HIGH PERFORMANCE SPEAKER AND VOCABULARY INDEPENDENT ASR
TECHNOLOGY FOR MOBILE PHONES

Sergey Astrov, Josef G. Bauer

Siemens AG, Corporate Technology
81730 Munich, Germany
{sergey.astrov, josef.bauer } @mchp.siemens.de

ABSTRACT

This paper presents the Siemens speech recognizer for mobile
phones, VSR. VSR employs HMM technology and uses general-
purpose phoneme-based acoustic models which make it speaker
and vocabulary independent. The system can be easily reconfig-
ured to work with arbitrary vocabularies. This provides full flexi-
bility for the design of the user interface which contrasts with the
capabilities of other low-resource recognizers.

The system requirements of VSR are very low. The emission
probability calculation and the Viterbi search with a vocabulary of
30 words need only 16 MHz for real-time operation on an ARM
microcontroller. The HMM acoustic models take up about 12 kilo-
bytes of permanent storage. The most significant algorithmic im-
provement is the newly developed 3-D stream-based coding of the
HMMs.

Despite low requirements in terms of system resources VSR
achieves an outstanding recognition performance. The word error
rate (WER) for a recognition task with 62 German isolated words
including highly confusable digits is 7.0%.

1. INTRODUCTION

Mobile phones are one of the most attractive areas of application
of speech recognition technology. Increasing demand for hands-
free operation of mobile phones in cars and device miniaturization
make speech recognition a natural choice for the man-machine in-
terface. While dictation is beyond the capabilities of a terminal-
based speech recognizer command-and-control functionality and
voice dialing are very attractive applications. Currently several
manufacturers offer mobile phones with voice interface — mainly
for speaker dependent voice dialing.

The limited system resources of the mobile phones place strict
restrictions on the memory and processing requirements of the
speech recognizers. In the last two years several recognizers with
low system requirements have been developed. Most of the im-
plementations are not HMM-based being speaker-dependent only,
i.e. the acoustic models must be trained by the user. Recently, an
HMM-based recognizer requiring 50 MIPS and 1 MB of memory
was described in [1]. The system can handle a medium-size 500-
word vocabulary, but the memory requirements are too high for
mobile phones. In [2] a recognizer with an 18-word vocabulary
was presented which is able to run on a 1.28 MHz system achiev-
ing a WER=0.5% in a quiet office environment. The recognizer is
based on whole-word HMM models which implies that the modifi-
cation of the vocabulary requires a dedicated speech database and
re-training of the HMMs.

0-7803-7663-3/03/$17.00 ©2003 IEEE

Il-281

Sorel San

Siemens AG, ICM Mobile Phones
81675 Munich, Germany
sorel .stan@mch.siemens.de

We present the Siemens VSR recognizer that has very low de-
mands on system resources and allows flexible modification of the
vocabulary without the necessity to re-train the HMMs. The key
algorithmic improvements which lead to the reduction of memory
consumption and processing power are efficient triphone cluster-
ing that gives a small number of modeling units, and compression
of the resulting HMMs using 3-D stream-based coding.

The structure of the paper is as follows. Section 2 introduces
the Siemens VSR recognizer. The system resources of mobile
phones are described and the restrictions on the implementation of
a speech recognizer are discussed. Section 3 gives details on the
context dependent Hidden Markov phoneme Models and presents
the advantages over the use of context independent HMMs. In
Section 4 the memory and computational effective 3-D streams
approach used in VSR is described. Recognition results and real-
time performance are presented in Section 5. The paper ends with
a brief summary and the conclusions.

2. VSR RECOGNIZER

The Siemens VSR is a low-resource high-performance recognizer
adapted to the system and operating constraints of mobile phones.
Modern mobile phones are powered by a digital signal processor
(DSP) and a microcontroller unit (MCU). The DSP runs the GSM
base-band algorithms and performs acoustic processing functions
(e.g. echo cancellation and noise reduction). The MCU runs the
user interface software and other applications such as address book
management, games, or speech recognition. Permanent storage of
data is typically provided by a flash memory which is shared by all
applications, therefore the VSR acoustic models cannot claim too
much for themselves.

The VSR architecture consists of three main modules for fea-
ture extraction, emission probabilities computation, and Viterbi
search for the best matching vocabulary entry. Although the
speech recognizer can be implemented entirely on the MCU, a bal-
anced work split between the limited computational resources of a
mobile phone justifies running the feature extraction on the DSP.

The feature vectors are computed as follows: the speech sig-
nal sampled at 8 kHz is cut into overlapping frames of 32 ms with
a frame shift of 15 ms. For each frame a set of 12 MFCC values
are computed which together with the frame energy and the cor-
responding delta and acceleration coefficients form a 39-D vector.
Applying a linear discriminant analysis (LDA) based transforma-
tion to the supervector obtained from two consecutive frames, a
24-D feature vector is finally obtained.

VSR uses the following acoustic models for mobile phones ap-

ICASSP 2003

plications. Each word is modeled using a set of context dependent
phonemes, each phoneme is modeled by a 6-state HMM. Observa-
tion densities are 24-D Gaussians with diagonal covariance matrix
and only one global variance parameter. Gaussians are coded by
eight 3-D streams. The stream approach is discussed in Section 4.

3. IMPROVED PHONETIC MODELING

Earlier versions of the VSR used context independent phoneme
models. To achieve a high recognition accuracy a total number
of 4000 Gaussian densities was necessary. With a total number of
modeling units of about 100 the number of Gaussians per modeling
unit was very high at about 40.

The latest versions of the VSR use context dependent
phoneme models. For the new modeling scheme with much more
modeling units a total number of 1200 Gaussians was found to per-
form as good as context independent models with 4000 Gaussians.
Table 1 gives a comparison of the two different approaches for 6
languages. Training and recognition are performed on the Speech-

word error rate [%]
Language context indep. context dependent
phoneme models, | phoneme models,
4000 Gaussians 1200 Gaussians

German 6.9 6.8
Spanish 0.8 1.2
French 4.9 5.5
Italian 1.9 1.3
Dutch 5.9 5.9
US-Engl. 6.0 5.7

Table 1. Comparison of two different approaches for acoustic
modeling, isolated command word recognition.

Dat Il, the Polyphone, and the Macrophone speech databases.

The investigated recognition task is isolated application word
recognition with about 50 words in the vocabulary. The test results
which are based on more than 11000 utterances in total show that
the much smaller context dependent models perform as well as the
context independent models (the differences are not statistically
significant).

With the number of modeling units being now about 600 the
average number of Gaussians per unit is as small as 2. The actual
number of Gaussians per unit is not equally distributed. Units with
a higher frequency in the training material have a higher number
of Gaussians while the maximum number of Gaussians per unit
is limited. For a limited vocabulary a small number of Gaussians
per unit has a positive effect on the complexity of the emission
computation. Using context independent phoneme models (small
amount of units with many Gaussians) even small vocabularies can
result in a need for a big amount of Gaussians for decoding. With
the context dependent phoneme models (many units with only few
Gaussians each) a small vocabulary normally requires only a small
amount of Gaussians for decoding. This can result in an even
higher reduction of the computational complexity.

The modeling units are strongly tied triphone states. Data
driven decision trees with additional a-priori tying rules as de-
scribed in [3] are applied for tying. The a-priori rules result in an
important property of the tying scheme: as the theoretically max-
imum number of units is much smaller than for untied triphones

the tying scheme can be stored in the form of a simple table that
uses as little memory as the decision tree. While the algorithm for
decoding a decision tree is rather complex the tying table can be
handled with an ultra-compact algorithm.

Through the use of strongly tied context dependent phoneme
models memory consumption as well as processing power re-
quirements could be reduced by about 70% without degradation
of recognition performance in comparison to context independent
models.

4. STREAM DISTRIBUTION CLUSTERING HMMS
(SDCHMM)

The feature vectors X of the VSR recognizer have 24 components
with each component being stored as a 1-byte value.

The emission probability of X for state s bs(X) is a sum of M
Gaussians with diagonal covariance matrix and equal variances o.
As the sum is typically dominated by one term only the following
approximation is made M, (-) ~ maxM_, (-).

VSR uses the stream (subspace) distribution clustering HMMs
(SDCHMM) introduced in [4] in order to reduce the memory con-
sumption. The theory of SDCHMM with shared codebook and
3-D streams is briefly explained below. The P Gaussians from all
mixtures form a set of 24-D vectors which is broken down into
streams. Several stream structures were designed in [4]. In the
case of VSR, the components of the stream vectors are almost un-
correlated because of the LDA transformation from the feature ex-
traction module; that is why the simple structure is used [5].

We use 3-D streams of which the definition can be described
as follows: the first 3 dimensions of Gaussians mean vectors
(M1, H2,H3) are placed in the first stream, the second 3 dimen-
sions (U4, s, Hg) form the second stream, etc. Thus the set of
24-dimensional Gaussians is broken onto eight 3-D streams.

The mixture emission probability of the state s is represented
then as

K
M
bs(X) = fr‘gz)l(<Cs,m'k|:|lNk(Xa US,va)>

where Ni(X,Usm,0) is a Gaussian PDF for stream k; csm is the
weight of the Gaussian m in the state s; m is the Gaussian number
within state s; k is the stream index; K is the number of streams (in
our case K = 8).

All of the stream vectors are quantized using k-means algo-
rithm. The parameters of the SDCHMM are represented by indices
which point to values in one shared codebook. This shared code-
book is used for all streams together. The shared codebook has
256 entries as in this case the indices are of size of one byte and
they are easy to handle. With the 256-entry codebook 3-D streams
are used as they have good memory efficiency and do not lead to a
degradation of the recognition performance.

SDCHMM s also allow to reduce the complexity of the emis-
sion computation since stream vectors can have only 256 possible
vector values. Then it is possible to precompute the partial log
likelihoods for every stream and every codebook entry. These par-
tial log likelihoods have to be computed only once for each frame.
Then during emissions computation only additions are performed.
For 3-D streams the reduction of total number of operations is
about 66%. The emission computation algorithm is shown below.

1. Precomputation: Partial log likelihoods H (ism,k) (called
in [6] atom) for the first three components of feature vector are

Il-282

computed for all of 256 codebook entries and stored in the mem-
ory. This step is repeated for the next three components, etc.

2. Emission computation: The emission log likelihood Bsm(X)
is computed using the following equation:

K
Bsm(X) = Csm+ 3 H(fismK)
k=1

where Csm denotes the penalty (weight) of Gaussian m within state
s; flsm denotes the code that points to the codebook; H(fism,k)
denotes the precalculated partial log likelihood for codebook entry
m and stream k.

The Gaussian penalties Csm are 16-bit integers. In order to
reduce further the model storage requirements the penalties are
coded using scalar quantization with a 256-values codebook. In
our tests such coding does not increase the WER.

SDCHMMs with penalties coding are memory effective as it
is only necessary to store the indices and the codebooks. The
memory requirements of SDCHMM with 3-D streams are ana-
lyzed below. The shared codebook occupies 768 bytes, the whole
set of Gaussian indices occupies 9600 bytes, the set of penalty in-
dices occupies 1200 bytes and the penalty codebook occupies 512
bytes. Thus 12080 bytes of memory are required to store the quan-
tized stream-based models. Note that the CDHMM with the same
number of Gaussians takes up 31200 bytes. Therefore the relative
memory saving done by SDCHMM with 3-D streams is 61%.

5. TEST RESULTS

5.1. Recognition Results

The comparison of the recognition performance of CDHMMs with
that of 3-D stream SDCHMMs is shown in Table 2. We have tested
CDHMMs and SDCHMMs on several tasks in German language
that shows to be difficult from an ASR point of view (see Table 1).
The results of the experiments for Spanish language are similar as
for German language [5].

CDHMMs and 3-D stream SDCHMMSs were tested with the
following recognition sets of German language: VM62 (Moice-
Mail) and SDII-mbl-apl are isolated command word tasks with
the vocabulary of size of 62 and 83 words respectively. SDII-c_d,
SieTill-c_d, SDII-mbl-c_d and SDC-c_d are continuous digits (c_d)
recognition tasks. The test sequences are of size of 500-13600
sentences. The utterances were recorded in different noise envi-
ronments (telephone and mobile phone networks, moving cars).
The databases VoiceMail, SpeechDat Il / 1| mobile / Car and Si-
eTill are available from ELRA ([7]).

The continuous digits recognition tasks SDC-c_d (recorded in
moving cars) and SDII-mbl-c_d (recorded via mobile phone net-
work and partially in moving cars) have the highest WERs. Note
that all shown results are based on general purpose phoneme based
acoustic models. Whole word models trained on digit material can
of course result in lower error rates but are not investigated here.

From the recognition results of SDCHMMs and CDHMMs
it can be seen that the recognition performance does not de-
grade. Thus, SDCHMMs have the similar recognition accuracy as
CDHMM s but require less memory and allow to reduce the recog-
nition time.

5.2. Performance Analysis

Portable devices, such as mobile phones and organizers, support
dynamic clock rate configuration per software. Thus the battery
life can be extended by lowering the clock rate in idle it also
depends on the computational requirements of the applications.
Since the power consumption and performance can be optimized
for each task knowing the processor load factor of an application
becomes very important.

Given that a program i consumes C; clock cycles to run on a
processor with the clock rate f its execution time E; can be com-

puted as follows
1
Ei =Cj x T 1)
Most programs written for embedded systems must run under
real-time constraints. They are typically implemented as periodic
tasks with a constant interval between requests, Dj, called dead-
line. Each task must be completed before the next request for it
occurs, so the constraint on the execution time is E; < Dj. We can
ask what is the minimum clock frequency f; for the deadline to be
met, and obtain

f>2 — =2 @)

For our speech recognizer every 15 ms a new feature vector is
extracted from the digitized speech signal. Then the corresponding
emission probabilities are computed and the Viterbi search scores
for all vocabulary entries are updated. The deadline D is set by
the frame shift of 15 ms. As mentioned in Section 2 the feature
vectors could be calculated by the DSP, while the emission proba-
bility computation and the Viterbi search could run on the MCU.
As the optimizations presented in this paper are not related to the
calculation of feature vectors, we focus our performance analysis
solely on the behavior of the code running on the MCU.

A critical performance measure for embedded systems is their
throughput, i.e. the number of tasks that can use the processor in
time-sharing without violating their respective deadlines.

For instance, for a voice-controlled MP3-player application it
would be of interest to know if the speech recognition and the
MP3 audio decoder could run simultaneously. Generally, let us
assume that there are n different tasks which have execution times
Ej,..., Enand the same deadline D.

Since the processor must finish executing all the tasks before
the deadline D, the following relation must be satisfied

En

E1
Ei+...+En<D — 4.+ =<1.
14+, +En<D = D45l <

If the n deadlines are different, then we obtain the constraint
—1+—+...+—§1. ©)

Substituting in the above equation the clock frequencies and cycle
counts from Eqgs. 1 and 2, we arrive to

fi+fo+...+f<f.)]

The ratio p; = Ej/D; = fi/f is called the processor load factor
of the task i.

Eq. 3 (or equivalently Eq. 4) gives the necessary and sufficient
condition for the n tasks to be schedulable.

We chose to benchmark our recognizer on the ARM RISC
(Reduced Instruction Set Computer) microcontroller which is

Il-283

HMM word error rate [%]
VM62 | SDIl-cd | SieTill-c.d [SDII-mbl-c.d | SDIl-mbl-apl | SDC-c_d
CDHMM 6.6 7.6 9.9 11.6 6.6 13.4
SDCHMM 3-D 7.0 8.4 10.3 12.4 7.5 13.6

Table 2. Comparison of 3-D stream SDCHMM and CDHMM recognition performances.

HMM Emission Prob. Calculation [MHz] Viterbi Search [MHz]
ARMIOTDMI | ARM920T | ARM940T | ARM9TDMI | ARM920T | ARMO940T
CDHMM 26.2 28.9 30.3 8.3 9.1 13.5
SDCHMM 3-D 7.7 8.2 12.7 8.3 9.1 13.5

Table 3. Minimum computational requirements in MHz for a 30-word vocabulary.

widely used in embedded systems [8]. For this task we employed
the ARM Instruction Simulator (ARMulator) supplied with the
ARM Developer Suite v1.2.

ARM cores come in two basic flavors, Von Neumann and Har-
vard, depending on the memory access architecture. Von Neumann
cores (e.g. ARM7TDMI family) use a single bus for both data and
instruction accesses, while the Harvard cores (e.g. ARM9TDMI
family) have a separate data and instruction bus, thus allowing si-
multaneous data accesses and instruction fetches.

Harvard cores are not normally employed in their raw state,
but typically a cached variant with a Harvard cache architecture
and a Von Neumann memory interface is used. However, bench-
marking raw Harvard cores using an ideal zero wait-states memory
model can be useful as an indication of the maximum achievable
performance for a cached variant assuming 100% cache efficiency.

To have a reference for the maximum performance, our bench-
marking is first done on the ARM9TDMI uncached core using
the default ARMulator’s model of zero wait-states 32-bit memory.
Then we repeat the benchmarking on ARM920T (16 KB data and
16KB instruction cache) and on ARM940T (4KB data and 4KB in-
struction caches), for a system configured with the processor clock
rate of f = 100 MHz, the bus clock rate of f,,s = 50 MHz, and
a 32-bit memory with 100 ns non-sequential acess time and 20 ns
sequential access time. The memory introduces 4 wait states for
non-sequential R/W and 1 wait state for sequential R/W access.

We used in our benchmark a 5 s long utterance and a vocab-
ulary of 30 words. Table 3 shows the minimum computational
requirements, expressed in MHz, for real-time operation of the
emission probability calculation and the Viterbi search using the
CDHMM and SDCHMM with 3-D streams. The dependency of
the processor load factor on the system configuration, e.g. cache
size and memory access times, are clearly visible.

6. CONCLUSIONS

In this paper we presented the Siemens VSR speech recognizer.
The system features context dependent Continuous Densities Hid-
den Markov phoneme Models that allow excellent recognition
rates with arbitrary vocabularies. CDHMM parameters are com-
pressed using our recently proposed 3-D stream based coding. The
HMM acoustic models take up only 12 kilobytes of flash stor-
age. Onan ARM microcontroller, VSR requires about 16 MHz for

real-time computation of the emission probabilities and the Viterbi
search with a vocabulary of 30 words.

The flexibility of defining vocabularies and the small mem-
ory footprint of the acoustic models combined with the low-power
requirements and the competitive recognition rates in noisy envi-
ronments qualify the Siemens VSR as a high-quality speech rec-
ognizer for mobile phones.

7. REFERENCES

[1] S. Deligne et. al, “Low-resource speech recognition of
500-word vocabulary,” in Proc. European Conference on
Speech Communication and Technology (Eurospeech), 2002,
pp. 1833-1836.

E. Cornu et. al, “An ultra-low power, ultra miniature voice
command system based on hidden markov models,” in Proc.
IEEE Int. Conf. on Acoustics, Speech, and Signal Processing
(ICASSP), 2002, pp. 3800-3803.

U. Ziegenhain and J. G. Bauer, “Triphone tying techniques
combining a-priori rules and data driven methods,” in Proc.
European Conference on Speech Communication and Tech-
nology (Eurospeech), 2001, pp. 1413-1416.

E. Bocchieri and B. K.-W. Mak, “Subspace distribution clus-
tering hidden markov model,” IEEE Transactions on Speech
and Audio Processing, vol. 9, no. 3, pp. 264-275, 2001.

S. Astrov, “Memory space reduction for Hidden Markov Mod-
els in low-resource speech recognition systems,” in Proc.
Int. Conf. on Spoken Language Processing (ICSLP), 2002, pp.
1585-1588.

A. Aiyer, M. J. F. Gales, and M. A. Picheny, “Rapid likeli-
hood calculation of subspace clustered gaussian components,”
in Proc. IEEE Int. Conf. on Acoustics, Speech, and Signal Pro-
cessing (ICASSP), 2000, pp. 1519-1523.

“ELRA internet site,” 2000, http://ww.icp.grenet.fr/
ELRA.

Application Note 93, “Benchmarking with ARMulator,”
March 2002, ARM DAI 0093A, © ARM Ltd.

(2]

(3]

[4]

[5]

[6]

[7]
(8]

Il-284

