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body movements
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Authentication of individuals is rapidly becoming an
important issue. This paper proposes a new nonlinear
algorithm for pen-input on-line signature verification
incorporating pen-position, pen-pressure and pen-
inclinations trajectories. dynamicstatic

A preliminary experiment is performed on a database
consisting of 1849 genuine signatures and 3174 skilled†

forgery signatures from fourteen individuals. Since no fine
tuning was done, this preliminary result looks very
promising.

password, key
magnetic card 
IC card 

dynamic password 

Physical/knowledge
1. INTRODUCTION 

Personal identity verification has a great variety of
applications including EC, access to computer terminals,
buildings, credit card verification, to name a few.
Algorithms for personal identity verification can be
roughly classified into four categories depending on
static/dynamic and biometric/physical or knowledge-
based as shown in Fig1.1. (This figure has been partly
inspired by a brochure from Cadix Corp, Tokyo.)
Fingerprints, iris, retina, DNA, face, blood vessels, for in-
stance, are static and biometric. Algorithms which are 
biometric and dynamic include lip movements, body
movements and on-line signature. Schemes which use
passwords are static and knowledge-based, whereas 
methods using magnetic cards and IC cards are physical.

In [1]-[5], we proposed algorithm PPI (pen-
position/pen-pressure/pen-inclination) for on-line pen 
input signature verification. The algorithm considers
writer's signature as a trajectory of pen-position, pen-
pressure and pen-inclination which evolves over time, so
that it is dynamic and biometric. Since the algorithm uses 
pen-trajectory information, it naturally needs to
incorporate stroke number (number of pen-ups/pen-
downs) variations as well as shape variations.

In our previous work [1]-[5], genuine signatures were
separated from forgery signatures in a linear manner. This 
paper attempts to perform the nonlinear separation.

Fig1.1 Authentication Methods

2. THE ALGORITHM 

2.1 Overall algorithm

Fig2.1 describes an overall algorithm. A database of 
signatures is divided into two groups : signatures for 
learning and signatures for testing.

Learning Phase Testing Phase 

Signatures for Learning Signatures for Testing

Feature Extraction Feature Extraction 

DP Matching DP Matching

Learning by Perceptron Testing by Perceptron

Fig2.1 Overall algorithm
______________________________________________

†There are three types of forgery signature – Random forgery,
Simple forgery and Skilled forgery. A forgery is called Random
when forger has no access to genuine signature. A forgery is
called Simple when forger knows only the name of the person 
who write genuine signature. A forgery is called Skilled when 
forger can view and train genuine signature.
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2.2 Feature Extraction

Fig2.2 Raw data from tablet

The raw data available from our tablet (WACOM Art
Pad 2 pro Serial) consists of five dimensional time series
data : 
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α is a scale parameter to be chosen. 
The pair ( can be thought of the centroid of 

signature data (2.1). 
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be the relative pen position with respect to the centroid.
Then the length and the angle)(if∆ )(iθ of each pen 

position are given by
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Our feature consists of the following five dimensional
data
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where I is the number of the data.
A typical original signature trajectory given by Fig2.4 is
converted into the relative trajectory given by Fig2.5.

Fig2.4 Original Signature Trajectories

Fig2.5 Relative Trajectories 

inclination py pen

x-axis
y-axis tablet
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2.2 Angle-Arc Length Distance Measure 

Let
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be the feature trajectory of a template signature and 
consider
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puts penalty on discrepancies between and .

Similarly, puts penalties on the length of each 

local trajectory length.
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The following is our angle arc length distance measure.
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Because of the sequential nature of the distance function, 
Dynamic Programming is a feasible means of the computation.

(2.12)
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2.3 Pen Inclination Distances

Define pen-inclination distances
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which are computable via DP also. 

2.4 Template Generation

To choose three template signatures, we compute the
sum of the distance measure D between
each of the signatures in a group of genuine signatures for 
learning and sort them according to their distances, then 
choose three signatures with the smallest distances. These 
will be used as templates.

321 DDD ++=

2.5 Nonlinear Separation 

Given the set of feature vector ( , our 

previous algorithm proposed in [1]-[5], performs linear
separation of genuine signatures from forgery signatures.
We naturally expect that appropriate nonlinear separation
would improve the performance even though our linear
scheme already perform reasonably well.

)3,2,1 DDD

One of the means to perform nonlinear saparation is to
prepare a parameterized family  of 

functions and adjust the parameter vector w in such a 
way that 
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With this family of functions, one obtains a probability
interpretation. Let w be an optimal parameter vector
with respect to (2.15) and let

be a test feature vector. Then the following interpretation
is possibile;

*
)3,2,1(: testtesttesttest DDDx =

(2.20)*);()( wxfgenuineisxP testtest =

thus, a test signature is predicted to be genuine if (2.21) is
satisfied, while a test signature is predicted to be forgery if 
(2.22) is satisfied.

(2.21)0.1*);(5.0 ≤≤ wxf test

(2.22)5.0*);(0 <≤ wxf test
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3. EXPERIMENT

This section reports our preliminary experiment using
the algorithm described above. Fourteen individuals
participated in the experiment. The data was taken for the
period of three months. There are 1849 genuine signatures
and 3174 skilled forgery signatures. Signatures are 
divided into two groups as shown in Table 3.1. 

Table3.1 Database
Signatures for Learning Signatures for Testing
genuine forgery genuine forgery

418 1573 1431 1601

Table3.2 shows verification error rates as a function of h
(the number of hidden layer). FAR represents False
Acceptance Rate and FRR represents False Rejection Rate. 

Table3.2 Verification Error Rate 
h FAR (%) FRR (%) 
5 1.42 1.31
6 1.08 1.37
7 1.56 1.56
8 1.42 1.63
9 1.08 1.38

10 1.42 1.00
Average 1.33 1.37

Since our previous scheme [1]-[5] contains a free
parameter  to be chosen, direct comparison is impossible,
however, the minimum FAR 1.08%, and the minimum
FRR 1.00%, of the proposed algorithm are very
encouraging.

c

4. CONCLUSION 

A new nonlinear algorithm was proposed for pen-input
on-line signature verification which incorporates
trajectory of pen-position, pen-pressure and pen-
inclinations.

Once the problem is formulated in a probabilistic
setting, we can use much more advanced learning
schemes such as Hierarchical Bayesian algorithms [6],
which we will pursue in a future project.

Our experiment tells us that signatures change with
passage of time so that a better algorithm should be able
to update w with respect to time. This can be done, for 
instance, by the Online Bayes algorithms [7].

*
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