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ABSTRACT

This paper presents the classification performance of an
automatic classifier of the electrocardiogram (ECG) for the
detection of normal, premature ventricular contraction and
fusion beat types. Both linear discriminants and feed forward
neural networks were considered for the classifier model.
Features based on the ECG waveform shape and heart beat
intervals were used as inputs to the classifiers. Data was
obtained from the MIT-BIH arrhythmia database. Cross-
validation was used to measure the classifier performance. A
classification accuracy of 89% was achieved which is a
significant improvement on previously published results.

1. INTRODUCTION

Studying the electrocardiogram (ECG) signal provides an insight
to understand life-threatening cardiac conditions. This typically
is centered on the study of arrhythmias, which can be any
disturbance in the rate, regularity, and site of origin or
conduction of the cardiac electric impulse. Not all arrhythmias
are abnorma or dangerous but some do require immediate
therapy to prevent further problems.

A subject's ECG information can be recorded using a portable
Holter monitor which is worn by the subject. A Holter monitor
typically employ a few electrodes and store a recording of the
subject's heart rhythm as they go about their daily activities over
a 24 to 48 hour period. The Holter monitor is then returned to a
cardiologist who examines the recordings and determines a
diagnosis. Examining these recordings is a time-consuming and
hence any automated processing of the ECG that assists the
cardiologist in determining a diagnosis would be of assistance.

Beat classification is an important step in arrhythmia analysis as
many arrhythmias simply consist of a single aberrant beat as
opposed to a sustained rhythm disturbance. A beat classifier
attempts to classify a heartbeat into a normal beat or into a class
representing one of many different arrhythmias. The rhythm of
some ECG signals can be determined by knowing the beat
classification of a number of consecutive beats in the signal.

Beat classification is a candidate task for automatic pattern
recognition as it involves the labeling of beats on the basis of
ECG waveform shape and tempora position relative to
surrounding beats. Other authors have described previous work
on this problem

Senhadji et a. [1] explored the use of the discrete wavelet
transform to discriminate between three beat types. Using the
Daubechies' orthogonal wavelets, Spline wavelets, and Morlet
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type wavelets they employed a beat classifier modelled on linear
discriminants processing input features derived from
distributions of energy and local extrema in the details
corresponding to different levels of decomposition. Their study
was conducted on a database set of 53 beats consisting of 20
normal, 13 premature ventricular contractions and 20 beats with
an S-T segment deviation. The data was divided into training (25
beats) and testing (28 beats) data sets. The classifier achieved an
accuracy of 98% in classifying the beats and was found to
outperform a classifier processing features derived from the
maximum magnitude of the P, QRS, and T waves, the P-R and
ST intervals and power spectral density measurements. Until the
results are validated on a significantly larger database it is
difficult to draw any rea conclusions from this work.

The beat classifier designed by Yeap et a. [2] was modelled
using a feed forward neural network. The classifier's
performance was tested on the American Heart Association
database; beats were classified into norma or premature
ventricular contractions beat types. Four of the 80 available ECG
records were used to train the classifier; the remaining records
(excluding the ventricular tachycardia records) were used to test
the classifier. The neural network consisted of two hidden layers
each with 20 processing units. The input feature vector consisted
of five features: the QRS width, the R wave's amplitude, a
measure of the QRS offset, the T wave dope and a measure of
the R-R interval with respect to its mean value. In testing, an
accuracy of 93.3% was achieved with a sensitivity of 67.6% and
a specificity of 97.9%.

The classification rates of automatic beat classifiers presented in
the literature to date have not been high enough for the classifiers
to gain wide spread clinical acceptance. Hu et al. [3] notes that
certain beat types are sufficiently rare that to date not enough
ECG data has been collected to obtain a representative sample of
the these populations and hence classifier training procedures are
unable to properly model these classes. In order to boost the
classification performance, they suggested customising a beat
classifier to a specific patient (known as a loca classifier) and
then combining it with a global classifier designed from a large
database of ECG signals. They modeled a global classifier on a
feed-forward neural network with one hidden layer of seven
processing units. They used self-organising maps and learning
vector quantisation to design the loca classifier. The two
classifiers were then combined using a mixture of experts (MOE)
approach. The MIT-BIH Arrhythmia database was used to
examine the MOE classifier. Thirteen recordings were used to
train the global classifier and 20 recordings were used to simulate
the records of 20 patients. The feature vector consists of the QRS
width, the instantaneous RR interval, the average R-R interval
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and 9 elements representing the QRS template and the classifier
considered normal, premature ventricular contraction and fusion
beats only. The global classifier achieved an accuracy of 62% on
the second set of recordings. The local classifier significantly
enhanced the performance of the global classifier with the MOE
classifier achieving 94% accuracy on the same data set. In
practice this method requires a cardiol ogist to annotate a segment
of a patient-specific ECG in order implement the MOE approach.
The main drawback of this approach therefore lies in the expert
input required to customise this approach to each patient.

2. AIM

The aim of this work was to investigate the performance of an
aotomatic beat classifier categorising ECG recordings from the
MIT-BIH Arrhythmia database into different beat classes. For
this study the same classes as used by Hu et al. [3] were
considered i.e. norma (N), premature ventricular contraction
(PVC) and fusion (F) beats. Our goal was to produce a classifier
requiring no expert input with similar performance to the MOE
approach used by Hu.

Two types of classifier models were considered: a linear
discriminant model and a feed forward neural network model. In
assessing the performance the following criteria were considered:
1) Division of the available data to obtain unbiased performance
measures 2) the processing required to extract the features, 2) the
processing requirements of the classifier, 3) the class sensitivities
achieved and 4) the overall accuracy achieved.

3. METHODS

Data from the MIT-BIH Arrhythmia database [4] was used in this
study, which includes recordings of many common and life-
threatening arrhythmias along with examples of normal sinus
rhythm. The database contains 48 recordings each containing two
ECG signals. The data is band-pass filtered at 0.1-100Hz and
sampled a 360Hz. There are over 109,000 labelled ventricular
beats from 13 different beat classes. The ECG data associated
with beats belonging to the normal, PV C and fusion best classes
was selected. The size of the classes is respectively 75,054; 7,129
and 803 bests.

Due to the large numbers of normal and PVC class examples
relative to the fusion class we weighted the contributions of each
example to the training process according to its class as follows.
The examples from these classes were weighted so that both
classes contributed the eguivalent of 1000 examples to the
training process. To weight a class the required weighting rate
(w) was calculated and then the contribution to the likelihood
error function data of each example of that class weighted by w.
For example, the norma class contains 75,054 beats so each
example was weighted with a factor of 1000/75,054 = 0.0133 in
the likelihood function. For the fusion beat class no weighting
was used. The purpose of the weighting was to ensure that the
large classes did not dominate the learning process.

ECG segmentation. The arrhythmia database provides QRS
detection times for al classified beats and these were used as a
starting point for the signal processing used in this study. The
QRS detection times occur at the instant of the major local

Beat ECG signal 1 ECG signal 2
Feature interval| int. mag. area flag|int. mag. area flag
pre RR
post-RR
avg. RR
local avg RR
P-R
QRS
Q-T
P wave
Q wave
R wave
S wave
R' wave
S' wave
T wave

<< <=

<< << <<=<=<=
<< << <<=<=<=

<< =<=<=<=<=
<< =<=<=<=<<
<< =<=<=<=<<
<< =<=<=<=<<

Table 1: Features processed by the classifiers
Key: int. — interval; mag. — magnitude. Y — feature included

extremum of the QRS complex (i.e either the time of the R wave
maximum or S wave minimum).

The ECG segmentation algorithm of Laguna et d [5,6] was used
to provide estimates of QRS onset and offset and T wave offset
times and, if present, the P wave onset and offset time for the two
ECG signals provided for each annotated beat of the database.
This agorithm has been validated on the CSE multilead database
[5] and the MIT-BIH QT database [6]. In both cases the accuracy
of the method in determining waveform boundary points was
comparable with the inter-expert variation.

Feature extraction. Table 1 summarises the features used to
characterize the ECG in this study. Features relating to RR
intervals were calculated for each beat and features relating to the
P, QRS and T waves were calculated for the two ECG signals
available for each beat. A total of 52 features were calculated for
each beat.

RR interval features. RR intervals were defined as the interval
between successive heart beats. Heart beats were identified by
locating the QRS complexes in the ECG. Due to poor signa
quality resulting in heart beats being missed some of the RR
intervals generated were physiologically unreasonable. All RR
intervals with duration grester than 2 seconds were replaced with
acode indicating the interval was invalid.

Four features were extracted for each beat from the RR sequence.
The pre-RR interval was the RR interval between a given beat
and the previous beat. The post-RR interval was the RR interval
between a given beat and the following beat. The average RR
interval was the mean of the valid RR intervals for a recording.
This feature had the same value for all beats in a recording.
Finally, the loca average RR interva was determined by
averaging the valid RR intervals of the ten RR intervals
surrounding the beat.

P wave features. Five features relating to the P-wave were
determined for each ECG signal for each beat. The first feature
was a binary flag indicating the presence or absence of the P
wave. When a P wave was not present the following three
features were set to a code indicating their value was invalid
otherwise they were calculated as follows. The P-R interval was
defined as the time interval between the P wave onset and the
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QRS onset. The P-wave duration was the time interval between
the P-wave onset and P-wave offset. The P-wave area was the
area enclosed by the P-wave relative to the P-wave baseline. The
P-wave amplitude was the amplitude of the maximum deviation
of the P-wave from the P-wave baseline. The P-wave baseline
was calculated using the procedures recommended by the CSE
working party for ECG waveform measurement [7].

QRS complex features. Sixteen features relating to the QRS
complex were determined for each ECG signal for each beat.
Before features were extracted the QRS complex for a given beat
was segmented into its component waves using the standards for
waveform determination and naming recommended by the CSE
working party [7]. After determining the QRS complex baseline
any Q, R, S, R and S waves were identified. Any waves beyond
the S wave in the QRS complex were ignored. For each
identified wave the following features were calculated. The wave
duration defined as the time interval between the onset and offset
of the wave. The wave amplitude defined as the maximum
deviation of the wave from the QRS complex basdine and the
wave area defined as the area enclosed by the wave between its
onset and offset relative to the QRS complex basdline. In the case
of a wave not being identified the wave duration, amplitude and
area were set to a code indicating an invalid measurement. The
sixteenth feature was the QRS duration which was defined as the
timeinterval between the QRS onset and QRS offset.

T wave features. Three features relating to the T-wave were
determined for each ECG signal for each beat. The Q-T interval
was defined as the time interval between the QRS offset and the
T-wave offset. The T-wave area was the area enclosed by the
ECG trace between the QRS offset and the T-wave offset relative
to the QRS complex baseline. The T-wave amplitude was the
amplitude of the maximum deviation of the ECG signal between
the QRS offset and T-wave offset from the QRS baseline.

Feature sets. Two feature sets were formed each with 28
features. Feature set 1 (FS1) contained the RR interval features
and the P, QRS and T wave features derived from ECG signal 1.
Feature set 2 (FS2) contained the RR features and the P, QRS
and T wave features from ECG signal 2. These two feature sets
were formed to determine the effect of lead placement on
classification performance.

Classifier models. Two statistical classifier models were chosen
in this study so that the effect of classifier model on performance
could be examined.

Linear discriminants (LD) [8] partition the feature space into the
different classes using a set of hyper-planes. The parameters of
this classifier model were fitted to the available training data by
using the method of maximum likelihood. Using this method the
calculations required for training is achieved by direct calculation
and is extremely fast relative to other classifier building
techniques such as neural networks. This model assumes the
feature data has a Guassian distribution for each class.

Neural networks (NN) [8] implementing logistic discriminants
impose fewer conditions on the feature space partitioning than
linear discriminants. The model assumes the feature data has a
class distribution belonging to one of the family of exponential
distributions. This family includes many of the common
distributions such as the Gaussian, binomia, Bernoulli and

Poisson. Direct optimisation of the model parameters is not
possible and an iterative numerical optimisation technique is
required. The logistic discriminant model was implemented with
feed-forward neural network. A network with one layer of hidden
units and a softmax output stage was used and the network
parameters optimized by minimizing the (negative) log-
likelihood error function. The number of hidden units controls
the flexibility of the feature space partitioning with more hidden
units alowing greater flexibility. Optimisation of the parameters
(weights) of the network was achieved with a gradient-descent
algorithm with an adaptive learning rate and momentum
constant. Training was stopped when the successive iterations no
longer resulted in a significant reduction in the error function.
The weights of hidden units were optimised with the back-
propagation algorithm.

In response to input features, both models calculate a probability
estimate of each class. The fina classification is obtained by
choosing the class with the highest probability estimate.

Classifier's performance. In this study the performance of the
classifier is quoted using the specificity, the class sensitivities
and the overal accuracy. The sensitivity of the classifier to a
particular beat class is the fraction of beats in the class that are
correctly classified. The specificity is the sensitivity calculation
applied to the normal class. The overal accuracy is the fraction
of the total number of beats classified correctly.

Estimating the classifier performance. Training of the classifier
involves the optimisation of classifier model parameters using
available training data hence care must be taken when estimating
the classifier performance to obtain unbiased figures. One
approach to this problem is to use independent data for training
and testing. The n-fold cross validation scheme achieves this by
randomly dividing the available data into n approximately equal
size and mutually exclusive "folds'. For an n-fold cross
validation run, n classifiers are trained with a different fold used
each time as the test set, while the other n-1 folds are used for the
training data.

Combining Classifiers. A classification based on processing
information from both feature sets simultaneously was obtained
by combining the posterior probabilities obtained from each
feature set. To classify an ECG beat, the classifier processes the
feature information of each ECG signal separately and a set of
probabilities for each beat is determined. To obtain the fina
classification, the probabilities for each class are averaged across
the two ECG signas and the class with the highest average
probability estimate chosen. By using diagnostic information
from all available signals more efficient use of the available ECG
diagnostic information is made.

Thresholding the posterior probabilities. The outputs of the
two classifiers represent the posterior probabilities of each class
and hence provide a confidence in the decision. A useful post-
processing step is to threshold the outputs so that if none of the
outputs exceed the threshold then no attempt is made to classify
the beat.

4. RESULTS

The feature data was divided into 48 folds with each fold
containing data from one record. Seven hidden units were used in

In-271




Test Train

Feature Set Model | Acc N PVC F Acc
FS1 LD 85.7 | 86 88 79 | 88.8

NN 88.5 | 88 92 65 | 95.3

FS2 LD 86.3 | 87 84 49 | 87.9

NN 86.3 | 87 90 14 | 93.7
FS1+FS2 LD 89.1 | 89 88 68
NN 89.1 | 89 94 60

Table 2: Classification results for the different feature set and
classifier model combinations as estimated using cross-
validation. The accuracy, specificity and sensitivies are shown
for the testing set while only accuracy is shown for the training
set. All figures are percentages.

the NN model. For the LD classifier the prior probabilities were
set to 1/3 for each class.

Results are shown in Table 2. Separate classifier performance
figures were obtained for the four combinations of classifier
models and ECG signals. Results for the two classifier models
processing both feature sets simultaneously are also shown. The
effect of varying the posterior probability threshold on the
overal classification rate was investigated and the results are
shown in Figure 1. Note that the x-axis is shown in terms of
percentage of records classified and this decreases as the
threshold is raised.

5. DISCUSSION

There was only a moderate difference in the classification
performance obtained from the classifiers for the two feature sets.
For FS1 the LD classifier resulted in an accuracy of 85.7% and
for FS2 the accuracy was 86.3%. The main difference was the
lower sensitivity result for the fusion beat class of 49% of FS2
compared to 79% for FS1. A similar trend was observed for the
NN classifier results with the sensitivity for fusion beat class
being 14% for FS2 compared to 65% for FS1. The overal
accuracy performance of the NN classifier was 1.8% higher than
the LD classifier for FS1 and the same overall accuracy was
obtained for both classifiers for FS2 (86.3%).

Combining the posterior probabilities from the two feature sets
proved to be a good strategy with the LD and NN classifier both
obtaining an overall accuracy of 89.1%. This result is
significantly better than the figure of 62% obtained by Hu et al.
[3] for their global classifier and only 5% less than the result they
obtained for MOE approach which required expert annotation of
asection of the ECG before final classification.

As the posterior probability threshold is raised the number of
beats classified reduces and the classification accuracy increases.
At the point where 50% of beats are classified the accuracy for
FS1, FS2 and FS1+FS2 is approximately 97% and any further
increase of the threshold makes only a smal increase in the
accuracy.

6. CONCLUSION

The choice of classifier model did not have a significant
influence on the overall classification results. Processing ECG
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Figure 1: Plot of classification accuracy versus the percentage of
records classified as the posterior probability threshold is varied
for the LD classifier.

data from the two ECG signds simultaneously the linear
discriminant and the neural network model achieved an overall
accuracy of 89.1%. The sensitivities of the linear discriminant
model were more evenly balance than the results from the neural
network model. The results obtained were a significant
improvement on comparable classifiers reported in the literature.
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