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ABSTRACT

This research aims at developing a fully automatic Computer-
Assisted Diagnosis (CAD) system for lung cancer screening
using chest spiral CT scans. One thousand subjects are enrolled
in a chest cancer screening program in Louisville, KY, USA,
which aims at quantification of the effectiveness of low dose
spiral CT scans for early diagnosis of lung cancer, and
evaluating its possible impact on improving the mortality rate of
cancer patients. This paper presents an image analysis system for
3-D reconstruction of the lungs and trachea, detection of the
lung abnormalities, identification/classification of these
abnormalities with respect to specific diagnosis, and distributed
visualization of the results over computer networks. We present
two novel approaches for segmentation of the lung tissues from
the surrounding structures in the chest cavity, and detection of
the abnormalities in the lungs. The segmentation algorithm is
hierarchical; it starts with isolating the background from the
chest cavity, then isolating the lungs from the surrounding
structures (e.g., ribs, liver, and other organs that may appear in
chest CT scans). Abnormalities in the lungs are detected by
analyzing the segmented lung tissues and extracting the isolated
lumps that appear in various connected regions. 3-D
reconstructions are also generated for these abnormalities, in
order to be used for subsequent identification/classification
steps. Results of these algorithms are shown on 50 subjects, and
have been evaluated vs. the radiologists. The image analysis
approach presented in this paper has provided comparable
results with respect to the experts. The approach is quite fast,
and lends itself to distributed visualization over computer
networks.

1. INTRODUCTION

Lung Cancer remains the leading cause of mortality cancer. In
1999, there were approximately 170,000 new cases of lung
cancer [1]. The 5-year survival rate from the diseases is 14% and
has increased only slightly since the early 1970s despite an
extensive and costly research effort to find effective therapy.
The disparity in survival between early- and late-stage lung
cancer is substantial, with a 5-year survival rate of
approximately 70% in stage 1A disease compared to less than
5% in stage IV disease according to the recently revised Lung
Cancer Staging criteria [1]. The disproportionately high
prevalence and mortality of lung cancer has encouraged attempts
to detect early lung cancer with screening programs aimed at
smokers. Smokers have an incidence rate of lung cancer that is
10 times that of nonsmokers and account for greater than 80% of
lung cancer cases in the United States [1]. In the recent years, a
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wealth of new technologies has emerged that are capable of
detecting lung cancer at an early stage. These technologies
include low-dose spiral CT (LDCT). LDCT has been explored as
a tool for detecting early lung cancer in symptomatic individuals
at a risk for this disease, with encouraging preliminary results
[1]. LDCT can provide high spatial and high temporal
resolution, excellent contrast resolution for the pulmonary
structures and surrounding anatomy, and the ability to gather a
complete three-dimensional (3-D) volume of the human thorax
in a single breath hold [2].

The jewish hospital cancer screening and early detection study is
a randomized trial with the following specific aims:

1. Determine whether the use of spiral ct scanning of the chest
detects early lung abnormalities that lead to cancer, which are
not visible on chest x-rays in patients at high-risk for
developing lung cancer; and

2. Determine whether annual spiral chest ct scans of the chest in
high-risk patients result in an improvement in survival

3. high-risk patients result in an improvement in survival

The Jewish Hospital document [3] details the approach followed
in the ongoing Chest Cancer Screening Program. The document
also states that the reasons behind the use of the dual modality
approach (X-ray and CT) in the screening programs. The
primary purpose of this screening study is to determine whether
there is sufficient evidence to warrant routine screen for lung
cancer via CT scanning. Patients will be sequentially accrued
into the study. Using a randomized block design, patients will
be placed in a chest x-ray only group or CT scanning group.
The data will be reviewed yearly and the study will be stopped if
sufficient evidence exists to conclude that survival is greater in
the CT scanned group with p-value of less than 0.05. Once 1000
patients have been accrued, the data will again be analyzed for
the next five years. Again, the study will be stopped if there is
sufficient evidence to conclude that survival is greater in the CT-
scanned group with a p-value of less than 0.05. At the end of
five years, the full cohort will be studied to determine whether
sufficient evidence exists or if additional patients need to be
accrued [4]. Other screening chest cancer studies in the US
include ELCAP [4] and ACRIN [5]. The Jewish Hospital
screening program lends itself more into classification of
calcified and non-calcified abnormalities in the Kentucky area
by the Ohio Valley.

A number of groups have developed techniques for computer-
assisted segmentation of pulmonary CT images (e.g., [6]-[9]). In
[6], manually traced boundaries were used to estimate regional
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gas and tissue volumes in the lungs of normal subjects. On two-
dimensional (2-D) transverse slices of a pulmonary CT dataset,
the natural contrast between the low-density lungs and
surrounding high-density chest wall can be used to guide image
segmentation. In [6][9] 2-D edge tracking was used to find the
boundaries of the left and right lungs. The disadvantage of this
algorithm is that errors can occur in detecting the edges; this
error increases as the contrast of the CT decrease.

In this paper, we describe a fully automatic method for
identification and visualization of the lungs and trachea for
isolating blatant abnormalities in the lung, which spread over
several slices in the spiral CT scans.

2. METHODS

2.1 DATA ACQUISITION

In Jewish hospital project, 1000 symptomatic patients greater
than 60 years of age with positive smoking history (> 10 pack-
years) will undergo screening with LDCT and chest
radiography. The LDCT was performed with the following
parameters: Slice thickness of 8 mm reconstructed every 4 mm,
Scanning pitch 1.5. Our method consists of four main steps: 1)
lung extraction; 2) abnormality detection; 3)
identification/classification; and visualization.

2.2 LUNG EXTRACTION

The goal of the lung extraction step is to separate the voxels
corresponding to lung tissue from those belonging to the
surrounding anatomical structures. Since the gray level of the
background is close to the gray level of the lung tissues, it is
advantageous to remove the background (all pixels outside the
chest cavity) from each slice before doing extraction of the lung
regions, in order to increase the accuracy of segmentation.
Background is simply removed as follows: starting from the
edges of the CT slices, all pixels that have similar gray levels,
within a certain range, are removed. This process is applied, on
each slice, from the left to right corners (i.e., horizontally or
row-wise) as well as vertically (column-wise), in order to cover
the whole slice. This simple approach has been shown to be
quite adequate for removal of the background pixels outside the
chest cavity region.

After removing the background from each slice, we assume that
each CT slice (image) contains only two types of pixel: 1) Lungs
- pixels within very dense regions in the CT scan. These pixels
have an average gray level ,.; and 2) other tissues/organs — low
density pixels within the lungs and the surrounding regions (e.g.,
ribs, heart, liver, and other parts in the chest cavity). These
pixels have average gray level p,

The segmentation algorithm consists of two steps. The first step
is to select the optimum decision level to create initial labeling
image that will be used in step 2. The segmentation decision
level is selected through an iterative procedure. Similar to
existing approaches in the literature (e.g., [10]), the new decision
level for step i + 7 is updated iteratively until there is no change
using the following formula:

i+1 i i
T 7(ub+ pn )/2 (N

The initial decision level 7 “can be selected based on the CT
number for pure air and CT number for pixels within the chest
wall/body. In our experiments, the initial decision level has been
arbitrary selected. Due to the decision level process some

information may be lost due to region discontinuities so that the
step 1 is not enough to create accurate segmentation for the lung
regions, So the next step of our algorithm is to use Gibbs
Markov Random Field (GMRF) model to extract the lung tissues
from each slice.

A typical outline for statistical-based image segmentation is as
follows: The observed image process G is modeled as a
composite of two random processes, a high level process G" and
a low level process G', that is, G = (Gh s Gl). Each of the three
processes is a random field defined on the same lattice S. The
high level process (the labeling or coloring process which
computed from step 1) G is used to characterize the spatial
clustering of pixels into regions. Fig. (1) shows Neighborhood
system for Gibbs-Markov random field up to order 5 for
rectangular lattice.

3
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The low level process (pixel process) G’ describes the statistical
dependence of pixel gray level values in each region. The
maximum a posteriori (MAP) segmentation involves the
determination of g" that maximizes P(G" =g" |G =g) with
respect to g" . In order to carry out the MAP segmentation
algorithm. one needs to specify the parameters in the two
processes. A popular model for the high level process is the
GMREF. In this paper we select the model for the low level
process is Gaussian model. In order to estimate the mean and
variance for each class for low level image we will use the
Expectation-Maximization (EM) algorithm. In order to select the
initial value of the mean for each class we compute the
histogram for the low level image and select the values
corresponding to the two peaks in the histogram. For binary
classification (two classes), we arbitrarily select the initial
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iteration stops when the new parameters are equal to the old
parameters or the change is smaller than certain tolerance.

By using the iterative conditional mode (ICM) approach [11],
we can classify any pixel g using the fact that P(C/g) is
proportional to P(g/C;,)P(Cy/b); i.e.,

P(C/g)a P(g/Ci)P(Ci/ny) “4)
where m is the neighbor set to site S belonging to class C,
P(Ci/n;) is computed from the following equation

'
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where m is the portion of 1 belonging to class C;,
Since the algorithm compares between probabilities to find a
decision, Z can be neglected. The parameter A is the clique
potential- we will set it as an arbitrary negative parameter. There
exist various approaches to estimate the clique potentials in the
GMREF literature (e.g., [11]) in this paper we will select A
empirically. For example A = 0 corresponds to no dependence on
the neighbors, i.e Bayes classifier. With [A[>0, the larger the
value of [A|, the stronger is the dependence on the neighbors, and
the more homogeneous results. Finally P(g/C;) is computed from
the following equation

_(guc)’
1 20%[

P(g/C;)= (6)

e
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where x4 ,and o-é are the mean, and variance for class C;,
1 1

2.3 DETECTING ABNORMAL TISSUES

We assume that the segmented lung volume is formed of two
types of voxels: normal, which describes the healthy lung tissue,
and abnormal, which describes all abnormalities in the lungs, the
bronchi and bronchioles.

The first step to detect the abnormalities is to remove the normal
tissues. The gray level histogram shows the distribution of the
intensity of lung, which is usually a homogenous region. Lung
abnormalities show in the histogram of the CT slices as bright
(or homogeneous) areas with distinct gray levels from the
surrounding lung tissues. Therefore, it is logical to assume that
the abnormalities will correspond to the peaks (usually one) in
the gray level histogram. Therefore, as a first step in isolating
the abnormities, we threshold all pixels having a gray level
below the gray level value of the peak of the histogram. These
pixels will correspond to normal lung tissues.

The abnormalities, in general, appear as elliptical-shaped regions
in the lungs. These elliptical shapes can be isolated by the
analysis of the distribution of the gradient maxima in the
neighborhood of each pixel. Ellipses and rings are patterns
symmetrical relatively to their centroids. In the case of the polar
co-ordinates, the expression of the intensity and spatial
distribution of the most significant edges has characteristics
properties of symmetry and uniformity. In the case of CT
images, the gradient should show local maxima at the point on
the border of the bronchi, bronchioles, and abnormal tissues.

Let I(x,y) be the image after removing the normal tissues, we
consider the local polar co-ordinates (r, 0) centered at (X,, Y,),
and a neighborhood of Q of radius r,. the maximum of the
intensity gradient within along direction 0 is defined as

e(0)[12]:
max ol
e(9)0<r<e(£ (rse)) (7

With its corresponding radius defined as r(0). The size 1, is
defined as the maximum radius of abnormality that appears in
the CT scans. Fig. 2 shows a schematic representation of the
definition of e (0) , and 1(0) for a pixel (x,, y,) located inside an
elliptical ring, shown in Fig. (2-a). By searching along direction
dy, the gradient maximum e (0) at distance r (0) relatively to (X,,
¥o), shown in the gradient profile in Fig. (2-b). We note that e(0)
is the same for bronchi, bronchioles and abnormal tissues
especially after we remove the normal tissues. In order to

distinguish between the abnormal tissues and bronchi and

bronchioles we define the following three parameters

e The value R(x, y) measures the uniformity of the radial
distribution of the edges. It can be computed as

R (x, y) =max (r (0)) — min (r (0)) ®)

e The value C(x, y) measures the connectivity that the pixel (x,
y) appear in the same location in different slice

e The value P(x, y) measures the position of the pixel (X, y)
right lung, or the left lung edges. P(x,y) is computed from the
following equation.

P(x,y)=min[abs(I(x,y)-R_E(x1,yr)),abs(I(x,y1)-L_E(x1.y))] (9)

Where I(x,y) is the current pixel which want to classify if it is

normal or abnormal tissues, R_E(x,y,) is the position of the right

edge at row x, L_E(X,y,) is the position of the lift edge at row x

Based on the previous three parameters, we will give the

following three ranks for each pixel:

e NR, this rank measures the uniformity distribution of the
edges. NR is computed from the following equation

2

e NC, this rank measures the connectivity that the pixel (x, y)
appears in the same location in different slices. NC
approaches 1 if the pixel (x, y) appears in the same location in
different slice, NC becomes zero if the pixel (x, y) appears in
one slice

e NP, each pixel given a rank NP reflecting its position relative
to the edge of the right lung or the left lung. Since the
distribution of the bronchi, and bronchioles increase in the
center of the right lung, and left lung, and decrease as we
move towards its edges, then NP approaches one as P(x,y)
approach zero, also NP approaches zero as P (x, y) becomes
large, NP will be computed from the following equation

R 2
NR = P0Y)] an
The three ranks are then combined to provide a list of pixels
sorted according to the value of N defined as:

N=Ng + N¢ + Np (12)

In our algorithm the pixel that has rank (N) greater than 2
represent the position of the most dominate abnormality
elliptical ring within the image. The ranking mechanism ensures
that there is no need to normalize and weight the three quantities
R (%, y), C(x, y), and P(x, y). Since pixels are sorted according
to each criteria independently, the final ranking does not depend
on how rapidly the numerical expressions of R, C, and P
increase. Since the typical size of the elliptical pattern to be
identified is less than 12 pixels, it is possible to drive a precise
approximation of them by considering only eight points, taken
along eight principle directions, rather than considering all
points of an ellipse. The eight directions are taken along
horizontal, vertical, and principle diagonal axes. Edge
information is derived from the image after removing the normal
tissues by pre-computing the gradient along the previous 8
directions, and then computes the quantities R (x, y), C (x, y), P
(X, y), NR, NC, NP, and N as illustrated in the previous section.
After locating the pixels that present the center of abnormal
elliptical rings, we will take it a seed to pick up all the neighbors
pixels which have the same gray level from the original image.
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Fig. 2. (a) Schematic representation of the function I(x, y) for
an elliptical ring. (b) The profile of the intensity gradient along
the direction dg. the distance to the pixel (x,, y,) is denoted r.
ol / Or measures the intensity of the gradient.

3. RESULTS

The algorithm was evaluated on the CT scans of 50 subjects
enrolled in the screening study. Ten subjects had abnormalities
in their CT scans, and forty were normal. We applied the
algorithm on these 50 scans. Results of the above algorithm were
compared with the radiologists. Fig. 3 shows some results of
isolating the lungs, bronchi and bronchioles, and abnormal
tissues from a spiral CT scan of one patient enrolled in the chest
screening study. We use the VTK visualization tool kit to build
3-D models for the abnormal and the entire lung regions. Fig. 4
shows an example of reconstructed lung. Table 1. Shows
different shapes of abnormalities and their volume.

»
»

4. Conclusion

We have introduced a novel approach for automatic
segmentation and visualization of the chest cavity from CT
scans. As the resolution of the CT scans is increased, the
accuracy of the reconstructed 3-D volume will increase; hence,
the diagnosis of abnormal tissues Our current efforts are focused
on improving the segmentation, and validating the 3-D models
with respect to human experts. Long-term focus is to develop an
expert system for chest cancer screening based on CT and X-ray
scans.
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Fig. 3. : Results of segmentation, reconstruction of the lungs,
and isolation of abnormal tissues for a patient enrolled in the
screening program.(a): original slice from a spiral CT scan of a
patient; (b) Slice after removing the background;; (c) Desired
tissues; (d) High level image (Labeling Image); () The isolated
lungs using GMREF; (f) Bronchi, bronchioles and abnormal
tissues.(g) Abnormal tissues (magnified for visualization)
detected by our algorithm (h) Manual detection by expert doctor

Fig. 4. 3-D Model for whole lung tissues

Abnormality

g 880

Volume (cm3) 1.25 1.987 0.51 0.489 1.5

Cancer Cancer | Cancer | Cancer | Cancer | Cancer
/No Cancer
Abnormality _‘ ‘ ‘ . ’

Volume (cm3) | 0.597 1.96 0.586 0.421 0.351

Cancer Cancer Cancer Cancer No No
/No Cancer Cancer | Cancer

Table 1: Morphologies of 10 detected abnormalities, and the
assigned diagnosis by a radiologist.
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