
HIGH PERFORMANCE IDCT REALIZATION USING COMPLEX ARITHMETIC 
 

Kar-Lik Wong1 and Nigel Topham 
 

Siroyan Ltd 
200 Brook Drive, Green Park 

Reading RG2 6UB, U.K. 
http://www.siroyan.com 

 

                                                 
1 Now with ARC International. 

ABSTRACT 
 
In this paper we describe a high performance IDCT 
realization using complex arithmetic. The algorithm is 
based on novel factorization of the IDCT designed to 
exploit the complex multiplication capability provided by 
the OneDSP processor.  We show a very efficient loop 
schedule implementing an 8-point IDCT in 9 cycles in 
each cluster. A single cluster OneDSP processor running 
at 300MHz is capable of decoding MPEG2 bit-streams at 
ATSC resolutions. Error analysis of the algorithm based 
on IEEE 1180 compliance testing is presented.  
 
 

1. INTRODUCTION 
 
The 2D 8x8 inverse discrete cosine transform (IDCT) [1] 
is a major component of the decompression engine in 
most video coding standards. A lot of research effort has 
been devoted to investigate efficient software and 
hardware realizations of this important operation. A 
popular approach is to use the row-column method to 
decompose a 2D  8x8 IDCT into 16 8-point 1D IDCT. A 
fast algorithm is then used to compute the 1D IDCTs. This 
often results in simple and regular computational 
structures while keeping the number of operations 
comparable to fast algorithms directly computing a 2D 
transform. A common goal among various fast IDCT 
algorithms is to minimize the number of arithmetic 
operations, especially multiplications. To date, 11 
multiplications is the reported minimum required to 
compute an 8-point 1D IDCT [2]. However, it has been 
pointed out, for example in [3], that such algorithms might 
not be optimized for modern processor architectures 
designed to exploit sub-word SIMD parallelism. In 
particular, significant overhead is often incurred when re-
ordering data to enable such parallelism to be exploited. 

In this paper, we describe a simple fast 8-point IDCT 
algorithm that is designed to be realized on a OneDSP 
processor extremely efficiently. In section 2 we derive the 

fast algorithm. In section 3 we briefly describe the 
OneDSP architecture and the software realization that 
computes an 8-point IDCT in 9 cycles on a single cluster. 
Section 4 presents an error analysis of this IDCT 
realization. Section 5 concludes the paper with a 
summary. 
 

2. FAST 8-POINT IDCT USING COMPLEX 
MULTIPLY 

 
An 8-point 1D IDCT is defined as 
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This can also be described in the matrix-vector 

multiplication form 
Cyx =  
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)163cos(5.0 π=g  
)163sin(5.0 π=u  

 

and  
Txxxxxxxx 76543210=x  

Tyyyyyyyy 76543210=y  

 
Using a variant of the odd-even decomposition 

technique, the transform matrix C can be factorized as 
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Unlike most fast IDCT algorithms, minimizing the 

number of operation, especially multiplications, is not the 

only goal in this factorization. Equally important to our 
efficient IDCT realization are the regular structures of the 
above matrices. Firstly, we found the input data re-
shuffling required by the matrix P is fairly simple to 
implement, as explained in the next section. Secondly, we 
observed that the matrix-vector multiplication 
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is equivalent to the complex multiplication 
 

))(( isriugiqp ++=+  
 
in the sense that both produce 
 

usgrp −=  
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Therefore, multiplication by M can be implemented using 
6 complex multiplications. Lastly, the matrix A requires 
only additions and subtractions to complete the IDCT. 
These are relatively inexpensive to implement in hardware 
and, whenever feasible, should be done in parallel to 
minimize the overhead in storing and fetching 
intermediate results. In the next section, we describe how 
we exploit these facts in our highly efficient realization of 
the IDCT on a OneDSP processor. 
 

3. EFFICIENT REALIZATION ON ONEDSP 
 
The OneDSP [4] is a scalable clustered VLIW processor 
architecture that delivers very high DSP performance 
while retaining the versatility of traditional RISC 
processors. It is designed to be a soft IP core to ease 
integration into system-on-chip applications. Figure 1 is a 
top-level diagram of the OneDSP architecture. In a 
OneDSP processor, multiple clusters work in lock-step as 
a highly parallel VLIW machine. Being a soft core, the 
number of clusters in a processor can be chosen by the 
system designer to match the performance requirement. 
Each cluster has its own local memory and register files to 
ensure that aggregate data bandwidth increases with the 
number of cluster. Within each cluster, two instructions 
are issued in parallel to two functional units. The address 
generation unit (AGU) performs all load/store operations 
and some simple arithmetic operations. The execution unit 
(EXU) is the main computation unit and is capable of sub-
word SIMD processing. The EXU has a fully pipelined 
fixed-point multiplier that can compute in every cycle one 
32x32 integer or fractional multiplication or two 16x16 
integer or fractional multiplications. It can also compute a 
complex multiplication by treating the upper 16-bit half-
word of a 32-bit data word as the real part and the lower 
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half-word as the imaginary part. There are up to 4 
accumulators that can add or subtract the multiplier output 
from their current values. Such datapath elements are 
ideally suited to realize the fast algorithm described in 
section 2. 

To compute an 8-point IDCT, we assume the inputs yk 
are each 16-bit wide and are arranged in memory in 
ascending order. When loaded as 32-bit words into 4 
registers, they can be treated as complex numbers (y1 + 
iy0), (y3 + iy2), (y5 + iy4) and (y7 + iy6). The OneDSP 
instruction exch takes values from two 32-bit registers, 
say (y1 + iy0) and (y5 + iy4), and writes back two 32-bit 
registers the values (y1 + iy5) and (y0 + iy4). The data re-
ordering described by P is achieved using 3 exch to re-
shuffle the data as follows 
 

)](),[()](),[( 45014051 iyyiyyiyyiyy ++←++
)](),[()](),[( 23672637 iyyiyyiyyiyy ++←++
)](),[()](),[( 37513571 iyyiyyiyyiyy ++←++

 
To create the matrix M requires the following complex 

multiplications to be performed 
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Subsequently, the following additions or subtractions 

described in A are required to complete the IDCT 
 

75310 tttx +++=  t 
108201 ttttx −+−=  

119202 ttttx −++=  

64313 ttttx ++−=  

64314 ttttx −−−=  

119205 ttttx +−+=  

108206 ttttx +−−=  

   

75317 ttttx −−+=  
 
These operations are divided into 6 groups, as shown by 
the dashed boxes above, with each group representing the 
results of one complex multiplication. The sign of each ti 
indicates whether it is to be added to or subtracted from 
the corresponding xk. OneDSP has 6 application specific 
instructions that can be optionally included in an 
implementation to improve IDCT performance. These are 
mtx8f_0, mtx8f_1, mtx8f_2, mtx8f_3, mtx8f_4 
and mtx8f_5.  Each of these instructions performs a 
fractional complex multiply and then optionally loads, 
adds or subtracts the product to the 4 accumulators as 
described above. In these instructions, the upper and 
lower halves of the accumulators operate independently. 
Each half-accumulator is 22-bits wide, although this 
IDCT never requires more than 16-bit significant bits 
during accumulation. This is due in part to the unbiased 
rounding of each component of the complex result after 
summation of the individual fractional products. This is a 
particularly useful aspect of the OneDSP complex 
multiplier which helps to keep the accumulated errors 
under control. 

Figure 1  OneDSP Architecture. 

On completion of the six transform instructions, the 
IDCT outputs are held in pairs in the accumulators as (x1 
+ ix0), (x3 + ix2), (x5 + ix4) and (x7 + ix6). These can be 
stored as 32-bit words to memory with the IDCT outputs 
arranged in the normal ascending order. 

Figure 2 is the listing of an optimized software 
realization of the IDCT in a single cluster using these 
instructions. The transform is computed in a tight loop 
with a 3-stage software pipeline. The first line is the loop 
instruction that starts a zero-overhead loop with the rest of 
the listing being the loop body. Inside the loop body, each 
line is a packet of 2 instructions executed in parallel. The 
one on the left is an AGU instruction while the right one 
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is an EXU instruction. Every instruction is guarded by a 
shifting predicate to allow the epilogue and the prologue  
phases of the software pipeline to be embedded into the 
loop body. The first stage of the software pipeline, as 
guarded by $p2, consists of 4 load word instructions 
loading the input data into registers. Symbolic names are 
used with the convention that, for example, $y10 is the 
register holding the value (y1 + iy0), $aa is the register 
holding the value (a + ia), $l_v is the register holding 
the value (l – iv), etc. The 2nd pipeline stage, as guarded 
by $p3, consists of the exch and transform instructions 
computing the IDCT. Note that the destination of exch, 
for example, $y15 actually specifies a register pair 
written with the values (y1 + iy5) and (y0 + iy4). The 
transform instructions, mtx8f_0 to mtx8f_5, only 
specify the source operands with the destination 
accumulators specified implicitly. The 3rd pipeline stage, 
as guarded by $p4, contains the store word instructions 
storing  the IDCT results in the accumulators into 
memory. The loop body consists of 9 packets with one 
packet issued per cycle. Hence, an IDCT is computed 
every 9 cycles in every cluster. 
 

4. ERROR ANALYSIS 
 
This algorithm has been implemented using 16-bit input 
coefficients presented in a 12Q4 format. The complex 
multiply operation performs two 16x16 fractional 
multiplications for each of the real and imaginary 
components. The two products are added in 32-bit 
precision and then rounded to 16-bit values, retaining the 
most significant bits. The 16-bit real and imaginary 
components are then added or subtracted from nominated 

half-accumulators, which retain 22-bit precision. The 
following table summarizes the output from the IEEE1180 
IDCT error compliance test. 

 

5. SUMMARY 
 
In this paper we have shown how an IEEE IDCT can be 
implemented using a novel factorization of the IDCT 
designed to exploit the complex multiplication capability 
provided by the OneDSP processor.  This has been 
implemented using the OneDSP C compiler, augmented 
with compiler intrinsic functions to provide access to the 
non-C operators such as complex multiplication and 
accumulation.  An optimal software pipeline schedule 
generated by the OneDSP C compiler was used to run the 
IEEE compliance tests. The results were well within the 
specifications, due partly to the provision of unbiased 
rounding as part of the fractional complex multiplication 
instruction.  The 9-cycle loop schedule that we have 
presented for the IDCT contains only 18 instructions but 
performs a total of 72 individual arithmetic operations or 
memory references. This represents an exceptionally 
efficient encoding. 
 A single-cluster OneDSP synthesizable processor 
core implemented in 0.13um CMOS technology occupies 
less than 2 sq.mm of silicon and has power consumption 
of less than 0.2 mW per MHz, including cache memories. 
When operating at 300 MHz such a processor core is 
capable of decoding MPEG2 bit-streams at ATSC 
resolution. 
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 :    loop $ic, L, EIC 
 :$p4 sw ($s++),$x10; $p3 exch $y15,$y10,$y54
 :$p4 sw ($s++),$x32; $p3 exch $y73,$y76,$y32
 :$p4 sw ($s++),$x54; $p3 exch $y17,$y15,$y73
 :$p4 sw ($s++),$x76; $p3 mtx8f_0 $aa, $y04 
 :$p2 lw $y10,($r++); $p3 mtx8f_1 $bd, $y62 
 :$p2 lw $y32,($r++); $p3 mtx8f_2 $vl, $y17 
 :$p2 lw $y54,($r++); $p3 mtx8f_3 $gu, $y53 
 :$p2 lw $y76,($r++); $p3 mtx8f_4 $gu, $y17 
L:    nop           ; $p3 mtx8f_5 $l_v, $y53 

Figure 2  Highly optimized IDCT implementation.

PMSE Mean error 
Test range Sign 

Worst 
peak 
error Worst Overall Worst Overall 

-256..+255 + 1 0.0145 0.010486 0.0026 -0.000233 
-5..+5 + 1 0.0127 0.010580 0.0022 -0.000039 

-300..+300 + 1 0.0116 0.009100 0.0022   0.000009 
-256..+255 - 1 0.0145 0.010473 0.0026   0.000223 

-5..+5 - 1 0.0127 0.010580 0.0022   0.000039 
-300..+300 - 1 0.0116 0.009100 0.0022 -0.000025 
Table 1. IEEE 1180 error analysis of OneDSP IDCT 
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