HIGH PERFORMANCE IDCT REALIZATION USING COMPLEX ARITHMETIC

Kar-Lik Wong' and Nigel Topham

Siroyan Ltd
200 Brook Drive, Green Park
Reading RG2 6UB, U.K.
http://www.siroyan.com

ABSTRACT

In this paper we describe a high performance IDCT
realization using complex arithmetic. The algorithm is
based on novel factorization of the IDCT designed to
exploit the complex multiplication capability provided by
the OneDSP processor. We show a very efficient loop
schedule implementing an 8-point IDCT in 9 cycles in
each cluster. A single cluster OneDSP processor running
at 300MHz is capable of decoding MPEG?2 bit-streams at
ATSC resolutions. Error analysis of the algorithm based
on IEEE 1180 compliance testing is presented.

1. INTRODUCTION

The 2D 8x8 inverse discrete cosine transform (IDCT) [1]
is a major component of the decompression engine in
most video coding standards. A lot of research effort has
been devoted to investigate efficient software and
hardware realizations of this important operation. A
popular approach is to use the row-column method to
decompose a 2D 8x8 IDCT into 16 8-point 1D IDCT. A
fast algorithm is then used to compute the 1D IDCTs. This
often results in simple and regular computational
structures while keeping the number of operations
comparable to fast algorithms directly computing a 2D
transform. A common goal among various fast IDCT
algorithms is to minimize the number of arithmetic
operations, especially multiplications. To date, 11
multiplications is the reported minimum required to
compute an 8-point 1D IDCT [2]. However, it has been
pointed out, for example in [3], that such algorithms might
not be optimized for modern processor architectures
designed to exploit sub-word SIMD parallelism. In
particular, significant overhead is often incurred when re-
ordering data to enable such parallelism to be exploited.

In this paper, we describe a simple fast 8-point IDCT
algorithm that is designed to be realized on a OneDSP
processor extremely efficiently. In section 2 we derive the

! Now with ARC International.

0-7803-7663-3/03/$17.00 ©2003 IEEE

Il-313

fast algorithm. In section 3 we briefly describe the
OneDSP architecture and the software realization that
computes an 8-point IDCT in 9 cycles on a single cluster.
Section 4 presents an error analysis of this IDCT
realization. Section 5 concludes the paper with a
summary.

2. FAST 8-POINT IDCT USING COMPLEX
MULTIPLY

An 8-point 1D IDCT is defined as

n+D)krx

1 7
X, = —Zukyk coS forn=0,..,7
213

where _{1/\/2 ifk=0
k
1

otherwise

This can also be described in the matrix-vector
multiplication form

x =Cy
where
a [ b g a u d v
a g d -v —a -1l -b -u
a u -d -1 -a % b g
Co a v —-b —-u a g —-d -1
a -v -b u a -g -d 1
a -u —d / -a -v b -g
a -g d v —a l -b u
a -1 b -g a -u d -V
with a=0.5cos( 7/4)=1/2~2
b =0.5cos( 7 /8)
d = 0.5sin( 7/8)
I =0.5cos( 7/16)
v =10.5sin( 7/16)
ICASSP 2003




g =0.5co8(37/16)
u = 0.5sin( 37/16)
T
and X = |x0x1 Xy X3 X, X5 X x7|
. T
Y = Vo1 7237495V 14|

Using a variant of the odd-even decomposition
technique, the transform matrix C can be factorized as

C=AMP
where
o 1 01 0 1 0 1 O O O O
1 0 -10 0 O O O 1 0 -10
1 0 1.0 0 06 060 01 0 -1
A:O 1 0-11 0 1 0 0 0 O O
01 0-1-10-1000 0 0
1 01 00000 0-101
1 0-10000 0-101 0
01 01 0-10-1020 00
a —a 0 0 0 0 0 0
a a 0 0 0 0 0 0
0 0 b -d 0 0 0 0
0 0 d b 0 0 0 0
0 0 0 0 v =1 0 0
M - 0 0 0 0 I 0 0
0 0 0 0 0 g -—-u
0 0 0 0 0 u g
0 0 0 0 g —-u 0 0
0 0 0 0 u g 0 0
0 0 0 0 0 0 l %
0 0 0 0 0 0 —-v I
1 000 O0O0O0D©O
000O0OT1TUO0O0ODO
000O0O0OO0OT1TPO
POOIOOOOO
1010000 0 0
000O0O0OO0OTO 01
000O0OO0OT1TTUO0ODO0
000T1O0OO0O0ODPO

Unlike most fast IDCT algorithms, minimizing the
number of operation, especially multiplications, is not the

only goal in this factorization. Equally important to our
efficient IDCT realization are the regular structures of the
above matrices. Firstly, we found the input data re-
shuffling required by the matrix P is fairly simple to
implement, as explained in the next section. Secondly, we
observed that the matrix-vector multiplication

P 14

q

g —u
u g

N

is equivalent to the complex multiplication
p+ig=(g+iu)(r+is)
in the sense that both produce

p=gr—us
q =ur+gs

Therefore, multiplication by M can be implemented using
6 complex multiplications. Lastly, the matrix A requires
only additions and subtractions to complete the IDCT.
These are relatively inexpensive to implement in hardware
and, whenever feasible, should be done in parallel to
minimize the overhead in storing and fetching
intermediate results. In the next section, we describe how
we exploit these facts in our highly efficient realization of
the IDCT on a OneDSP processor.

3. EFFICIENT REALIZATION ON ONEDSP

The OneDSP [4] is a scalable clustered VLIW processor
architecture that delivers very high DSP performance
while retaining the versatility of traditional RISC
processors. It is designed to be a soft IP core to ease
integration into system-on-chip applications. Figure 1 is a
top-level diagram of the OneDSP architecture. In a
OneDSP processor, multiple clusters work in lock-step as
a highly parallel VLIW machine. Being a soft core, the
number of clusters in a processor can be chosen by the
system designer to match the performance requirement.
Each cluster has its own local memory and register files to
ensure that aggregate data bandwidth increases with the
number of cluster. Within each cluster, two instructions
are issued in parallel to two functional units. The address
generation unit (AGU) performs all load/store operations
and some simple arithmetic operations. The execution unit
(EXU) is the main computation unit and is capable of sub-
word SIMD processing. The EXU has a fully pipelined
fixed-point multiplier that can compute in every cycle one
32x32 integer or fractional multiplication or two 16x16
integer or fractional multiplications. It can also compute a
complex multiplication by treating the upper 16-bit half-
word of a 32-bit data word as the real part and the lower

I-314




Master
cluster 0
>| Decompression Slave Slave
cluster 1 cluster N
A
v
[ Icache IVcachel Vcache| | m m | |Vcache
e eawnc B 5 L B I .
Dcache E
\_'i G|x G|x G|x
U|U U|U U
¥ A A
Local Local Local
Mem Mem Mem
- y y
High-speed \ \
Processor Bus DMA Debug
Interface

Figure 1 OneDSP Architecture.

half-word as the imaginary part. There are up to 4
accumulators that can add or subtract the multiplier output
from their current values. Such datapath elements are
ideally suited to realize the fast algorithm described in
section 2.

To compute an 8-point IDCT, we assume the inputs yy
are each 16-bit wide and are arranged in memory in
ascending order. When loaded as 32-bit words into 4
registers, they can be treated as complex numbers (y; +
o), s + iy2), (vs + iyg) and (y; + iys). The OneDSP
instruction exch takes values from two 32-bit registers,
say (y; + iyp) and (ys + iy,), and writes back two 32-bit
registers the values (y; + iys) and (yy + iy,). The data re-
ordering described by P is achieved using 3 exch to re-
shuffle the data as follows

[V, +5), (yo +iv )] < [V, + i), (¥s +iy,)]
(V7 +13), (Vs + V)] < [(V; +iV6), (V5 +1V,)]
[V, +i;7),(ys +v)] < [(y, +iv5), (¥, +iys)]

To create the matrix M requires the following complex
multiplications to be performed

ty +it, = (a+ia)(y, +iv,)
t, +it; =(b+id)(ys +1y,)
t, +ity =(v+il)(y, +iy,)
to+it; = (g +iu)(ys +iy;)

ty +ity = (g +iu)(y, +1iy;)
Lo tity, = —iv)(ys +iys)

Subsequently, the following additions or subtractions
described in A are required to complete the IDCT

X, = L +1, +is +1,
Xp= 1t —h tly —ly
X, = L, +1, +1, —1
X, = I —t;, +i, +i,
Xy= 4~y —ty i
Xs = t, *+t, —ty, +1i,
Xe= Ly —1 —ly iy
X, = +t, —is -1,

These operations are divided into 6 groups, as shown by
the dashed boxes above, with each group representing the
results of one complex multiplication. The sign of each ¢
indicates whether it is to be added to or subtracted from
the corresponding x,. OneDSP has 6 application specific
instructions that can be optionally included in an
implementation to improve IDCT performance. These are
mtx8f 0, mtx8f 1, mtx8f 2, mtx8f 3, mtx8f 4
and mtx8f 5. Each of these instructions performs a
fractional complex multiply and then optionally loads,
adds or subtracts the product to the 4 accumulators as
described above. In these instructions, the upper and
lower halves of the accumulators operate independently.
Each half-accumulator is 22-bits wide, although this
IDCT never requires more than 16-bit significant bits
during accumulation. This is due in part to the unbiased
rounding of each component of the complex result after
summation of the individual fractional products. This is a
particularly useful aspect of the OneDSP complex
multiplier which helps to keep the accumulated errors
under control.

On completion of the six transform instructions, the
IDCT outputs are held in pairs in the accumulators as (x;
+ ixg), (x; + ixy), (x5 + ixy) and (x; + ixs). These can be
stored as 32-bit words to memory with the IDCT outputs
arranged in the normal ascending order.

Figure 2 is the listing of an optimized software
realization of the IDCT in a single cluster using these
instructions. The transform is computed in a tight loop
with a 3-stage software pipeline. The first line is the loop
instruction that starts a zero-overhead loop with the rest of
the listing being the loop body. Inside the loop body, each
line is a packet of 2 instructions executed in parallel. The
one on the left is an AGU instruction while the right one

I1-315




: loop $ic, L, EIC
:Spd sw ($s++),5$x10; S$Sp3 exch S$yl5,$y10,Sy54
:$pd sw ($s++),$x32; $p3 exch $y73,8y76,5y32
:$pd sw (Ss++),$x54; $p3 exch $yl7,Syl5,$y73
:$pd sw ($s++),5x76; S$p3 mtx8f 0 Saa, $y04
:$p2 1w $yl0, ($r++); $p3 mtx8f 1 $bd, $y62
:$p2 1w $y32, ($r++); $p3 mtx8f 2 $vl, $yl7
:$p2 1w $y54, ($r++); $p3 mtx8f 3 $gu, S$y53
:5p2 1w $y76, (Sr++); $p3 mtx8f 4 Sgu, Syl7
L: nop ; $p3 mtx8f 5 $1 v, $y53

Figure 2 Highly optimized IDCT implementation.

is an EXU instruction. Every instruction is guarded by a
shifting predicate to allow the epilogue and the prologue
phases of the software pipeline to be embedded into the
loop body. The first stage of the software pipeline, as
guarded by $p2, consists of 4 load word instructions
loading the input data into registers. Symbolic names are
used with the convention that, for example, $y10 is the
register holding the value (y; + iyy), Saa is the register
holding the value (@ + ia), $1 v is the register holding
the value (I — iv), etc. The 2™ pipeline stage, as guarded
by $p3, consists of the exch and transform instructions
computing the IDCT. Note that the destination of exch,
for example, $y15 actually specifies a register pair
written with the values (y; + iys) and (yy + iy,. The
transform instructions, mtx8f 0 to mtx8f 5, only
specify the source operands with the destination
accumulators specified implicitly. The 3™ pipeline stage,
as guarded by $p4, contains the store word instructions
storing the IDCT results in the accumulators into
memory. The loop body consists of 9 packets with one
packet issued per cycle. Hence, an IDCT is computed
every 9 cycles in every cluster.

4. ERROR ANALYSIS

This algorithm has been implemented using 16-bit input
coefficients presented in a 12Q4 format. The complex
multiply operation performs two 16x16 fractional
multiplications for each of the real and imaginary
components. The two products are added in 32-bit
precision and then rounded to 16-bit values, retaining the
most significant bits. The 16-bit real and imaginary
components are then added or subtracted from nominated

half-accumulators, which retain 22-bit precision. The
following table summarizes the output from the IEEE1180
IDCT error compliance test.

5. SUMMARY

In this paper we have shown how an IEEE IDCT can be
implemented using a novel factorization of the IDCT
designed to exploit the complex multiplication capability
provided by the OneDSP processor. This has been
implemented using the OneDSP C compiler, augmented
with compiler intrinsic functions to provide access to the
non-C operators such as complex multiplication and
accumulation. An optimal software pipeline schedule
generated by the OneDSP C compiler was used to run the
IEEE compliance tests. The results were well within the
specifications, due partly to the provision of unbiased
rounding as part of the fractional complex multiplication
instruction. The 9-cycle loop schedule that we have
presented for the IDCT contains only 18 instructions but
performs a total of 72 individual arithmetic operations or
memory references. This represents an exceptionally
efficient encoding.

A single-cluster OneDSP synthesizable processor
core implemented in 0.13um CMOS technology occupies
less than 2 sq.mm of silicon and has power consumption
of less than 0.2 mW per MHz, including cache memories.
When operating at 300 MHz such a processor core is
capable of decoding MPEG2 bit-streams at ATSC
resolution.

6. REFERENCES

[1] IEEE Standard Specifications for the implementation of 8x8
inverse discrete cosine transform, IEEE Std. 1180-1990.

[2] Loeffler, C., A. Lightenberg and G.S. Moschytz, “Practical
fast 1-D DCT Algorithms with 11 multiplications” Proc.
ICASSP 1989, pp. 988-991, 1989.

[3] “Using streaming SIMD extensions in a fast DCT algorithm
for MPEG encoding” Application Note Ap-817, Intel, 1999.

[4] Topham, N., “An Integrated DSP Architecture”,
Microprocessor Forum, October, 2001.

(http://www.siroyan.com/pdf/SR_MPFO1.pdf)

Worst PMSE Mean error
Testrange | Sign peak
error Worst Overall Worst Overall
-256..+255 + 1 0.0145 0.010486 0.0026 -0.000233
-5.45 + 1 0.0127 0.010580 0.0022 -0.000039
-300..+300 + 1 0.0116 0.009100 0.0022 0.000009
-256..+255 - 1 0.0145 0.010473 0.0026 0.000223
-5.45 - 1 0.0127 0.010580 0.0022 0.000039
-300..+300 - 1 0.0116 0.009100 0.0022 -0.000025

Table 1. IEEE 1180 error analysis of OneDSP IDCT

Il-316




