, reframed, and started anew.

Given the copious volume of data produced by
iterating the algorithm over numerous frame shifts and codeword
lengths, a visualization method is devised to aid in the search for
consistent subspace partitioning. For each frameset, consistent
nulls in the decomposed vectors are noted in an attempt to
characterize the unoccupied subspace. A null-subspace indicator
vector is used to mark the locations of nulls found consistently in
the data. Each shift in sequence results in an update of the
indicator vector. If the vector remains unchanged across
iterations, a probabilistically-based value increases to indicate
confidence in the presence of subspace partitioning (as the
probability of randomly-chosen vectors possessing the observed
subspace partitioning diminishes). We can then plot the
confidence as a function of sequence index i across all possible
framing offsets.

The algorithm is capable of detecting and
characterizing linear subspace partitioning in any seguence
provided that such structure is manifest in the data. For a given
sequence, al such structure can be found provided that the

algorithm is run for every possible framing offset and for every
possible codeword length.

By way of illustration, a random test sequence is
generated to occupy a five-dimensional subspace of an eight-
dimensional vector space. This constitutes an (8,5) linear block
code in GF(4). Running the agorithm on this sequence for n=8
yields the confidence image shown in Figure 5a.

Interstitial symbols are introduced throughout the
sequence to illustrate the robustness of the algorithm to framing
offsets. When framing offsets are introduced in the sequence,
the region of high subspace partitioning confidence simply
migrates to the corresponding row in the diagram.

These “confidence stripes’ of themselves say nothing
of the dimensional occupancy of the underlying sequence.
Rather, they are used as search tools to simplify the analysis of
large volumes of data. Their presence alerts usto the location of
subspace partitioning in the sequence, at which point we can
retrieve the local indicator vector to observe that, indeed, there
are three dimensiona nulls present throughout the duration of
each of the confidence stripes.

4. RESULTS

The parity-check search method only searches for a common
parity-check vector but could be expanded to a higher rank
parity-check matrix, H. However, the subspace partitioning
method is a more adaptable algorithm for general redundancy
analysis.

The subspace partitioning agorithm described is able
to identify and parameterize dimensional occupancy in a region
independent of framing, provided that the structure is present
from the outset. This algorithm can be more generally applied to
any sequence for which it is suspected that coding properties are
present.  The algorithm could readily be adapted in a
classification scheme for data of unknown origin or for
cryptographic/cryptanalysis tasks in which the code or
encryption scheme is unknown.

The agorithm needs improvement in two areas.
Firstly, the agorithm uses nulls in a transform to indicate
subspace partitioning. This requires that the coordinate system
described by the transform be properly oriented. The transform
matrix is guaranteed to be properly aligned for exactly one of the
possible framesets, provided that the structure in question is
present from the outset of the sequence. If there is an onset of
structurein the data at alater point in the sequence, it may not be
found. This stems from the primacy effect inherent to the Gram-
Schmidt algorithm: the coordinate system (basis set) produced is
oriented according to the order in which vectors are presented.

Secondly, the component decomposition algorithm is
defeated by the case in which the Gram-Schmidt agorithm
produces a fractional basis set. This is because finite field
arithmetic allows for the existence of self-orthogona vectors.
The situation sometimes arises in which Gram-Schmidt produces
a coordinate subspace whose complement contains entirely self-
orthogonal vectors. While this situation is rare (7 out of 75
times in processing the E Coli DNA strand), it is impossible to
perform the decomposition discussed here when it does occur.
In this way, it creates "blind spots" for the algorithm: certain
combinations of codeword length and framing offsets are self-
orthogonal and cannot be analyzed using Gram-Schmidt.
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A superior technique is presently being investigated to
overcome both of these faults. The revised algorithm will use a
more genera solution to find al linear dependency among sets
of vectors over aregion. Thisisa"sliding window" solution that
is insensitive to the starting point in the data but will yield the
same information, the dimension of occupancy for a given
codeword length. A method for sidestepping the problem of
self-orthogondity is under investigation. Provided that a
tractable solution exists, it guarantees the capability of detecting
any and all subspace partitioning in aregion of data.

5. CONCLUSIONS AND FUTURE WORK

From the investigations presented, preliminary results show no
apparent error correcting code in E. Coli DNA. Other DNA
sequences should be tested, and alternative forms of codes, such
as convolutional codes, need to be considered. The following
discusses biologically discovered regions in DNA and how they
may affect thistype of analysis.

Our methods were based on the hypothesis that there is
an underlying coding structure in the DNA sequence used for
mutation recovery in the replication process. We assumed this
structure would occur in both “coding” (in the computer coding
sense) and non-coding regions. (There has been great effort in
distinguishing between these gene and “junk” regions[2].)

On the contrary, mutation rates vary from region to
region in the genome, and these areas might need separate
trestment. Nature relies on mutations and uses errors for
diversity. It has been noted that non-coding regions (which
compose over 97% of the entire genome) are more susceptible to
mutation than coding regions. Also, frequency of mutation can
vary from one gene to another; different genesin corn showed
variation of mutation rates by 400-fold [3].

In addition, little is known about non-coding regions
except that they possess signals that regulate transcription and
translation processes. For example, the non-coding region
upstream from a gene contains a ribosomal binding site which is
the initiator for transation of amino acids. Information content
of these areas isinstrumental in gene finding [2,8].

Prokaryotes, cells without a nucleus, tend to have their
genes encoded on DNA in one continuous nucleotide
succession. Nuclear-celled organisms' genes are interrupted by
non-coding sequences called introns. Except for the fact that
they are spliced out of the sequence before trand ation, not much
is known about these regions. From a coding point of view,
these otherwise useless bases would be perfect for containing
error-control information such as parity bits. Intron sequences
are prime candidates for information and coding analysis.

Mac Donaill suggests that nature prefers an alphabet of
four due to the parity code structure in hydrogen donor-acceptor
patterns of purine and pyrimidine molecules [7]. While our
methods checked for coding structure on the nucleotide
sequence itself, there is aso the possibility of structure in the
actual chemica bonds between complementary bases.
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