
HIGH PERFORMANCE IDCT REALIZATION USING COMPLEX ARITHMETIC

Kar-Lik Wong1 and Nigel Topham

Siroyan Ltd
200 Brook Drive, Green Park

Reading RG2 6UB, U.K.
http://www.siroyan.com

1 Now with ARC International.

ABSTRACT

In this paper we describe a high performance IDCT
realization using complex arithmetic. The algorithm is
based on novel factorization of the IDCT designed to
exploit the complex multiplication capability provided by
the OneDSP processor. We show a very efficient loop
schedule implementing an 8-point IDCT in 9 cycles in
each cluster. A single cluster OneDSP processor running
at 300MHz is capable of decoding MPEG2 bit-streams at
ATSC resolutions. Error analysis of the algorithm based
on IEEE 1180 compliance testing is presented.

1. INTRODUCTION

The 2D 8x8 inverse discrete cosine transform (IDCT) [1]
is a major component of the decompression engine in
most video coding standards. A lot of research effort has
been devoted to investigate efficient software and
hardware realizations of this important operation. A
popular approach is to use the row-column method to
decompose a 2D 8x8 IDCT into 16 8-point 1D IDCT. A
fast algorithm is then used to compute the 1D IDCTs. This
often results in simple and regular computational
structures while keeping the number of operations
comparable to fast algorithms directly computing a 2D
transform. A common goal among various fast IDCT
algorithms is to minimize the number of arithmetic
operations, especially multiplications. To date, 11
multiplications is the reported minimum required to
compute an 8-point 1D IDCT [2]. However, it has been
pointed out, for example in [3], that such algorithms might
not be optimized for modern processor architectures
designed to exploit sub-word SIMD parallelism. In
particular, significant overhead is often incurred when re-
ordering data to enable such parallelism to be exploited.

In this paper, we describe a simple fast 8-point IDCT
algorithm that is designed to be realized on a OneDSP
processor extremely efficiently. In section 2 we derive the

fast algorithm. In section 3 we briefly describe the
OneDSP architecture and the software realization that
computes an 8-point IDCT in 9 cycles on a single cluster.
Section 4 presents an error analysis of this IDCT
realization. Section 5 concludes the paper with a
summary.

2. FAST 8-POINT IDCT USING COMPLEX
MULTIPLY

An 8-point 1D IDCT is defined as

∑
=

+
=

7

0 16
)12(cos

2
1

k
kkn

knyux π
 for n = 0,..,7

where


 =

=
otherwise

kifu k 1
021

This can also be described in the matrix-vector

multiplication form
Cyx =

where

vduagbla
ublavdga
gbvaldua

ldgaubva
ldgaubva

gbvaldua
ublavdga

vduagbla

−−−−
−−−

−−−−−
−−−−

−−−−
−−−

−−−−−

=C

with 221)4cos(5.0 == πa

)8cos(5.0 π=b
)8sin(5.0 π=d
)16cos(5.0 π=l
)16sin(5.0 π=v

II - 3130-7803-7663-3/03/$17.00 ©2003 IEEE ICASSP 2003

➠ ➡

)163cos(5.0 π=g
)163sin(5.0 π=u

and
Txxxxxxxx 76543210=x

Tyyyyyyyy 76543210=y

Using a variant of the odd-even decomposition

technique, the transform matrix C can be factorized as

AMPC =
where

000010101010
010100000101
101000000101
000001011010
000001011010
101000000101

010100000101
000010101010

−−
−−

−
−−−

−
−

−−

=A

lv
vl

gu
ug

gu
ug

vl
lv

bd
db

aa
aa

−

−

−

−

−

−

=

000000
000000

000000
000000

000000
000000

000000
000000
000000
000000
000000
000000

M

00001000
00100000
10000000
00000010
00000100
01000000
00010000
00000001

=P

Unlike most fast IDCT algorithms, minimizing the

number of operation, especially multiplications, is not the

only goal in this factorization. Equally important to our
efficient IDCT realization are the regular structures of the
above matrices. Firstly, we found the input data re-
shuffling required by the matrix P is fairly simple to
implement, as explained in the next section. Secondly, we
observed that the matrix-vector multiplication

s
r

gu
ug

q
p −
=

is equivalent to the complex multiplication

))((isriugiqp ++=+

in the sense that both produce

usgrp −=
gsurq +=

Therefore, multiplication by M can be implemented using
6 complex multiplications. Lastly, the matrix A requires
only additions and subtractions to complete the IDCT.
These are relatively inexpensive to implement in hardware
and, whenever feasible, should be done in parallel to
minimize the overhead in storing and fetching
intermediate results. In the next section, we describe how
we exploit these facts in our highly efficient realization of
the IDCT on a OneDSP processor.

3. EFFICIENT REALIZATION ON ONEDSP

The OneDSP [4] is a scalable clustered VLIW processor
architecture that delivers very high DSP performance
while retaining the versatility of traditional RISC
processors. It is designed to be a soft IP core to ease
integration into system-on-chip applications. Figure 1 is a
top-level diagram of the OneDSP architecture. In a
OneDSP processor, multiple clusters work in lock-step as
a highly parallel VLIW machine. Being a soft core, the
number of clusters in a processor can be chosen by the
system designer to match the performance requirement.
Each cluster has its own local memory and register files to
ensure that aggregate data bandwidth increases with the
number of cluster. Within each cluster, two instructions
are issued in parallel to two functional units. The address
generation unit (AGU) performs all load/store operations
and some simple arithmetic operations. The execution unit
(EXU) is the main computation unit and is capable of sub-
word SIMD processing. The EXU has a fully pipelined
fixed-point multiplier that can compute in every cycle one
32x32 integer or fractional multiplication or two 16x16
integer or fractional multiplications. It can also compute a
complex multiplication by treating the upper 16-bit half-
word of a 32-bit data word as the real part and the lower

II - 314

➡ ➡

half-word as the imaginary part. There are up to 4
accumulators that can add or subtract the multiplier output
from their current values. Such datapath elements are
ideally suited to realize the fast algorithm described in
section 2.

To compute an 8-point IDCT, we assume the inputs yk
are each 16-bit wide and are arranged in memory in
ascending order. When loaded as 32-bit words into 4
registers, they can be treated as complex numbers (y1 +
iy0), (y3 + iy2), (y5 + iy4) and (y7 + iy6). The OneDSP
instruction exch takes values from two 32-bit registers,
say (y1 + iy0) and (y5 + iy4), and writes back two 32-bit
registers the values (y1 + iy5) and (y0 + iy4). The data re-
ordering described by P is achieved using 3 exch to re-
shuffle the data as follows

)](),[()](),[(45014051 iyyiyyiyyiyy ++←++
)](),[()](),[(23672637 iyyiyyiyyiyy ++←++
)](),[()](),[(37513571 iyyiyyiyyiyy ++←++

To create the matrix M requires the following complex

multiplications to be performed

))((4010 iyyiaaitt ++=+

))((2632 iyyidbitt ++=+

))((7154 iyyilvitt ++=+

))((3576 iyyiugitt ++=+

))((7198 iyyiugitt ++=+

))((351110 iyyivlitt +−=+

E
X
U

Vcache

Slave
cluster 1

A
G
U

E
X
U

Vcache

Slave
cluster N

A
G
U

E
X
U

Vcache

Master
cluster 0

A
G
U

Icache

Dcache

Decompression

Local
Mem

Local
Mem

Local
Mem

DMA Debug
Interface

High-speed
Processor Bus

Subsequently, the following additions or subtractions

described in A are required to complete the IDCT

75310 tttx +++= t
108201 ttttx −+−=

119202 ttttx −++=

64313 ttttx ++−=

64314 ttttx −−−=

119205 ttttx +−+=

108206 ttttx +−−=

75317 ttttx −−+=

These operations are divided into 6 groups, as shown by
the dashed boxes above, with each group representing the
results of one complex multiplication. The sign of each ti
indicates whether it is to be added to or subtracted from
the corresponding xk. OneDSP has 6 application specific
instructions that can be optionally included in an
implementation to improve IDCT performance. These are
mtx8f_0, mtx8f_1, mtx8f_2, mtx8f_3, mtx8f_4
and mtx8f_5. Each of these instructions performs a
fractional complex multiply and then optionally loads,
adds or subtracts the product to the 4 accumulators as
described above. In these instructions, the upper and
lower halves of the accumulators operate independently.
Each half-accumulator is 22-bits wide, although this
IDCT never requires more than 16-bit significant bits
during accumulation. This is due in part to the unbiased
rounding of each component of the complex result after
summation of the individual fractional products. This is a
particularly useful aspect of the OneDSP complex
multiplier which helps to keep the accumulated errors
under control.

Figure 1 OneDSP Architecture.

On completion of the six transform instructions, the
IDCT outputs are held in pairs in the accumulators as (x1
+ ix0), (x3 + ix2), (x5 + ix4) and (x7 + ix6). These can be
stored as 32-bit words to memory with the IDCT outputs
arranged in the normal ascending order.

Figure 2 is the listing of an optimized software
realization of the IDCT in a single cluster using these
instructions. The transform is computed in a tight loop
with a 3-stage software pipeline. The first line is the loop
instruction that starts a zero-overhead loop with the rest of
the listing being the loop body. Inside the loop body, each
line is a packet of 2 instructions executed in parallel. The
one on the left is an AGU instruction while the right one

II - 315

➡ ➡

is an EXU instruction. Every instruction is guarded by a
shifting predicate to allow the epilogue and the prologue
phases of the software pipeline to be embedded into the
loop body. The first stage of the software pipeline, as
guarded by $p2, consists of 4 load word instructions
loading the input data into registers. Symbolic names are
used with the convention that, for example, $y10 is the
register holding the value (y1 + iy0), $aa is the register
holding the value (a + ia), $l_v is the register holding
the value (l – iv), etc. The 2nd pipeline stage, as guarded
by $p3, consists of the exch and transform instructions
computing the IDCT. Note that the destination of exch,
for example, $y15 actually specifies a register pair
written with the values (y1 + iy5) and (y0 + iy4). The
transform instructions, mtx8f_0 to mtx8f_5, only
specify the source operands with the destination
accumulators specified implicitly. The 3rd pipeline stage,
as guarded by $p4, contains the store word instructions
storing the IDCT results in the accumulators into
memory. The loop body consists of 9 packets with one
packet issued per cycle. Hence, an IDCT is computed
every 9 cycles in every cluster.

4. ERROR ANALYSIS

This algorithm has been implemented using 16-bit input
coefficients presented in a 12Q4 format. The complex
multiply operation performs two 16x16 fractional
multiplications for each of the real and imaginary
components. The two products are added in 32-bit
precision and then rounded to 16-bit values, retaining the
most significant bits. The 16-bit real and imaginary
components are then added or subtracted from nominated

half-accumulators, which retain 22-bit precision. The
following table summarizes the output from the IEEE1180
IDCT error compliance test.

5. SUMMARY

In this paper we have shown how an IEEE IDCT can be
implemented using a novel factorization of the IDCT
designed to exploit the complex multiplication capability
provided by the OneDSP processor. This has been
implemented using the OneDSP C compiler, augmented
with compiler intrinsic functions to provide access to the
non-C operators such as complex multiplication and
accumulation. An optimal software pipeline schedule
generated by the OneDSP C compiler was used to run the
IEEE compliance tests. The results were well within the
specifications, due partly to the provision of unbiased
rounding as part of the fractional complex multiplication
instruction. The 9-cycle loop schedule that we have
presented for the IDCT contains only 18 instructions but
performs a total of 72 individual arithmetic operations or
memory references. This represents an exceptionally
efficient encoding.
 A single-cluster OneDSP synthesizable processor
core implemented in 0.13um CMOS technology occupies
less than 2 sq.mm of silicon and has power consumption
of less than 0.2 mW per MHz, including cache memories.
When operating at 300 MHz such a processor core is
capable of decoding MPEG2 bit-streams at ATSC
resolution.

6. REFERENCES

[1] IEEE Standard Specifications for the implementation of 8x8
inverse discrete cosine transform, IEEE Std. 1180-1990.
[2] Loeffler, C., A. Lightenberg and G.S. Moschytz, “Practical
fast 1-D DCT Algorithms with 11 multiplications” Proc.
ICASSP 1989, pp. 988-991, 1989.
[3] “Using streaming SIMD extensions in a fast DCT algorithm
for MPEG encoding” Application Note Ap-817, Intel, 1999.
[4] Topham, N., “An Integrated DSP Architecture”,
Microprocessor Forum, October, 2001.
(http://www.siroyan.com/pdf/SR_MPF01.pdf)

 : loop $ic, L, EIC
 :$p4 sw ($s++),$x10; $p3 exch $y15,$y10,$y54
 :$p4 sw ($s++),$x32; $p3 exch $y73,$y76,$y32
 :$p4 sw ($s++),$x54; $p3 exch $y17,$y15,$y73
 :$p4 sw ($s++),$x76; $p3 mtx8f_0 $aa, $y04
 :$p2 lw $y10,($r++); $p3 mtx8f_1 $bd, $y62
 :$p2 lw $y32,($r++); $p3 mtx8f_2 $vl, $y17
 :$p2 lw $y54,($r++); $p3 mtx8f_3 $gu, $y53
 :$p2 lw $y76,($r++); $p3 mtx8f_4 $gu, $y17
L: nop ; $p3 mtx8f_5 $l_v, $y53

Figure 2 Highly optimized IDCT implementation.

PMSE Mean error
Test range Sign

Worst
peak
error Worst Overall Worst Overall

-256..+255 + 1 0.0145 0.010486 0.0026 -0.000233
-5..+5 + 1 0.0127 0.010580 0.0022 -0.000039

-300..+300 + 1 0.0116 0.009100 0.0022 0.000009
-256..+255 - 1 0.0145 0.010473 0.0026 0.000223

-5..+5 - 1 0.0127 0.010580 0.0022 0.000039
-300..+300 - 1 0.0116 0.009100 0.0022 -0.000025
Table 1. IEEE 1180 error analysis of OneDSP IDCT

II - 316

➡ ➠

