A PERFORMANCE AND COMPLEXITY COMPARISON OF AUTO-CORRELATION AND
CROSS-CORRELATION FOR OFDM BURST SYNCHRONIZATION

Andrew Fort, Jan-Willem Weijers, Veerle Derudder, Wolfgang Eberle, André Bourdoux *

IMEC, Kapeldreef 75, B-3001 Leuven, Belgium
tel.: +32.16.281.754 Fax.: +32.16.281.515

ABSTRACT

A symbol timing synchronization scheme is critical in
the design of an OFDM receiver. Large timing errors can
result in a loss of orthogonality between subcarriers, ISI
and severe bit error degradation. To minimize this degrada-
tion, standards incorporate preambles suitable for two kinds
of synchronization algorithms: auto-correlation and cross-
correlation. Unfortunately, the performance and complexity
tradeoffs between these algorithms have not been well ex-
plored. To address this problem, we have built an FPGA im-
plementation of a synchronization system using both auto-
correlation and cross-correlation. Based on our results, in
this paper we propose a novel cross-correlation synchro-
nizer and hardware architecture. We then compare its per-
formance and complexity to auto-correlation algorithms for
HiperLAN/2 and IEEE 802.11a preambles.

1. INTRODUCTION

OFDM (Orthogonal Frequency Division Multiplexing) is
an attractive transmission scheme for wireless communica-
tion systems because it is robust in multipath environments.
However, OFDM systems are known to be sensitive to fre-
quency and timing errors which result in a loss of orthogo-
nality between subcarriers, I1SI, and severe bit error degrada-
tion. We will focus on timing synchronization in this paper.

IEEE 802.11a and ETSI HiperLAN/2 standards incor-
porate preambles suitable for two kinds of synchroniza-
tion algorithms: auto-correlation and cross-correlation. The
auto-correlation algorithms have been studied extensively
in [1, 2, 3], and implementation aspects are considered in
[4]. This class of algorithms performs an auto-correlation
of the received signal to detect a repeated symbol pattern.
An OFDM cross-correlation algorithm has been proposed in
[5, 6]. This class of algorithms performs a cross-correlation
of the received signal with a known training symbol. Un-
fortunately, a cross-correlation detector suitable for IEEE
and HiperLAN/2 has not been investigated, and a low-
complexity correlator hardware architecture has not been

*This work is partly funded by the IWT / Medea+ A105 UNILAN
project

0-7803-7663-3/03/$17.00 ©2003 IEEE

explored. Therefore, there does not exist a performance ver-
sus hardware cost comparison of the auto-correlation and
cross-correlation schemes making it difficult for designers
to select which strategy is appropriate for their application.

To address this problem, we have developed a novel
cross-correlation algorithm and hardware architecture suit-
able for both IEEE and HiperLAN/2. We implemented this
algorithm on an FPGA together with an auto-correlation al-
gorithm, and tested our system using HiperLAN/2 simula-
tion models. Based on these results, in this paper we com-
pare the performance together with the hardware complex-
ity of both auto-correlation and cross-correlation detection.
Section 2 reviews the auto-correlation algorithm. Section 3
presents our novel cross-correlation algorithm. Sections 4
and 5 compare their performance and hardware complexity.
Finally, section 6 summarizes our results.

2. THE AUTO-CORRELATION ALGORITHM

In IEEE and HiperLAN/2 systems, each transmitted burst
consists of a preamble followed by regular OFDM symbols
as shown in figure 1:

Il-341

A|A*|A|A*|A*B|B|B|B|B* a | ¢ | c G[Dat a
B|B|B|B|B B|B|B|B|B €] | [} | (o} GI[Dat a
4us 4us 8us
AGC Coarse Sync Channel Estimation + Fine Sync

Fig. 1. HiperLAN/2 Broadcast preamble (top) and IEEE
preamble (bottom).

For both standards, the first 4 us are used for automatic
gain control (AGC). The remaining B sequences can be used
for packet detection, and coarse timing/frequency synchro-
nization. The C sequences are used for channel estimation
and synchronization refinement. The algorithm considered
in this section uses the B sequences after the AGC settles.

All auto-correlation algorithms for IEEE and Hiper-

ICASSP 2003

LAN/2 are based on the following function:
M-1
S(n) = Z r*(n+m—16)r(n +m) Q)
m=0
Where r(n) is the received preamble sequence corrupted
by the multipath channel and AWGN, 16 is the length of
a B sequence, and M is matched to the length of the non-
conjugate B sequences. If the channel length is less than 16
samples, then the magnitude of the noiseless part of the re-
ceived preamble is periodic and |S(n)| increases. A packet
is detected when |S(n)| exceeds a threshold.

For HiperLANY/2, the final B sequence is inverted so that
|S(n)| decreases for the last 16 samples creating a clear
peak. Several detectors have been proposed to locate this
peak, but we will use a max function since [4] suggests it
is a good approximation of the Maximum Likelihood (ML)
solution. Thus, the timing offset is estimated as follows:

Aacmar = Grgmaxn(|5(n)|) (2)

The frequency offset can also be estimated for a sampling
period T as follows:

P arg(S(ﬁacmaa:))
fo - W (3)

A hardware structure for equations 1 and 2 is shown
below. We have added a power normalization (the bottom
path) as this makes the packet detection more robust to er-
rors in the initial AGC stage.

X A’\\/Ibevri angge () m

|.]2 Movi ng
[

Aver age

Fig. 2. Max Auto-correlation timing synchronizer structure.

For IEEE, the preamble does not have an inverted B se-
quence so the peak is less clear. Due to this drawback, we
have found that some modifications to the algorithm in fig-
ure 2 are required in practice when front-end effects and the
AGC are considered. A practical IEEE auto-correlation al-
gorithm is the subject of a separate paper. For this analysis,
we only consider the HiperLAN/2 preamble and the max
function detector as this is sufficient for comparison with
the cross-correlation algorithm.

3. THE CROSS-CORRELATION ALGORITHM

All cross-correlation algorithms are based on the correlation
of the received signal with a known training sequence:

N-1
R(n) = Z t*(m)r(n+m) (4)
m=0

Where ¢(m) is the transmitted training sequence of length
N. The magnitude of the cross-correlator output consists
of a large peak for each multipath component, and several
small peaks due to AWGN and imperfect auto-correlation

properties of ¢(m) (see figure 3).

Time (20 MHz samples)

Cross-correlation Magnitude
Cross-correlation Magnitude

Time (20 MHz samples)

Fig. 3. Cross-correlation function for no frequency offset
(left) and 200 kHz frequency offset (right).

While the training symbols can be chosen from any part
of the preamble, the C sequence is preferred so that the B
sequences can be used for an initial frequency correction.
The left plot of figure 3 shows the cross-correlation output
for the C sequence corrupted by a multipath channel at an
SNR of 3 dB. The right plot shows the same conditions ex-
cept we also apply a 200 kHz frequency offset. Clearly,
the frequency offset reduces the size of the channel peaks
complicating their detection. To minimize this problem, our
simulations indicate that the auto-correlation algorithm can
be used to correct the frequency offset to within 50 kHz by
applying equation (3) to the B sequences. This is sufficient
accuracy for robust cross-correlation with the C sequences.

Two cross-correlation timing detectors have been pre-
sented in literature, and we propose a third:

e XC Sum

Agesum = argmaz, (3, |R(n +p)|) [5]
e XC MAX

figemar = argmazy(|R(n)|) [6]

e XC PROPOSED
ﬁ];cp = argmmn(n) | |R(n)| > th x ‘R(ﬁa:cm,am”

The XC Sum algorithm sums consecutive correlator out-
puts to locate a window of length L where the channel
has the most energy. L is ideally the channel length. The
XC Max algorithm selects the peak with the largest magni-
tude. Our proposal selects the earliest peak with a mag-
nitude greater than some percentage of the largest peak.
This improvement tends to select the first multipath com-
ponent rather than later reflections thus reducing the vari-
ance of the timing estimate. The threshold must be chosen
large enough to avoid selecting small noise peaks, but small
enough to avoid selecting late multipath peaks. The per-
formance of each algorithm is compared together with the
auto-correlation algorithm in section 4.

Il - 342

The hardware complexity is dominated by the computa-
tion of equation 4 rather than the peak detectors. Figure 4
demonstrates two possible correlator structures:

-
) X
® r®
i

R(-5) R(-4) R(-3) R(+4) R(+5)

Fig. 4. Serial correlator (top) Parallel correlator (bottom).

The top structure shows the classic implementation with
N complex taps. We propose the bottom structure having
one complex multiplier and accumulator for each correla-
tion lag. Since the cross-correlation must be preceded by
an auto-correlation detector to correct the frequency offset,
the same detector can also make a coarse timing estimate to
reduce the number of lags that need to be computed mak-
ing the second option more attractive. The complexity of
both structures are compared in section 5 together with the
auto-correlation structure from figure 2.

4. PERFORMANCE COMPARISON

We compared the auto-correlation and cross-correlation al-
gorithm performance using the following simulation chain:

Noi se

Preanbl e T Up || cnannel
SRRC Convert Model ~|

AGE Down RX Sync

Convert SRRC

Fig. 5. Simulation model.

Each preamble was up-sampled, up-converted, cor-
rupted by HiperLAN/2 Channel Model A [7] and AWGN,
quantized with an AGC model, down-converted, and down-
sampled before being applied to the detector. We used chan-
nel model A (delay spread = 50 ns) since it represents a typ-
ical indoor office environment, and 41 tap SRRC filters to
include the impact of the transmit and receive filters. Fig-
ure 6 shows simulation results averaged over 5000 channels

comparing the estimation variance versus SNR performance
for each algorithm.

10

T
—= AC Max
—— XC Sum
—A- XC Max
—O- XC proposed

@

=

£

<

&

-

e i i aiatdt e e e e

S

=3

22

o

<]

c

g 0

g 10" ‘ : B

s

©

£ ALK L AL L A L A DL A L D N D L R A

k7]

2 N\

3 \

5 N

= N

< N

£ \

= G-—--——-©O--=--6----0---9----6----0--—4

Il Il Il Il Il Il Il
0 5 10 15 20 25 30 35 40

SNR (dB)

Fig. 6. Timing offset estimator performance comparison.

The auto-correlation algorithm (solid line) yields large
timing errors at low SNRs as the noise complicates peak de-
tection. However, this may not be a problem since IEEE and
HiperLAN/2 systems typically operate above 5 dB SNR. At
higher SNRs, a variance floor is reached due to the mul-
tipath channel. This floor corresponds to a symbol timing
error between -2 and +2 samples 99% of the time.

The cross-correlation algorithms (dotted lines) provide
better performance at low SNRs due to the averaging pro-
cess of the correlator. The XC sum algorithm (L=5) did
not work because many small channel reflections were in-
distinguishable from the noise making the energy estimate
unreliable. The maximum peak detector (XC max) provides
better performance similar to the auto-correlation. For our
XC proposal, a 50% threshold was used for SNRs greater
than 5 dB, but an 80% threshold was needed to avoid select-
ing noise peaks at very low SNRs. Only a single threshold
is needed in practice since SNRs lower than 5 dB are not
encountered for IEEE and HiperLAN/2 systems. This algo-
rithm yielded the best performance since it is more robust
to channel reflections. The variance of our proposal at high
SNRs corresponds to a timing offset error between 0 and +2
samples 99% of the time.

In summary, our cross-correlation algorithm out-
performs the auto-correlation algorithm. When we repeated
these simulations for 200 kHz frequency offsets and chan-
nel model C (delay spread = 150 ns), we reached the same
conclusion if the cross-correlator is preceded by a frequency
correction. The auto-correlator was accurate to between -4
and +4 samples, while our cross-correlator was accurate to
between 0 and +4 samples 99% of the time.

Il-343

5. HARDWARE COMPLEXITY COMPARISON

Table 1 summarizes the hardware complexity of the auto-
correlation algorithm from figure 2, and both correlator
structures from figure 4. We added figures for a Fast Fourier
Transform (FFT) and ML channel estimator for compari-
son:

hardware multi- | add/ | regi- | word
structure pliers | subs | sters | length
AC 9 8 224 4
Serial XC 192 190 | 94 6

Parallel XC 44 44 44 6
Radix-2 FFT 12 24 128 10+
Channel est. 98 294 | 294 10+

Table 1. Hardware complexity

Figure 2 was used to estimate the complexity of the
auto-correlation algorithm. It consists of 1 complex mul-
tiplication, 16 complex registers for the delay line, 2 real
multipliers for each absolute value, and 48 complex regis-
ters and 2 complex adders for both moving average blocks.
The normalization can be accomplished with a single multi-
plier since the result is only needed for a comparison. Note
that in table 1 we assume that low delay complex multipliers
consist of 4 real multipliers and 2 real adders, and complex
registers consist of 2 real registers. Our simulations indi-
cate that the input signal can be quantized to 4 bits without
significant performance loss.

Figure 4 was used to estimate the complexity of both
cross-correlators. For the serial correlator, our simulations
indicate that only 48 of the 64 C sequence samples are re-
quired for robust performance above 5 dB SNR. Thus, this
architecture requires 48 complex multipliers, and 47 com-
plex adders and registers. For the parallel implementation,
our performance results from section 3 show that above 5
dB SNR, the auto-correlation algorithm can provide a coarse
timing estimate accurate to within +5 samples. Thus, 11
correlation lags need to be computed corresponding to only
11 complex multipliers and adders, and 22 registers for the
accumulators and delay line. Our simulations indicate that
all the complex multipliers can be quantized with 4x6 bit
inputs. We chose the parallel structure for our FPGA imple-
mentation since it required less dedicated multiplier units.
Note, however, that the serial structure allows efficient im-
plementation of the constant multiplications and therefore
may be more suitable for an ASIC.

While our proposed parallel architecture uses less op-
erators than the serial architecture, table 1 indicates that
a cross-correlation algorithm still requires at least 5 times
more computation than the auto-correlation algorithm. On
the other hand, a cross-correlator implementation is still fea-

sible because of the short word lengths. For example, the
size of a multiplier is proportional to the square of the input
word lengths, so our correlator complexity is comparable to
the 64-point FFT from table 1. Similarly, high performance
OFDM systems are still be dominated by the channel esti-
mator rather than the synchronizer.

6. CONCLUSIONS

In conclusion, our proposed cross-correlation algorithm
out-performs the auto-correlation algorithm for IEEE and
HiperLAN/2 system specifications. Our simulations show
that for indoor environments, our cross-correlator detector
is accurate to within 0 to 4 samples 99% of the time, while
the auto-correlator detector is only accurate to within -4 to
+4 samples 99% of the time. This performance improve-
ment comes at a significant hardware cost. While our pro-
posed correlator implementation requires less hardware op-
erators than the classic correlator, it is still at least 5 times
more complex than the auto-correlation algorithm.

7. REFERENCES

[1] Timothy M. Schmidl and Donald C. Cox, “Robust fre-
quency and timing synchronization for OFDM,” IEEE
Transactions on Communications, vol. 45, no. 12, pp.
1613-1621, 1997.

[2] J.J. van de Beek, M. Sandell, and P. Ola Bojesson, “ML
estimation of timing and frequency offset in OFDM sys-
tems,” |EEE Transactions on Sgnal Processing, vol.
45, no. 7, pp. 1800-1805, 1997.

[3] H. Minn and V. K. Bhargava, “A simple and efficient
timing offset estimation for OFDM,” in Vehicular Tech-
nology Conference Proceedings, Tokyo, Japan, 2000,
vol. 1, pp. 51-55.

[4] Stefan Johansson, Martin Nilsson, and Peter Nilsson,
“An OFDM timing synchronization ASIC,” in IEEE
Electronics, Circuits, and Systems Conference Proceed-
ings, 2000, vol. 1, pp. 324-327.

[5] L. Hazy and M. El-Tanany, “Synchronization of
OFDM systems over frequency selective fading chan-
nels,” in Vehicular Technology Conference Proceed-
ings, Pheonix, Arizona, 1997, vol. 3, pp. 2094-2098.

[6] Fredrik Tufvesson, Ove Edfors, and Mike Faulkner,
“Time and frequency synchronization for OFDM us-
ing PN-sequence preambles,” in Vehicular Technology
Conference Proceedings, 1999, vol. 4, pp. 2203-2207.

[7] J. Medbo and P. Schramm, “Channel models for Hiper-
LAN/2 in different indoor scenarios,” Technical Report
3ERIO085B, ETSI BRAN, 1998.

Il-344

