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ABSTRACT

Authentication of individuals is rapidly becoming an
important issue. This paper proposes a new nonlinear
algorithm for pen-input on-line signature verification
incorporating  pen-position, pen-pressure and  pen-
inclinations trajectories.

A preliminary experiment is performed on a database
consisting of 1849 genuine signatures and 3174 skilled'
forgery signatures from fourteen individuals. Since no fine
tuning was done, this preliminary result looks very
promising.

1. INTRODUCTION

Personal identity verification has a great variety of
applications including EC, access to computer terminals,
buildings, credit card verification, to name a few.
Algorithms for personal identity verification can be
roughly classified into four categories depending on
static/dynamic and biometric/physical or knowledge-
based as shown in Figl.1. (This figure has been partly
inspired by a brochure from Cadix Corp, Tokyo.)
Fingerprints, iris, retina, DNA, face, blood vessels, for in-
stance, are static and biometric. Algorithms which are
biometric and dynamic include lip movements, body
movements and on-line signature. Schemes which use
passwords are static and knowledge-based, whereas
methods using magnetic cards and IC cards are physical.

In [1]-[5], we proposed algorithm PPI (pen-
position/pen-pressure/pen-inclination) for on-line pen
input signature verification. The algorithm considers
writer's signature as a trajectory of pen-position, pen-
pressure and pen-inclination which evolves over time, so
that it is dynamic and biometric. Since the algorithm uses
pen-trajectory information, it naturally needs to
incorporate stroke number (number of pen-ups/pen-
downs) variations as well as shape variations.

In our previous work [1]-[5], genuine signatures were
separated from forgery signatures in a linear manner. This
paper attempts to perform the nonlinear separation.
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2. THE ALGORITHM
2.1 Overall algorithm

Fig2.1 describes an overall algorithm. A database of
signatures is divided into two groups : signatures for
learning and signatures for testing.

Learning Phase Testing Phase

Signatures for Learning Signatures for Testing
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Testing by Perceptron
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\
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Fig2.1 Overall algorithm

tThere are three types of forgery signature — Random forgery,
Simple forgery and Skilled forgery. A forgery is called Random
when forger has no access to genuine signature. A forgery is
called Simple when forger knows only the name of the person
who write genuine signature. A forgery is called Skilled when
forger can view and train genuine signature.
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2.2 Feature Extraction
A

inclination px

inclination py g\ pen
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Fig2.2 Raw data from tablet

The raw data available from our tablet (WACOM Art
Pad 2 pro Serial) consists of five dimensional time series
data :

(x(7;),¥(,), p(t,), pxt;), pAAt;)) € R? X{O,l,,,,,ZSS}XRZ @2.1)
i=12,...,1
where (x(;),y(t;)) e R? is the pen position at time
t; , p(t;)e{0,],..,255}
px(t;) and py(¢;) are pen inclinations with respect to the

represents the pen pressure,

x - and y -axis as shown in Fig 2.2.

Define
III
ax@)
= Ji ~ Xmin
X,=—L —  xa (2.2)
Xmax ~ ¥min
III
ari
=l J ~ Ymin
Y,=—L——xa (23
Ymax ~ Vmin

where x.., and x.., stand for the minimum and the
maximum value of x(¢;) , Yy, and y... stand for the
minimum and the maximum value of y(¢;), respectively,
shown in Fig 2.3. ¢ is a scale parameter to be chosen.
The pair (X,,Y,) can be thought of the centroid of

signature data (2.1).

fé’wﬁ-‘

Fig2.3 Xpux > Xmin » Ymax a0d Y., of signature

Let
V(@)= (dx(i), dy (7))
:=(x(i)_xmin XO!—Xg, y(i)_ymin XO!—Yg) (24)

X -X Ymax ~ Vmin

max min
i=12,.,1

be the relative pen position with respect to the centroid.
Then the length Af(i) and the angle 8(i) of each pen

position are given by

AF (i) =y dx(i)* +dy (i)’ (2.5)

i=L2,.,1

? tan ! dy—@ (dx(i)>0)
~ 1
1
T sion(dy()x X (dx(i)=0)
0()=1 ) 2 (2.6)
’:\tan_ m +7 (dx(i)<0,dy(i)=0)
Iltan_l ZZ—EZ -7 (dx(i)<0,dy(i)<0)
1

i=12,..,1
Our feature consists of the following five dimensional
data

(0,. 01, pi» px(t,), py(t;))€ R* X{0.1,..., N}x R? .7)
i=12,..,1 '
where I is the number of the data.

A typical original signature trajectory given by Fig2.4 is
converted into the relative trajectory given by Fig2.5.
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Fig2.5 Relative Trajectories
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2.2 Angle-Arc Length Distance Measure

Let
(M Agi qr gx(1 ), qy(ty ) € R* x{0,L,.., N'}x R*
k=12...K

be the feature trajectory of a template signature and
consider

(2.8)

|6; - 1|S(pia)S(Af;, Ag)  (2.9)
where S is defined by
(u=v)

s
S(u,v)=1 ()

(2.10)
il =

Since 1 is the minimum value of p; and ¢, , function S
puts penalty on discrepancies between p; and ¢, .
Similarly, S(Af;,Ag;) puts penalties on the length of each

local trajectory length.
The following is our angle arc length distance measure.

N
D= min A6, -7 [S(p; a1 )5, Ag,) (21D
s Styy1 S
ke, <k <k, +1 57

where i) =k; =1, iy =1, k, =K are fixed.
Because of the sequential nature of the distance function,
Dynamic Programming is a feasible means of the computation.

D1(0,0)=0

8D1G, Lk, — 1)+ |6, -7, |
XS(p; »qx, )S(Af; s Agy. )

DI, —Lk,)+ |0, =y |

T X S(p; 49k, )S(Af; ,0)

:::Dl(is,ks ~+lo, - n |

1
T XS(pi»qi, )S0,Ag; )

DI(i,, k,) = min (2.12)

=) ) ) =) ) D

2.3 Pen Inclination Distances

Define pen-inclination distances

5
D2:= min ‘ X, —ax ‘ 2.13
i Siy Sigt al-p i T Pk, ( )
K<k ko1
o
D3:= min ‘ - ‘ 2.14
IS Sigoetl al-p Vip =Dk, ( )
ok Skt

which are computable via DP also.

2.4 Template Generation

To choose three template signatures, we compute the
sum of the distance measure D= D1+ D2+ D3 between
each of the signatures in a group of genuine signatures for
learning and sort them according to their distances, then
choose three signatures with the smallest distances. These
will be used as templates.

2.5 Nonlinear Separation

Given the set of feature vector (D1,D2,D3) , our

previous algorithm proposed in [1]-[5], performs linear
separation of genuine signatures from forgery signatures.
We naturally expect that appropriate nonlinear separation
would improve the performance even though our linear
scheme already perform reasonably well.

One of the means to perform nonlinear saparation is to
prepare a parameterized family f(D1,D2,D3;w) of

functions and adjust the parameter vector w in such a
way that

M
E=8]y;-/Ciw|* »min (215
i=1

where
x; =(D1,,D2,,D3;)

&l (when input signature is genuine)

Vit (2.16)

%0 (when input signature is forgery)
i=123,.,.M
M is the number of training data sets. The family
f(x;w) can be, for instance, the perceptrons;

h
fxw)=c(Qob x+c))

i=1

(2.17)

where o(u):= (2.18)

+e™

w= (al ""’ah’b11’b12’b13”"’bh1 ,bhz,bh3,cl,...,ch) (219)
With this family of functions, one obtains a probability
interpretation. Let w* be an optimal parameter vector
with respect to (2.15) and let x,,,, = (Dl,,5,, D2,,5:,D3,05:)
be a test feature vector. Then the following interpretation
is possibile;

test >

Py, is genuine) = f (X555 W*) (2.20)

thus, a test signature is predicted to be genuine if (2.21) is
satisfied, while a test signature is predicted to be forgery if
(2.22) is satisfied.

0.5 f(xy:W¥)<1.0

0= f(Xpeq3w*)<0.5

(2.21)
(2.22)
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3. EXPERIMENT

This section reports our preliminary experiment using
the algorithm described above. Fourteen individuals
participated in the experiment. The data was taken for the
period of three months. There are 1849 genuine signatures
and 3174 skilled forgery signatures. Signatures are
divided into two groups as shown in Table 3.1.

Table3.1 Database
Signatures for Learning Signatures for Testing
genuine forgery genuine forgery
418 1573 1431 1601

Table3.2 shows verification error rates as a function of %
(the number of hidden layer). FAR represents False
Acceptance Rate and FRR represents False Rejection Rate.

Table3.2 Verification Error Rate

h FAR (%) FRR (%)

5 1.42 1.31

6 1.08 1.37

7 1.56 1.56

8 1.42 1.63

9 1.08 1.38

10 1.42 1.00
Average 1.33 1.37

Since our previous scheme [1]-[5] contains a free
parameter ¢ to be chosen, direct comparison is impossible,
however, the minimum FAR 1.08%, and the minimum
FRR 1.00%, of the proposed algorithm are very
encouraging.

4. CONCLUSION

A new nonlinear algorithm was proposed for pen-input

on-line signature verification which incorporates
trajectory of pen-position, pen-pressure and pen-
inclinations.

Once the problem is formulated in a probabilistic
setting, we can use much more advanced learning
schemes such as Hierarchical Bayesian algorithms [6],
which we will pursue in a future project.

Our experiment tells us that signatures change with
passage of time so that a better algorithm should be able
to update w* with respect to time. This can be done, for
instance, by the Online Bayes algorithms [7].
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