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ABSTRACT

This paper presents a low complexity architecture for realization
of CDWT for minimal resource environment like FPGA and SoC
applications in image processing. The proposed architecture uses
parameterization of the coefficients for reduced redundancy in
computation. Use of CSD based multipliers along with pipelined
CORDIC provided an architecture for efficient implementation in
contrained environment along with high speed and efficiency. Low
data path length and lower control complexity are other salient
features of the architecture presented in the paper. This design
was implemented on Xilinx FPGA platform. The operational fre-
quency of the implemented circuit is 47MHz.

1. INTRODUCTION

CDWT - an acronym for Complex Discrete Wavelet Transform
[1, 2, 3, 4] which uses a complex kernel for construction of the
mother wavelet is a better choice for motion estimation and other
3-D image processing, like stereo imaging applications and pre-
serves the properties of shift invariance and good directional se-
lectivity.

VLSI implementation of DWT has been proposed by a number
of researchers [5, 6, 7]. But very few architectures have been so
far reported for CDWT [8].

The architecture for CDWT presented in [8] though promises to
be efficient enough for high speed applications but is highly hard-
ware intensive. Moreover, the use of hyperbolic CORDIC units
restrict the CDWT architecture to a very limited filter order. This
paper presents an architecture to provide much more flexibility to
the design and also ensures efficient hardware utilization. This ar-
chitecture also aims at optimization in the design of the segments
for hyperbolic part of the filter. The Canonical Signed Digit (CSD)
based multipliers has been used. In fact the use of CSD has pro-
vided more gain in hardware complexity, as the average number
of operations reduces to %, where b is the wordlength of the ma-
chine. This architecture also uses parameterization of the CDWT
coefficients thus reducing the computational overhead effectively.

2. THEORETICAL BACKGROUND OF CDWT

Rational valued complex kernel is used to realize the Complex
Discrete Wavelet Transform (CDWT). These kernels can be mod-
eled by even length FIR filter with approximate Gabor form, given
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by [3]:
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where n denote the samples in the sampling window. The Gaus-
sian profile is symmetrically distributed about the point ng in
the interval [-D, D-1], where D is the window half-length. ag
and a1 are the amplification factors of the complex kernel, which
were considered 0.5 allowing a mean square error of 0.0012 and
0.0048 for the low and high pass filters respectively. This resulted
in a drop of PSNR by 0.063db for 3 level of decomposition of
512 x 512 Lenna image. wo and w4 are the modulation frequen-
cies and, gg and o1 are the window standard deviations.

3. ARCHITECTURAL DESIGN OF CDWT FILTER

The block level architecture is shown in Fig. (1). The main archi-
tecture comprises of a RAM dedicated for storing the raw image
and the low pass coefficients after each level of decomposition.
The transform section performs the CDWT operation over the data
fetched from the RAM. From the transform block, 8-set of coeffi-
cients, ALY, DD pLD PG 4@0 pEL ph pen,
(where [ denotes the transform level) are generated at each clock.
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Fig. 1. Block level diagram for CDWT architecture

The two approximation coefficients (A1), A0y, ie, the LL
component of DWT, for the complex and the conjugate set of fil-
ters are stored back to the two RAMs (RAM I and RAM II). Each
of the complex coefficients have two parts - the real and the imag-
inary. Thus the storage requirement of the whole design is 2N2.
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The “address” section fetches four pixels from four successive lo-
cations of the RAM either along the column or along the row ac-
cording to which way it is decomposing.

The general form Eqn. 1 can be written as:

(n=ng)?

h(n) = aofnBn where f, = e~ 25 2)

and for low pass filter 8, = /“°(* =70} while for high pass filter
6, = e/*1t"~70)  For the conjugate expressions for low pass
and high pass filters the expression for 8, are e 70"~ 70) and
e 7w1(n=n0} regpectively.

The factor f,, comprises of the real exponential part of the ex-
pression. The complex part on the other hand is given by 8,,. A
complex multiplication requires 4 multipliers and adders making
it expensive for most DSP applications. Many number systems
have been proposed so far for the reduction of multipliers of the
complex multiplication [9, 10]. On the other hand CORDIC is an
economic way of computation of complex numbers as long as they
can be expressed in trigonometric functions [11, 12, 13, 14].

Since, for a given length filter, the real coefficients are fixed,
so use of CSD constant multipliers prove to be very effective for
computation of the real part. In general the input data can be con-
sidered as complex number. Actually in the first level of decompo-
sition, the input is a real valued sample. But in the next stages the
inputs are essentially complex numbers. So effectively for each
multiplication two multipliers are required.

Due to the symmetric property of the Gaussian distribution the
two halves about the midpoint are identical. So for a Gaussian
window of width N, the correlation between the sample points are
given by: fo = fN—l, f1 = fog, ey f%71 = f% For
explanation, design of an 8-tap filter is considered. In general the
length of the filter that can be accommodated is determined by
the precision of the machine. A 16-bit machine is considered for
illustration. The maximum precision of the machine is 271° =
3.051757813 x 10 5. Now the lowest coefficient of the CDWT
filter is determined by the exponential function of the extreme end
value, i.e., at the location abs (4 + no), where ng is —0.5. For a
16-bit machine the lowest exponent is given by:

_o.5B=(=05))% —4
e 7T roe?  =1.990389683 x 10 3
Thus a 10-tap filter can be designed using a 16-bit machine.

For an §8-tap filter, the correlation between the real coefficients
can be expressed as:

fo=1fr, fi="fo, fo=fs, fs=Ju 4

Thus the value (n — ng) associated with the exponential and the
circular part are —3.5, —2.5, —1.5, —0.5, 0.5, 1.5, 2.5, 3.5. The
circular expression is periodic about 27r. Again, expressing the an-
gles within the range of 0 to Z, the orientations « for a modulation
angle of wg = 30° are 15°, 45°, 75°, —75°, —45° and —15°. The
multiplication of a complex number (z] %) is given by:

N T
(Fm ) -4 ( co.?a sma) (le) (5)

F; —8SING  COSQ T;
where z] and xi represent the real and imaginary part of a complex
number x;. Now for a 8-tap filter there will be 8 orientations. But
since the total number of offered orientations are 6, so there will

be strong correlation between the angles. In fact among the 6 ori-
entation itself, three angles are just the folded version of the other

in the first and second quadrant (e.g. 15° and —15°). Thus realiz-
ing only three rotations, the others also can be realized. Taking the
explicit value of the rotations it is seen that :

po=d1 =g =¢1, ¢p2=¢3, b3 =1 (©6)

where

COSGn SINQn T COSCL, —SiNQn
bn = ) and ¢, = .
—sina, CoSGy Sina,  CoSQn
(7

and the superscript T signifies transpose of a matrix. Using the
transform relation for CDW'T, the parametric equation can be writ-
ten as:

CZ,i _ $:L 51»’277 T
(F)=-s()n-n(F )= o
11,’2,1 117:;,6 T
() e () o8+
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where
__{ cosTh®  sinTh°
Po = ( —sin75°  cosT5° ) ©)
s = ( cos45° sin450)
27\ —sindb°®  cosd5°
by = ( cos15° sin150)
8= \ —sinl5° cosl5®
and
fo= 8—0,5%2: f1 = e—o.s%2 (10)
fo= 8—0,5%2: fa= e—o.s%2

andCr; = (gfl ) represents the low-pass coefficient (denoted
L

by the suffix L) generated at the i** instant. The next coefficient

Cr,i+1 is given by:

()= (z)smn(io)s s o
Yoo s (2o 4
() e () ot v

r I
o (T Y dat o (22 ) 08
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The association table between the real coefficients f,, circular
coefficient ¢,, and x,, for the coefficient Cy, ; is given in Table (1).
As is evident from the table the inputs x, and x,_~ share the
same set of real coefficient, namely — fo. But these two inputs are
not available to the processors in the same clock with the provided
scanning pattern. Instead, the two consecutive values ., and 2,1
are obtained in the same clock. Again they share the same circular
rotation unit. At the same time the input z,,_» is multiplied with
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bo $2 ¢3 o3 93 $o
fO Xn Xn—7
fl Xn—1 Xn—6
f2 Xn—2 Xn—6
f3 Xn—3 Xn—5

Table 1. ¢, f,, and x,, association table for low pass filter

f2 and rotated by aa = 45°, while the input z,,_3 is scaled by f5
and rotated by as = 15°.  But for the other four inputs, x,_a,
Zn—5, Tn—e and x,_v, required for generation of the coefficient
C, the matrix ¢, s need to be transposed. This is accomplished by
using the matrix multiplication property. For two matrices 4 and
B,

ABT = (4A"B)” (12)

So instead of transposing the ¢,, processor, the input matrix x,
is transposed and multiplied with ¢,,. Then, the product x, 7 ¢,
is transposed to get back the desired result. Transposition of the
inputs x, can be achieved easily just by interchanging the z),
and ! . This technique has been used for all the filter design for
CDWT.

For the high pass filter (with w; = 5?“) the parametric equation
for the coefficient generated at the i** instant can be formulated
in the similar manner as that of low pass filter. The association
table of x,,, f,, and ¢,, for the high pass filter is shown in Table (2)
Similarly the association table for conjugate low and high pass
filters are constructed.

$a ¢2 ¢3 o3 ¢35 é0
fO Xn Xn—7
fi Xn—6 | Xn—1
f2 -Xn—-5 -Xn-2
f3 Xpn—4 Xn—3

Table 2. ¢, f,, and x,, association table for high pass filter

4. HYPERBOLIC COEFFICIENT

The most important thing to be noted here is that, for a given fil-
ter length, the exponential parts for all the filters (low, high and
the two conjugate filters) have same sample distribution (vide Ta-
ble (1) and Table (2)). Thus, for a given output coefficient for the
CDWT filter, the f,, to x,, correspondence is identical.

Since these are constant multiplications so a CSD based im-
plementation of dedicated fixed multipliers is the most preferred
approach, in terms of hardware cost and speed of operation. The
percentage error in CSD representation of the four low pass coef-
ficients are 0.0171, 0.3923, 0.3174 and 0.1891 respectively.

From the parametric equations of the filter, i.e., Eqn. (8) and the
association Table (1) and Table (2), it is seen that the multiplica-
tion is common for all the high-pass, low-pass and both the con-
jugate filters. In generation of Cr;, Cu i, Ccr, and Con,; the
2y, and x,,—~ will be multiplied with f, for all the cases. Similarly
Zn—1 and x,_¢ are multiplied with fi. So, using this similarity
the products can be generated for all the filters.

5. FILTER DESIGN

Multiplication of a complex number with the filter coefficient in-
volves two real multiplications. In the subsequent part of this
paper, the CSD multipliers for accomplishing this operation are
termed Complex CSD Multiplier (CCSDM). Figure (2) shows the
architecture for the low-pass filter. The basic module consists of
4 set of CCSDM for generating the products of the real exponen-
tial part with the complex (or real for first level decomposition)
inputs. In the first clock the products foXn, fiXn—1, foXn—2 and

xn-7 - & *xtn-s -4y Eata
CCe5S

* (rn-2) freq = wq

*x{n-3}

Fig. 2. Architecture for low pass filter of an 8-tap CDWT

faxn_3 are computed and the first two products are subtracted
to give —foxn + fixn—1. Since both the products — fox, and
f1x»—1 undergo arotation of ¢ (vide Eqn. (8)), so these are added
prior to rotation. This reduces the rotation overhead by one unit.
The other two products fox,—2 and fsx,_3 are rotated by ¢ and
¢3 respectively and added. In the next stage partial sum of the
parametric equation 8 is accomplished, as,

(—foxn + fixn—1)do + foXn—202 + faxn—303

To generate the next part of the parametric equation, ¢, needs to
be transposed. As has been mentioned earlier, transposing the in-
puts instead of the rotation units and again transposing the rotated
outputs give the desired result without any extra hardware over-
head. Using this property it can be written:

— foXn_108 + fiXn_sdn + foXn_208 + fsXn_sda (13)
= (—foxp_rdo + fixn_gdo + foXn o2 + faxa_ad3)

So the term, (— fox, 7o+ f1 X7, a0+ faXn_2 G2+ 3% _33),
needs to be transposed to get the LHS of Eqn. (13)

In the next clock, the two outputs - (a) from the register and (b)
from the transpose block are added. Thus, this register operates at
half the frequency of the data accession block.

The circuit for high pass filter is shown in Fig. 3. The conjugate
low pass and conjugate high pass filters are realized similarly. The
rotation units are designed using CORDIC as the basic processing
elements [8, 14].

6. IMPLEMENTATION

The architecture has been implemented on Xilinx FPGA
XV50FG256 package. However, this architecture is generic in
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Fig. 3. Architecture for high pass filter of an 8-tap CDWT

terms of the platform of use. For 8-bit data a 16-bit machine has
been used to prevent the overflow and underflow.

The resource required for the design of each of the low-pass and
high pass filters in FPGA are as follows:

Number of Slices: 549 out of 768 1%

Slice Flip Flops: 514

4 input LUTs: 872 (4 used as a route-thru)
Number of bonded IOBs: 128 out of 176 2%
Number of GCLKSs: 1 out of 4 26%

Number of GCLKIOBS: 1 out of 4 26%

Total equivalent gate count for design: 15,137
Additional JTAG gate count for [OBs: 6,192

For resource optimization in FPGA the design has been optimized
using the relative locking constraints of the components. The reg-
ister and the demultiplexer at the output stages operate at half the
frequency of the global clock. This constraint is required since
the addition at the last stage occurs after every two clocks (refer
to Fig. (2), Fig. (3)). The operating frequency of the implemented
design is ~ 41 MHz.

Table (3) shows comparison between the two architectures pro-
posed in the dissertation

No. No. No. Lat. Throu-
Architecture of of of ghput
proc. | mult. | CORDIC
LPF [8] N NIL N log>(N) o)
HPF
LPF/HPF o) I 21 2log2(N) 0(2)
(Proposed)

Table 3. Comparison between hyperbolic CORDIC and CSD mul-
tiplier based architectures

It is evident from the comparison that the CORDIC based archi-
tecture is suitable for applications which require faster processing.
On the other hand the proposed architecture requires much lower
processor area (order of half) compared to the first architecture.
The low hardware complexity and simple data scheduling makes
this architecture a better candidate for low power applications.

The critical path of the proposed architecture is lower leading
to high operating frequency. ASIC implementation of this design
will lead to better resource optimization and timing performance
compared to its FPGA counterpart.
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