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ABSTRACT

We present algorithm and IP design of a parallel Reed-
Solomon decoder with up to 8-byte random error correcting
capability. The decoder soft-IP consists of a core that can be
designed as parallel combinational circuits of around 62K
primitive gates and a peripheral that can be arranged flex-
ibly depending on codeword configurations. The technol-
ogy mapping results with even commercial FPGA demon-
strates that a single core can achieve a throughput well over
40 Gbps when it is 4-stage pipelined. A single decoder de-
sign can process N-interleaved codewords efficiently if the
core is operated in a time division multiplexing manner.

1. INTRODUCTION

Reed-Solomon codes are known for their advanced error-
correcting capabilities and used extensively in a number of
practical applications such as storage systems, communica-
tions and fault tolerant computing [1]. In recent applications
to the optical communications, Reed-Solomon decoders are
required to have a capability of 8-error correction and adapt-
ability to interleaved codewords, and to operate at a speed
of 40 Gbps and beyond.

Historically, there have been a number of fast and/or
compact Reed-Solomon decoder designs, most of which are
serial input/output sequential circuits shown in Fig. 1 (a).
See, for example, [2] and references therein. These de-
coders, however, cannot achieve 40 Gbps data rate as a sin-
gle decoder because of their direct implementation of con-
ventional sequential algorithms with conditional branches,
such as Berlekamp-Massey or (extended) Euclid algorithms.
Therefore, it is indispensable to duplicate multiple sequen-
tial Reed-Solomon decoders in parallel as to achieve the
necessary processing speed, which increases the total cir-
cuit size proportionally as the speed of the transmission in-
creases. Various attempts have been made by [3], [4] and
[5] to improve the hardware implementation of the conven-
tional Reed-Solomon decoding algorithms, but they still re-
quire multiple decoders to achieve 40 Gbps.
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On the other hand, an algorithm and architecture of high-
performance 4-error-correcting Reed-Solomon decoders and
design optimization methodology were presented in [6] [7].
Our decoder architecture is shown in Fig. 1 (b). The algo-
rithm proposed to use a new error calculation polynomial of
degree up to ¢ — 1 (¢ is the maximum number of correctable
symbols) that can give error values at error locations with-
out costly symbol-by-symbol divisions. A research proto-
type (40-34,32)Reed-Solomon decoder in [7] achieved 45ns
latency, corresponding to 7 Gbps throughput, with 0.35 pym
CMOS technology. A systematic and efficient extension of
our previous approach to 8-error-correcting Reed-Solomon
codes were recently given from the viewpoint of decoding
algorithm [8], [9].

The aim of the present paper is to show that an ultra
high-performance and flexible Reed-Solomon decoder with
a compact circuit size, low decoding latency and low power
consumption can be achieved for up to ¢ = 8 Reed-Solomon
codes, based on this improved algorithm. The performance
can be further improved at the same time compared to the
previous research prototype. In particular, our soft-IP de-
coder design with a commercial FPGA can give a through-
put well beyond 40 Gbps when the core is 4-stage pipelined.
Furthermore, the decoder can process interleaved codewords
efficiently.

2. DECODING ALGORITHM OVERVIEW

Since our decoding algorithm for ¢ = 8 is given for error

locations [8] and error values [9] separately, let us give an

overview of how the entire decoding process works, here.

Throughout the present paper, we denote the codeword length
of Reed-Solomon codes by n and the maximum number of

correctable errors by t. We assume Reed-Solomon codes

are defined over GF(2™).

Once the syndromes are calculated, we shall start from
Peterson approach, which is direct computation of Yule-
Walker equation. The difference between previous ¢ = 4
algorithm [6] and ¢ = 8 algorithm is that the former needs
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Er(z) and improved algorithm is used for up to t = 8 de-
coding. They are systematically computed in a closed and
shared manner based on their regular structure [9]. Note that

the second expression of Er () (z) contains only S; and Ag),
neither a’* nor E;, themselves explicitly. This makes the
computation of Er®(z) independent of the search of the
error locators and leads to a parallel computation of them.
Furthermore, the Er () (z) defined here needs only one in-
verter since the division in the definition is common to all
symbols. This allows much cost saving compared to the
conventional Forney algorithm where costly divisions are
necessary at multiple error locations. The branchless com-
putation of Er(z) is suitable for combinational circuits and
the latency of the critical path is ¢ — 2 in a unit of a multiplier
and one division.

Figure 2 compares our algorithms with the conventional
Euclid or Berlekamp-Massey(BM) algorithm and Forney al-
gorithm with respect to the number of necessary multiplica-
tions. Our approach is comparable to those of the conven-
tional schemes at the algorithm level even though it remains
as a closed form algorithm. When our algorithm is mapped
to combinational circuits, it can become more efficient in
terms of circuit size, since additional circuit elements such
as clocks, registers, branch related circuit, and controllers
are not required. Furthermore, our algorithm enables the
completely parallel decoder architecture shown in Fig. 1
(b). As a result, the decoder circuit can achieve ultra-high

performance without duplicating conventional decoders shown

in Fig. 1 (a).

3. SOFT-IP DECODER DESIGN

3.1. Core architecture

Closed-form decoding algorithms suitable for parallel com-
binational circuits can be mapped directly to the combina-
tional circuit. The algorithm is described using Mathemat-
ica and translated into VHDL code after symbolic verifica-
tion is performed. The gate size is further reduced by using
a logic optimization technique. As a result, the size of the
parallel combinational core circuit is around 62K primitive
gates in case of ¢ = 8 and m = 8 (XOR and AND are
counted as 1 gate).

Figure 3 shows the diagram of an enhanced version of
our decoder core, which exploits 4-stage pipelined design.
In the first stage of A(x) calculation, the 2, 3, 4 and 5 dimen-
sional determinants are calculated. In the second stage, the
6, 7 and 8 dimensional determinants are calculated and the
number of errors e is determined according to the values of
f\gl), cey /~\(()8). The coefficients of error locator polynomial
Ale)(x) are also selected here. In the first stage of Er(z)

calculation, £ and f,(ll_l) stated in Section 2 are calcu-
lated for I = 1,...,8. In the second stage, f(¢) and f,(f_l)
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Fig. 3. The 4-stage pipelined parallel combinational core
circuit

Table 1. FPGA synthesis results after 4-stage pipelining of
the core

Delay[ns] | Size [slices]
A(z) calc. Ist stage 242 4732
A(z) calc. 2nd stage 26.2 46438
Er(z) calc. Ist stage 26.0 1211
Er(z) calc. 2nd stage 25.5 1839

are selected according to e and the coefficients of Er(¢) ()
are computed.

Table 1 shows the FPGA synthesis result of each stage
of the pipelined core circuit with a commercial FPGA (Xil-
inx Virtex-II Pro). The result indicates that the pipelined
core circuit has a potential throughput as high as ~80 Gbps.
By operating the core according to the diagram shown in
Fig. 4, the core can process codewords at a speed of 43
Gbps, which is required for 40 Gbps optical communica-
tions with the (255,239)Reed-Solomon out-of-band error cor-
rection scheme. Still, since only a slow clock speed of
around 21MHz is required for the core operation, the power
consumption can be kept small. Our Reed-Solomon de-
coder is advantageous over the recent implementation of 40
Gbps decoders with 0.16 pum CMOS technology [5] because
the 40 Gbps throughput is achieved even with a commercial
FPGA. Some commercial (255,239)Reed-Solomon soft IPs
are now available, for example [10], but they are limited to
10 Gbps applications.

3.2. Peripheral design

We can adapt the parallel combinational decoder to process
the V-interleaved codewords by arranging the N peripheral
circuits only and operating the core in a TDM manner with
the help of mux/demux and registers. Figure 5 shows an
example of block diagram for the (255,239) Reed-Solomon
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Fig. 4. Timing diagram of the 4-stage pipelined core circuit
for 43 Gbps operation
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Fig. 5. Blockdiagram of an N-interleaved (255, 239) Reed-
Solomon decoder on GF(2%)

decoder architecture handling N-interleaved codewords.
Since the algorithm for error value evaluation stated in Sec-
tion 2 eliminates costly symbol-by-symbol divisions, all the
computations both in the frontend and in the backend are
only linear operations. Therefore, it is easy to modify ac-
cording to the I/O data path configurations.

In the frontend peripheral circuits, input digital signals
are interleaved and input in parallel. A syndrome S; is cal-
culated for each input signal by a sequential circuit and the
syndromes for each serial stream are stored in a register. Af-
ter that, they are multiplexed and sequentially transmitted to
the core. The coefficients of A(x) and Er(z) are demulti-
plexed according to the number of interleaves, and the re-
sults are transmitted to the backend peripheral circuits. The
backend peripheral circuits include those for A(x) evalua-
tion, Er(z) evaluation and AND gates. They are arranged
in a number equivalent to the number of interleaves of in-
put digital signals. The A(z) evaluation circuits search the
zero points of A(z) and output 17 for an error location
and ”0” otherwise. The Er(z) evaluation circuits compute
Er(a%),i = 0,...,2™ — 1 and give error values at error
locations and arbitrary values otherwise. The AND gates

multiply these two outputs and compute the error word.

The multiplexers and demultiplexers need to handle not
nm bit codewords themselves but 2m¢t bit syndromes and
m(2t+1) bit coefficients of A(x), Er(x), respectively. Thus,
the number of necessary multiplexers, demultiplexers and
buffers are reduced significantly.

4. CONCLUSION

‘We have presented an ultra-fast Reed-Solomon decoder soft-
IP for 8-error correcting Reed-Solomon codes. Our ap-
proach is based on an improved decoding algorithm suitable
for combinational circuits up to ¢ = 8. The presented soft-
IP combines, compact circuit size, low decoding latency,
and flexible codeword configuration. The FPGA synthesis
results of the pipelined core achieve well beyond 40 Gbps
throughput.
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