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ABSTRACT 

 
Breast cancer is one of the leading causes of women 
mortality in the world. Since the causes are unknown, 
breast cancer cannot be prevented. It is difficult for 
radiologists to provide both accurate and uniform 
evaluation over the enormous number of mammograms 
generated in widespread screening.  Microcalcifications 
and masses are the earliest signs of breast carcinomas 
and their detection is one of the key issues for breast 
cancer control. Computer-aided detection of 
microcalcifications and masses is an important and 
challenging task in breast cancer control. 
This paper presents a novel approach for detecting 
microcalcification clusters (MCCs). First, mammograms 
are normalized. Then, fuzzy set theory and fuzzy entropy 
principle are employed to fuzzify the mammograms. 
Then, the fuzzified images are enhanced. Finally, scale-
space and Laplacian-of-a-Gaussian filter techniques are 
used to determine the sizes and locations of 
microcalicifications. A free-response operating 
characteristic (FROC) curve is used to evaluate the 
performance.  The major advantage of the proposed 
system is its ability to detect microcalcifications even in 
very dense breast mammograms. A data set of 40 
mammograms (Nijmegen database) containing 105 
clusters of microcalcifications is studied.  Experimental 
result show that the microcalcifications can be accurately 
and efficiently detected using the proposed approach. 
Keywords: Fuzzy logic; Maximum entropy principle; S-
function; Homogeneity; Microcalcification; Scale Space; 
Contrast; Laplacian-of-a-Gaussian (LoG).  
 
 

1. INTRODUCTION 
 

 Breast cancer is the second-leading cause of cancer 
death in women, exceeded only by lung cancer. One of 
eight women could develop breast cancer at some point 
during their lifetime [1].  Primary prevention seems 
impossible since the causes of this disease are still 
unknown. Early detection is the key to improving breast 
cancer prognosis. Mammograms have been shown to be 

one of the most reliable methods for early detection of 
breast carcinomas. Although computer-aided 
mammography has been studied for two decades, 
automated interpretation of microcalcifications is still 
very difficult. The major reasons are: First, the objects of 
interest can be extremely small. They lead to potential 
misidentification. Second, different sizes, various shapes, 
and variable distributions of microcalcifications appear 
in mammograms; hence, temple matching seems to be 
impossible. Third, the regions of interest may be of low 
contrast. The intensity difference between suspicious 
areas and their surrounding tissues can be quite slim. 
Fourth, dense tissues and/or skin thickening, especially 
in younger women, can cause suspicious areas to be 
almost invisible. Finally, dense tissues may be easily 
misinterpreted as calcifications, causing a high false 
positive (FP) rate. This is a major disadvantage with the 
existing algorithms.   To deal with these problems, a 
large number of techniques for breast cancer detection 
have been developed and described in the literature. 
In this paper, we propose a novel approach to detect the 
microcalcification clusters in the mammograms of 
breasts with various densities. Our approach is based on 
fuzzy logic techniques. The proposed algorithm consists 
of the following steps: normalization, fuzzification, 
enhancement, and microcalcification detection by scale 
space signatures.  We employ fuzzy entropy principle 
and fuzzy set theory to automatically determine fuzzy 
membership function. Contrast is defined based on 
homogeneity measurement and is used to enhance the 
images. A neural network determines the threshold and 
the scale space technique are used to decide the size and 
location of microcalcifications. All 40 mammograms in 
the Nijmegen database were utilized. The results aptly 
show that the microcalcification clusters can be 
accurately and effectively detected even in very dense 
mammograms. 

 
2. ALGORITHM AND IMPLEMENTATION 

 
The aim of this study is to develop an algorithm to detect 
microcalcification clusters in mammograms of the 

II - 3450-7803-7663-3/03/$17.00 ©2003 IEEE ICASSP 2003

➠ ➡



  

breasts with various densities. The flowchart of the 
proposed approach is given in Fig. 1.  
 
2.1 Image acquisition 
 
The mammogram images were provided by the 
University Hospital of Nijmegen. They can be accessed 
from the website: figment.csee.usf.edu. The database, 
which has been widely used by researchers, contains 40 
digitized mammogram images composed of both oblique 
and craniocaudal views from 21 patients. Each image 
has one or more clusters of microcalcifications marked 
by radiologists. The total number of clusters in the 
database is 105.  
 
 
 

 

 

 

 

 

 

 

 

 

 
Fig. 1: The flowchart of the proposed algorithm. 

 
2.2 Mammogram Normalization 
 
The mammograms are with different brightness and 
contrast due to the varying illumination. In order to 
reduce the variation and achieve computational 
consistency, the images are normalized. We map all 
mammograms into a fixed range of the intensities from 

1r  to 2r . Assume an image ),( yxgi  whose maximum 

gray level is igmax  and minimum is igmin . We 

transform ),( yxgi  into ),( yxgk :              
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In our experiments we choose 1r = 60 and 2r = 210 
because all the microcalcification intensities fell within 
this range based on the experimental results of a huge 
amount of mammograms. 
 
2.3 Fuzzy Entropy and Membership Function 
 
Fuzzy set theory is useful to deal with uncertainty. It is 
well known that mammograms have some degrees of 
fuzziness such as indistinct borders, ill-defined shapes, 
different densities, etc. Due to the nature of 
mammography and breast structure, fuzzy logic would 
be a better choice to handle the fuzziness of 
mammograms than traditional methods. We use the 
standard S-function [2-3] to fuzzify the images. The 
standard S-function is defined as:      
 
 

)2(

cg                                              1

cgb                       
a)-b)(c-(c

c)-(g
1

bga                            
a)-a)(c-(b

a)-(g
   ag                                             0

),,;() (
2

2
















≥

≤≤−

≤≤

≤

== cbagSgbrightµ

  
where g is a variable representing the gray level, and a, 
b, and c are the parameters that determine the shape of 
the S-function. 
 
2.4 Mammogram Enhancement 
 
Since many mammograms are low contrast, blur and 
fuzzy. It is difficult to detect the microcalcifications. 
Mammogram enhancement is essential and important. 
We use fuzzy homogeneity to define the contrast and 
enhance the contrast.  The method will use both the 
global and local information, therefore, it has much 
better performance [4].  
 
2.5 Microcalcification Clusters Identification 
 
 Microcalcifications are small, subtle abnormalities that 
appear as isolated bright spots in mammograms.  
Because the diameters of the microcalcifications are 
between 0.1-0.3 mm, we can adapt the method in [5] to 
find the local maxim in Laplacian convoluted images 
when the size of filter kernel is chosen appropriately.  
Two-dimensional Gaussian function:    
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Laplacian-of-a-Gaussian  is:                 
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where σ is the standard deviation and σ >0.  
To locate microcalcifications, we first compute LoG 
values. We choose the window size h to obtain an M× M 

kernel where M=3h and 22
h=σ    [6]. 

Second, we calculate the convolution of the original 
image I with the LoG filter as follows: 
 

[LoG (h) * I](x, y).                                       (5) 
 

where h=1, 2,…, maxh .  

In our experiments, we choose maxh =12 because no 
appropriate spots as the candidates can be found when h 
value is equal to or greater than 12. 

 
2.6 Detection of Microcalcification Clusters 
 
Local maximums in the image filtered by LoG are 
considered as microcalcification candidates. We use a 
3×3 window to identify local maximums. The pixel is 
regarded as a candidate when its value is maximum in a 
3×3 neighborhood.  
Coarse-to-fine tracking refines the localization of 
candidate microcalcifications. The images are mapped 
into scale spaces with different values of h. If the 
candidate response is larger than a predefined threshold, 
C>T(h), it is marked as candidate microcalcification. 
T(h) is a given threshold that is dependent on the size h 
of the spot. Here, we choose T(h) = ×Iϕ MaxT(h). Iϕ  
is the threshold factor of image I.  MaxT (h) denotes the 
maximum response.  
In order to detect microcalcifications with high true 
positive (TP) rate, we must remove the isolated bright 
pixels. If three or more microcalcifications are within the 
region of 1 2cm , we consider that a cluster exists. In the 
given database, true clusters were detected and marked 
by radiologists.  Regions with no microcalcifications that 
were detected by the machine will be counted as a false 
positive (FP) cluster. If the detection result is consistent 
with the one from expert radiologists, it will be counted 
as true positive (TP). 
 
2.7 Thresholding 
 
Threshold T is used to control the sensitivity of the 
detection. If T is small, it may cause too many FPs.  On 
the other hand, if T is high, it may cause too many FNs 
(false negatives). The threshold value must be 
determined according to the characteristics of the 
mammograms. 

We will use statistical values (standard deviation and 
mean) as the features to train a neural network whose 
output will be Iϕ . We need to find the solutions Iϕ  of 
the function: 
         )( , III f µσϕ =                                          (6) 
In general, it is a nonlinear function.   
For solving it, a multi-layer, feed-forward, error 
backpropagation neural network (BPN) is used. The 
parameters for the neural network used in our 
experiments are: Mean Iµ , and Standard deviation Iσ .  

Threshold factor Iϕ  is the output. Totally, 50 ROIs 
(region of interest) are employed. Training and testing 
sets were chosen randomly. The selection of optimal 
threshold value is trained by a set of 38 ROIs, consisting 
of 85 microcalcification clusters. The testing set includes 
12 ROIs consisting of 20 clusters. The training data are 
not used during the testing stage.  
The final structure of the neural network is:  

• Architecture: 3 layer backpropagation neural 
network; 

• Input of the neural network: mean and standard 
deviation; 

• Output of the neural network: threshold value; 
• Momentum: 0.5; 
• Learning Rate: 0.5; 
• Learn Rule: Delta-Rule; 
• Activation Function: Sigmoid.   

The training process is terminated when the number of 
epochs reaches 5000. A matrix of connection weights is 
obtained for the trained neural network. Finally, we test 
the network performance using the data in the testing set. 
We lost only one cluster for all 20 test clusters. 
Therefore, using the neural networks to determine the 
threshold factor is quite effective.  The performance 
could be improved if we have a larger mammogram 
base. 

 
3.  RESULTS AND COMPARSIONS 

 
In this study, 50 ROIs contain 105 clusters. The 
performance of the proposed approach is evaluated by a 
free-response receiver operating characteristic (FROC). 
Our FROC curve (Fig. 2) shows that the proposed 
method can archive accuracy greater than 97 true 
positive rates with the FP rate of three clusters per 
image.  
 
We have compared our experimental results with those 
in [7] and [8] due to the facts: 
  1. The same set of images was used by these methods; 
  2. [7] used the scale-space approach as well; 
  3. [7] had compared its results with those in [8]. 
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Fig. 2: FROC curve.  

FROC is based on 105 TP and 50 ROI.  
 
 
 [7] employed an adaptive noise equatlizaion (ANE) in 
which noise characteristics is estimated from the 
mammograms. It obtained a maximum likelihood 
estimation of microcalcification patterns for all 40 
mammograms in the Nijmegen database by using 
adaptive and fixed iso-precision scaling, and a 
logarithmic conversion. [8] employed Laplacian to 
detect the microcalcifications.  It used statistical 
variation of the estimated contrast (SVEC).  We compare 
the proposed approach (fuzzy logic and scale space 
algorithm, FLSS) with ANE and SVEC. The 
microcalcifications are detected at 1.0 false positive per 
image. The proposed approach misses only 10 clusters 
out of 105, compared to 12 clusters in the case of SVEC 
and 17 clusters in the case of ANE. Considering FPs, the 
proposed method obtains a much better result compared 
to ANE and SVEC. The number of FPs of the proposed 
method is 14 and those for ANE and SVEC are 39 and 
42, respectively.    
 

4. CONCLUSIONS 
 
Breast cancer is one of the leading causes of death for 
women. Primary prevention seems impossible since the 
causes of this disease still remain unknown.  
Mammograms have been shown to be one of the most 
reliable methods for early detection of breast 
carcinomas.  
 In this paper, we use fuzzy set theory, fuzzy contrast 
enhancement and scale space to automatically detect 
microcalcification clusters in digitized mammograms. 
The proposed approach is very efficient for locating 
microcalcifications in the mammograms of breasts with 
various densities.  Since microcalcifications are quite 
fuzzy and blur in mammograms, fuzzy set theory is 
preferable to ordinary methods for detecting 

microcalcifications clusters. The advantages of the 
proposed approach are as follows. 

• The microcalcifications are accurately detected 
even in mammograms of very dense breasts;  

• Mammogram enhancement is more adaptive 
and robust;  

• Definition of the contrast based on fuzzy 
homogeneity uses both local and global    
information and the contrast enhancement 
algorithm can enhance the main features while 
suppressing noise;  

• Some parameters can be altered to control 
different levels of true positive and false 
positive rates, and to generate FROC curve; 

• The neural network uses the mean and standard 
deviation of the image intensities to determine 
the threshold factor.  
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