A HIGH-PERFORMANCE EMBEDDED DSP CORE WITH NOVEL
SIMD FEATURES

Jeff H. Derby! and Jaime H. Moreno?
IBM Communications Research and Development Center
IIBM Corporation, Research Triangle Park, NC 27709
2IBM T. J. Watson Research Center, Yorktown Heights, NY 10598

Abstract- A low-power, high-performance, compiler-
friendly DSP core has been under development in the IBM Com-
munications Research & Development Center, as part of its eLite
DSP project. This DSP incorporates instruction-level parallelism
through the packing of multiple instructions in 64-bit long-
instruction words, while data-level parallelism is realized through
the use of SIMD techniques, such that SIMD operations can be
applied to both dynamically composed vectors and packed vec-
tors. Dynamic composition of vectors is made possible through
the use of a vector pointer mechanism, which permits the
addressing in a very flexible way of groups of four 16-bit ele-
ments in a large, multiport, scalar register file.

This paper provides an overview of the architecture of this
DSP core, with a focus on its SIMD features. We describe these
features in some detail and discuss how they are used, with a
block FIR filter and a radix-4 FFT taken as examples.

I. INTRODUCTION

A low-power, high-performance, compiler friendly DSP
core has been under development in the IBM Communications
Research & Development Center, as part of its eLite DSP project.
It is intended for use as an embedded DSP core in systems-on-
chip, targeted at communication and media-related applications.

The eLite project is an ongoing effort within the IBM
CRDC that is advancing the state-of-the-art in power-efficient,
high-performance, programmable DSP architectures as well as in
methodologies for implementing such architectures. This effort
grows from the understanding that the important matter is an
architecture that provides a balanced optimization of programma-
bility in high-level language, power consumption, performance,
development cost (hardware and software), and production cost
(chip and system). In order to meet these usually conflicting opti-
mization goals, the design of the eLite DSP architecture and its
implementations cover aspects ranging from algorithms, applica-
tions, and high-level-language compiler, down to circuit-level
technology. Indeed, the project view has been as an explicit hard-
ware-software codesign of the architecture with an optimizing
compiler, and also as an explicit power-performance codesign of
the architecture with its implementation. Details of these code-
sign methodologies can be found in [1],[2].

The eLite DSP architecture that is the result of the process
outlined above is a load/store, RISC-like architecture that incor-
porates both instruction-level and data-level parallelism. Instruc-
tion-level parallelism is realized through the packing of multiple
independent instructions in 64-bit long-instruction words (LIWs)
and through the use of implicit operations in certain instructions
that reference data memory or internal register files. Data-level
parallelism is realized through the use of single-instruction multi-
ple-data (SIMD) techniques, such that SIMD operations can be
applied both to dynamically composed four-element vectors and
to packed four-element vectors.

The focus of this paper is the SIMD behavior of the eLite
DSP architecture. The technique used to realize data-level paral-

0-7803-7663-3/03/$17.00 ©2003 IEEE

I1-301

lelism in this architecture differs from those employed in RISC
processors with SIMD features. In the VMX (also called
AltiVec!) extensions to the PowerPC? architecture [3], a “vector
permute unit” is used to rearrange the order of data elements
packed in a vector register, based on data elements packed in a
second vector register. In contrast, the eLite DSP employs a set
of four indices contained in a vector pointer register to address
four data elements in a large scalar register array, the Vector Ele-
ment File (VEF), thereby dynamically composing vectors for
processing. The eLite DSP’s SIMD structure also differs mark-
edly from the SIMD-like capabilities that appear in current-gen-
eration DSP cores (see, e.g., [4],[5]). These DSPs often employ
complex interfaces to data memory to enable flexibility in com-
posing groups of data elements for processing. In contrast, eLite
requires only a single, simple interface to data memory because
of the structure of the VEF and the vector pointer mechanism.
These and other novel features of the eLite DSP’s SIMD architec-
ture will be described in some detail.

Section II presents a brief overview of the eLite architec-
ture. In Section III, we provide a more detailed discussion of the
SIMD units and an appropriate programming model for using
them. Algorithm kernels from a block FIR filter and an FFT are
described in Sections IV and V, respectively. Finally, conclu-
sions are stated in Section VI.

II. ARCHITECTURE OVERVIEW

Fig. 1 shows a block diagram of the eLite DSP architecture.

As can be seen, there are a number of functional units, including:

* Branch unit: generates the storage address for the next LIW

to be fetched from memory; also performs logical operations

on 8 single-bit Condition Registers, which are used for condi-
tional branches and predication.

Scalar units Vector units
Instr. [VMR logic (8x4 bits) |
storage 3 e
[CR logic (8 bits) |
: Vector ——=| Vector [=—= Vector
|| Pointer [*N Element [327] Accum.
32 " Branch Integer Storage unit unit unit
{ unit unit access &
64
¢+] ! ' P4
| XBus (64 bits) |
32 32 64 64 64
[Memory [Data Bus (Datain, Dataout; 64 bits each) }—‘
! —
32 {64 ?6‘

Data storage

Fig. 1. Block diagram of the eLite DSP architecture.

1. AltiVec is a trademark of Motorola.
2. PowerPC is a trademark of International Business Machines.

ICASSP 2003

» Integer unit: operates on data in 16 Integer Registers.

* Storage access unit: interacts with data memory to transfer
data between internal registers and memory, and performs
operations on data in 16 Address Registers.

e Vector Pointer unit: performs operations on 16 Vector
Pointer Registers, which are used to access the contents of
Vector Element Registers.

* Vector Element unit: performs operations on data stored in
Vector Element Registers. The number of these registers is
implementation-dependent, and ranges from 64 to 4096.

* Vector Accumulator unit: performs operations on data in 16
Vector Accumulator Registers, including reduction operations
on the elements of a vector.

The Integer Unit and Storage Access Unit correspond to scalar
units, operating on 32-bit integer data. In contrast, the Vector Ele-
ment Unit and the Vector Accumulator Unit operate on 4-element
vectors in SIMD fashion (16-bit and 40-bit, respectively), con-
taining fractional or integer data. Note also that each unit has its
own register files. As a rule, results of an operation in a unit are
written back to that unit’s register file. The exception to this rule
is that results of operations in the Vector Element Unit are always
written to the Vector Accumulator register file.

Defined in the eLite DSP’s instruction set are 16-bit, 20-bit,
24-bit, 30-bit, and 60-bit instruction formats. Instructions are
packed into 64-bit LIWs. An LIW contains a 4-bit prefix and up
to three instructions. Possible combinations in an LIW are: three
20-bit instructions; one 20-bit, one 24-bit, and one 16-bit instruc-
tion; two 30-bit instructions; one 60-bit instruction. Nominally,
the instructions in an LIW are issued to the core in the same
cycle. However, a serialization mechanism, controlled by the
LIW prefix, permits instructions in a single LIW to be issued in
successive cycles.

The scheduling of instructions, i.e. how instructions are
packed in LIWs, is static, being determined by the compiler or by
the assembly-language programmer. Instruction scheduling must
take into consideration the utilization of resources throughout the
pipeline and the data dependencies with dependent instructions,
given that the pipeline is exposed. The pipelines are depicted in
Fig. 2; most instructions are processed in six stages, vector ele-
ment instructions use one extra stage to read the Vector Pointer
Registers and the succeeding stage to read the Vector Element
Registers, whereas memory instructions use dedicated stages for
transferring the address and data from the processor to the mem-
ory subsystem. All instructions that are dispatched in the same
cycle read the contents of their source registers at the same time,
with the exception of Vector Element Registers which are read
the following cycle after reading the associated Vector Pointer
Registers. An instruction completes execution when its results are
placed in their destination locations; instructions complete execu-
tion according to their individual latencies. Instructions contained
wholly within a functional unit have the same latency, with the
exception of branches which are resolved earlier; instructions in
different units, or instructions that place the result in a register in
a different unit, may exhibit different latencies. Note that the first
three stages in all pipelines, not shown in Fig. 2, are two instruc-
tion fetch stages and a decode stage.

Instructions other than vector instructions can be predicated
by specifying a condition that is evaluated dynamically at execu-

4 5 6 7 8 9
Base RD | EX | WR
Other unit target RD | EX | XFR | WR
Vector element RD_ | RD_| EX1 | EX2 | WR
instructions VP | VE
Load instructions RD | AG |XFRI Rl\]/Dl_ XFR2| WR

Fig. 2. Execution pipelines.

tion time. The predicate is specified in a Condition Register. An
instruction whose predicate evaluates to false is not completed;
such an instruction is simply discarded. Vector instructions are
not predicated as a whole; instead, each individual operation
within a vector instruction can be executed conditionally (i.e.,
predicated) under control of a mask that is evaluated dynamically.
The mask is specified in a Vector Mask Register.

III. VECTOR UNITS

Several issues arise in incorporating efficient and effective
data-level parallelism in a DSP architecture. One has to do with
providing sufficient flexibility in how groups of data elements are
selected and accessed for processing in the core. A second has to
do with the different data widths that appear at different points in
a DSP algorithm data path, e.g. 16-bit data at multiplier inputs
and (32+guard)-bit data at multiplier outputs and accumulator
inputs. A third issue has to do with compact encoding of opera-
tions being applied to a group of data elements.

At the same time, there are several characteristics that are
shared by many DSP algorithms and that provide hints about
potentially useful approaches to data-level parallelism. Many
(but certainly not all) DSP algorithms have implementations in
which single operations may be applied simultaneously to several
sets of data elements, i.e. they appear well-matched to SIMD
architectures. Moreover, many (but certainly not all) DSP algo-
rithms have implementations that involve extensive data reuse.

As noted at the outset, the eLite DSP employs a SIMD
approach to data-level parallelism. In fact, two SIMD computa-
tional units are included that are effectively connected in cascade,
as shown in Fig. 3. The Vector Element Unit (VEU) operates on
pairs of 4-element vectors with 16-bit elements. The elements of
each vector are selected from the Vector Element File (VEF), a
large, multiport, scalar register file containing 2”77 indepen-
dently addressable 16-bit elements. N, is a parameter associ-
ated with implementations of the architecture, with an
architectural limit value of 12 (4096-element VEF) and typical
values for initial implementations in the range of 6 to 9 (64-¢le-
ment to 512-element VEF). The selection of elements from the
VEF to make up the VEU input vectors is indirect, via indices
specified in Vector Pointer Registers (VPRs), as described below.
Thus the vectors operated on by the VEU are dynamically com-
posed, with entries selected from the large array of 16-bit data
elements in the VEF. Moreover, extensive reuse of data in the

Data storage

A

64

A A

Vector 4x’va Vector 64
Pointer Element
Unit # Registers
A

{4x16 {4x16

%125 $— A6E

Vector
Acc. Regs.
{160 160 160

32(40)-hyit units

[— |

I:l Arbitrary elements
:] Packed elements

Fig. 3. Vector units and vector programming model.

Il-302

VEF is possible by appropriate configuration and updating of
indices in the VPRs. The VEU is where multiplication is per-
formed, and so the output of the VEU is nominally a vector with
four 32-bit elements. Rather than parsing these into 16-bit pieces
that are placed into the VEF, they are maintained as complete 32-
bit elements and are placed into the Vector Accumulator File
(VAF), which is part of the Vector Accumulator Unit (VAU). In
fact, all VEU operations target the VAF. The VAU operates on
pairs of 4-element vectors with 40-bit elements. The input vec-
tors and output vector of a VAU operation are Vector Accumula-
tor Registers (VARs) in the VAF, each of which holds a single
vector with four 40-bit data elements. There is essentially no
capability in the VAU for rearranging elements within a VAR, so
the vectors operated on by the VAU are “packed”.

It remains to describe how the VPRs are used to index ele-
ments in the VEF. A VPR contains four indices, each in the range
of 0 to 2V"»— 1. In addition, associated with each VPR is a
mechanism for incrementing the indices using modulo arithmetic.
The default use of a VPR involves the following steps:

1. use the four VPR indices to select four elements from the
VEF; then

2. update the four indices by adding a stride value to each index,
with the addition performed using modulo arithmetic.

There are also alternate forms in which the VPR indices are not

updated. These options are available for all instructions that use

VPRs to address the VEF, including:

¢ VEU instructions, which reference two VPRs (one for each
input vector to the operation)

« load/store vector element instructions, which reference a sin-
gle VPR (for the target VEF elements to be loaded or stored)

* move from VAF to VEF instructions, which reference a single
VPR

Note that in all cases the index updating takes place in the Vector
Pointer Unit (VPU), itself a SIMD functional unit, and the
updated indices are written back into the same VPR.

Finally, it is useful to consider the net parallelism possible
in an LIW given the SIMD features described above. A possible
(and common) set of three instructions in a single LIW is: a load
VEF instruction with update of the address register; a VEU mul-
tiply; and a VAU add. The first performs 9 operations: load four
elements in the VEF, update four VPR indices, and update an
address register. The second performs 12 operations: multiply
four pairs of elements from the VEF, and update two sets of four
VPR indices. The third performs four operations: add four pairs
of elements in the VAU. This single LIW thus specifies 25 oper-
ations in all.

IV. AN FIR EXAMPLE

We have coded a real block FIR filter on the eLite DSP
with four output samples computed in parallel. Given an K-tap
filter with impulse response /#(k),k = 0,1, ..., K—1, and input

x(n). Four successive output samples y(n—i),i = 0,1,2,3,
are computed as:
y(n—i) = h(O)x(n71)+h(1)x(nfzfl)+ (1)
+h(K—1)x(n—- +1)

These four outputs are accumulated in the four elements of a sin-
gle VAR. As an example, consider a filter with K = 16, and
with a total of 40 output sample values computed each time the
filter is executed, so that 56 input sample values are used.
Assume for now that these values and the filter coefficients are
already loaded in the VEF, with the input samples at indices
0,1,...,55 and the coefficients at indices 64, 65,...,79. A
segment of the code for this filter is shown in Fig. 4. The four
lines of “inner loop” shown in the figure accumulate four succes-
sive output sample values in the elements of VAR VAO. Refer-
ring to the figure, the ‘ve fmul’ instructions are vector multiplies
performed in the VEU, the ‘vaadd’ instructions are vector adds
performed in the VAU, and instructions grouped on the same line
are issued in parallel. We will look at the vector pointer usage in
a moment, but first note the following:

vefmul va1,(vp0),(vp1) || vasubfva0,va0,va0 (1)
vefmul va2,(vp0),(vp1) 2)
vefmul va3,(vp0),(vp1) 3)
inner_loop:

vefmul va4,(vp0),(vp1) || vaadd va0O,va0,val || bnz ctO,inner_loop (4)
vefmul va1,(vp0),(vp1) || vaadd va0,va0,va2 (5)
vefmul va2,(vp0),(vp1) || vaadd va0,va0,va3 (6)
vefmul va3,(vp0),(vp1) || vaadd va0,va0,va4 (7)

Fig. 4. Segment of FIR filter code.

» The VEU pipeline is deeper than the VAU pipeline (see Fig.
2), so the results of a VEU instruction can only be used by a
VAU instruction issued at least three cycles later. Thus the
first three ‘vefmul’s are peeled out of the inner loop. The
results of the ‘vefmul’ at line 1 are available in VA1 for the
‘vaadd’ at line 4.

* Because of branch latency and the exposed pipeline, the three
instructions following the branch (‘bnz’) at line 4 are always
executed. Thus the loop consists of four LIWs.

» All the instructions shown in the figure are in 20-bit format.

We consider now the VPR usage. In the example, VPO
indexes the coefficients, and VP1 indexes the input samples. We
have the indices in VPO initialized to {64,64,64,64} and those in
VP1 initialized to {0,1,2,3}, both set with stride of 1. The first
‘vefmul’ (at line 1) thus computes the four products /#(0)x(n),
h(0)x(n—1), h(0)x(n—2), and h(0)x(n—3) in parallel;
these are the first terms in the sums for y(n), y(n—1),
y(n—-2), and y(n—3) in Eqn.(1). The VPR indices are
updated using the default procedure outlined in Section III. Thus
when the second ‘vefmul’, at line 2, is executed, the indices in
VPO are {65,65,65,65}, the indices in VP1 are {1,2,3,4), and so
this instruction computes in parallel the four products that are the
second terms in the sums for y(n), y(n—1), y(n—2), and
y(n—3) in Eqn. (1). When the inner loop completes, all 16
products for each of these four outputs have been accumulated.

A few additional comments regarding this example are in
order here. First, to begin computation of the next four output
samples, the VPR indices need to be rewound. The indices in
VPO need to be reset to {64,64,64,64}; the indices in VPO are
reset as a consequence of the modulo arithmetic. The indices in
VPRI need to be rewound to {4,5,6,7}; one way to accomplish
this is with an explicit VPR increment instruction in the epilog of
the inner loop.

Second, the example assumes that the VEF has been pre-
loaded with the coefficients and input data. It is possible to load
these quantities into the VEF during the computation of the first
four output samples. Note that there are three open 20-bit LIW
slots in the inner-loop code in Fig. 4. These can be filled with 20-
bit “load vector element” instructions, which will perform the
desired loading of the VEF from data memory. Once these loads
are complete, all the necessary data is in the VEF, and the succes-
sive sets of four outputs can be computed with no additional
loads from data memory. Thus full advantage is taken of the rich
opportunities for data reuse in the FIR structure.

Finally, details of the completion of the inner loop (e.g.
compensating for the peeling of the first two ‘vefmul’ instruc-
tions out of the inner loop), the remainder of the outer loop, the
initialization of the VPRs, and the storing of the computed out-
puts are not shown in the example. Note, however, that while the
computed outputs would normally be written back to data mem-
ory, it may make sense to save them in the VEF if they are to be
used as inputs to the next block in the overall function being
implemented.

V. AN FFT EXAMPLE

We have investigated the implementation on the eLite DSP
of a number of algorithms that appear to permit extensive lever-
age of data reuse but for which the data access patterns are far
more complicated than for block FIR discussed above. We used

Il-303

the results of these investigations to drive the architectural opti-
mization of the vector units, and in particular of the vector pointer
architecture and the vector instruction formats. The algorithms
considered in these studies included the Viterbi decoder and the
FFT. For a description of the Viterbi decoder on the eLite DSP,
see [1],[2]. We provide a brief discussion of the FFT here.
A number of approaches to implementing the FFT were
considered. These included: radix-2 and radix-4; decimation-in-
time (DIT) and decimation-in-frequency (DIF); with multiplica-
tions at the butterfly inputs and with multiplications at the butter-
fly outputs; where the data and twiddle-factor arrays fit
completely in a “realistic” VEF (no more than 512 elements) and
where they do not. All implementations were in-place, in that the
output data array is returned to the same locations in data mem-
ory from which the input data array is taken.
We now summarize a particular FFT implementation,
namely a radix-4 256-point complex FFT with the twiddle-factor
array kept in the VEF and the data array read from data memory
and written back to data memory in each stage. Note that for a
256-point FFT both arrays do not fit in a 512-element VEF. We
chose to keep the twiddles rather than the data in the VEF
because the access patterns for the twiddle array are more com-
plicated and so the VPR indexing mechanism provides a more
significant benefit.
The structure implemented is a straightforward DIT struc-
ture. This structure can be derived in several ways, for example
from the methodology employed in [6]. It employs radix-4 “but-
terflies”, referred to here as “spiders”, with multiplications pre-
ceding the spiders as shown in Fig. 5. Referring to the figure, T,
is the 4-point DFT matrix as shown, and the twiddle factors are
such that W = e72%/N with N = 256 and k determined by the
stage and the position in the stage at which a particular spider is
located. The dots in the figure indicate multiplication by the
twiddle factors. Reasons for choosing the DIT structure include:
« the loading of the twiddle-factor array into the VEF, and also
the radix-4 “bit-reversed” indexing of the data, are performed
in the first stage, where there are no multiplications;

* placing the multiplications at the spider inputs, ahead of the
adds and subtracts, is most consistent with the natural data-
flow through the vector units (recall Fig. 3).

In our implementation, the inner-loop kernel performs four spi-
ders with associated multiplications in 22 cycles. This kernel is
structured with three parallel threads:

1. multiplications, performed in the VEU, with results placed in
the VAF; there are 16 real multiplies per spider, so 16 cycles
are required for the real multiplies for four spiders.

2. adds/subtracts to complete the complex multiplications and to
implement the spiders, performed in the VAU, with results
placed in the VAF; there are 22 such adds/subtracts per spider,
so 22 cycles are required for four spiders.

3. loads of the data array to the VEF and stores of the data array
from the VAF; eight load instructions and eight store instruc-
tions are required for four spiders.

Software pipelining is used to deal with pipeline latencies. The

parallel execution of the three threads is organized as follows:

* loads of the data for the next set of spiders execute in parallel
with completion of the computation for the current set.

» stores of the data for the current set of spiders execute in paral-
lel with the beginning of the computation for the next set.

we X"

5 WE X" o 111
Xb—oﬁ /—Xo' .)
w2 X" T, T, = L -1
X —e—2— ~ X’ -1 1 -1
W X' 1j -1

N X,

Fig. 5. A radix-4 spider, preceded by twiddle-factor multiplications.

Xy

These two groups of operations execute sequentially in the inner
loop. Note that the loads and stores cannot execute in parallel,
because only one Address Unit instruction can be issued per
cycle and there is only one 64-bit port to data memory. It can be
seen, however, that there is no limitation on performance
imposed on the inner loop as a result. The loop cycles are
bounded by the number of required VAU operations, and in fact
the number of loop cycles taken is equal to the number of VAU
instructions.

Unfortunately, a thorough discussion of our implementa-
tion and the associated code for the FFT is beyond the scope of
this paper. We should, however, point out the following in partic-
ular with respect to usage of the VPRs and the VEF:

The VEF is used as a buffer for the data read from memory. In
fact, two circular buffers are created in the VEF, one for the
real parts and one for the imaginary parts, each holding 32 16-
bit data elements. These buffers serve two purposes. First,
they permit data for the next set of spiders to be loaded while
data for the current set is being processed and is still in the
VEF. Second, the VPRs can be configured to move through
these buffers in such a way that the real and imaginary parts of
the spider outputs (16 outputs for four spiders) are properly
organized in VARs for the write back to data memory.

* The radix-4 “bit-reversed” indexing is performed by appropri-
ate configuration of the VPRs used to access the data from the
buffers in the VEF for the first-stage processing. Thus the
input data array can be read from memory in natural order into
the VEF, accessed in “bit-reversed” order from the VEF, with
the results written back to data memory in what is essentially
the natural order for the FFT output array.

» The access patterns for the twiddle-factor array in the VEF, i.e.
dealing with the variation of & (see Fig. 5) for spiders within a
stage and then stage-to-stage, are managed through the mod-
ulo arithmetic on VPR indices and by appropriately varying
the VPR strides.

The implementation of the 256-point complex FFT we have out-
lined executes in 1503 cycles.

VI. CONCLUSION

This paper has presented an overview of the architecture of
the eLite DSP, with a particular focus on its SIMD characteristics.
The eLite DSP architecture incorporates multiple SIMD execu-
tion units, nominally used in a cascade fashion. A Vector Ele-
ment Unit operates on vectors of four 16-bit elements, with these
vectors dynamically composed from a large, scalar register file
through indexing in Vector Pointer Registers, and with the results
of VEU operations placed in vector registers in the Vector Accu-
mulator Unit with 40 bits per element. Aspects of the operation
of these SIMD units were described in the context of FIR and
FFT examples.

REFERENCES

[1] J. H. Moreno et.al., “An innovative low-power high-performance
programmable signal processor for digital communications”, /BM
J. Res. Devel., to appear.

[2] http://www.research.ibm.com/elite/.

[3] M. S. Schmookler et.al., “Low-power, high-speed implementation
of a PowerPC microprocessor vector extension”, in Proc. 14th
IEEE Symp. Comput. Arith., Adelaide, Aust., Apr. 1999, pp. 12-19.

[4] StarCore, SC140 DSP Core Reference Manual, December 1999.

[5] Texas Instruments, Inc., TMS320C6000 CPU and Instruction Set
Reference Guide, 2000.

[6] H. Sloate, “Matrix representations for sorting and the fast Fourier
transform”, IEEE Trans. Circ. Syst., vol. CAS-21 no. 1, pp. 109-
116, Jan. 1974.

Il - 304

