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ABSTRACT 
 

This research aims at developing a fully automatic Computer-
Assisted Diagnosis (CAD) system for lung cancer screening 
using chest spiral CT scans. One thousand subjects are enrolled 
in a chest cancer screening program in Louisville, KY, USA, 
which aims at quantification of the effectiveness of low dose 
spiral CT scans for early diagnosis of lung cancer, and 
evaluating its possible impact on improving the mortality rate of 
cancer patients. This paper presents an image analysis system for 
3-D reconstruction of the lungs and trachea, detection of the 
lung abnormalities, identification/classification of these 
abnormalities with respect to specific diagnosis, and distributed 
visualization of the results over computer networks. We present 
two novel approaches for segmentation of the lung tissues from 
the surrounding structures in the chest cavity, and detection of 
the abnormalities in the lungs. The segmentation algorithm is 
hierarchical; it starts with isolating the background from the 
chest cavity, then isolating the lungs from the surrounding 
structures (e.g., ribs, liver, and other organs that may appear in 
chest CT scans). Abnormalities in the lungs are detected by 
analyzing the segmented lung tissues and extracting the isolated 
lumps that appear in various connected regions. 3-D 
reconstructions are also generated for these abnormalities, in 
order to be used for subsequent identification/classification 
steps. Results of these algorithms are shown on 50 subjects, and 
have been evaluated vs. the radiologists. The image analysis 
approach presented in this paper has provided comparable 
results with respect to the experts. The approach is quite fast, 
and lends itself to distributed visualization over computer 
networks. 
 

1. INTRODUCTION 
 

Lung Cancer remains the leading cause of mortality cancer. In 
1999, there were approximately 170,000 new cases of lung 
cancer [1]. The 5-year survival rate from the diseases is 14% and 
has increased only slightly since the early 1970s despite an 
extensive and costly research effort to find effective therapy. 
The disparity in survival between early- and late-stage lung 
cancer is substantial, with a 5-year survival rate of 
approximately 70% in stage 1A disease compared to less than 
5% in stage IV disease according to the recently revised Lung 
Cancer Staging criteria [1]. The disproportionately high 
prevalence and mortality of lung cancer has encouraged attempts 
to detect early lung cancer with screening programs aimed at 
smokers. Smokers have an incidence rate of lung cancer that is 
10 times that of nonsmokers and account for greater than 80% of 
lung cancer cases in the United States [1]. In the recent years, a 

wealth of new technologies has emerged that are capable of 
detecting lung cancer at an early stage. These technologies 
include low-dose spiral CT (LDCT). LDCT has been explored as 
a tool for detecting early lung cancer in symptomatic individuals 
at a risk for this disease, with encouraging preliminary results 
[1]. LDCT can provide high spatial and high temporal 
resolution, excellent contrast resolution for the pulmonary 
structures and surrounding anatomy, and the ability to gather a 
complete three-dimensional (3-D) volume of the human thorax 
in a single breath hold [2].  
The jewish hospital cancer screening and early detection study is 
a randomized trial with the following specific aims:  
 

1. Determine whether the use of spiral ct scanning of the chest 
detects early lung abnormalities that lead to cancer, which are 
not visible on chest x-rays in patients at high-risk for 
developing lung cancer; and  

2. Determine whether annual spiral chest ct scans of the chest in 
high-risk patients result in an improvement in survival  

3. high-risk patients result in an improvement in survival  
 
The Jewish Hospital document [3] details the approach followed 
in the ongoing Chest Cancer Screening Program. The document 
also states that the reasons behind the use of the dual modality 
approach (X-ray and CT) in the screening programs. The 
primary purpose of this screening study is to determine whether 
there is sufficient evidence to warrant routine screen for lung 
cancer via CT scanning.  Patients will be sequentially accrued 
into the study.  Using a randomized block design, patients will 
be placed in a chest x-ray only group or CT scanning group.  
The data will be reviewed yearly and the study will be stopped if 
sufficient evidence exists to conclude that survival is greater in 
the CT scanned group with p-value of less than 0.05.  Once 1000 
patients have been accrued, the data will again be analyzed for 
the next five years.  Again, the study will be stopped if there is 
sufficient evidence to conclude that survival is greater in the CT-
scanned group with a p-value of less than 0.05.  At the end of 
five years, the full cohort will be studied to determine whether 
sufficient evidence exists or if additional patients need to be 
accrued [4]. Other screening chest cancer studies in the US 
include ELCAP [4] and ACRIN [5]. The Jewish Hospital 
screening program lends itself more into classification of 
calcified and non-calcified abnormalities in the Kentucky area 
by the Ohio Valley.  
 

A number of groups have developed techniques for computer-
assisted segmentation of pulmonary CT images (e.g., [6]-[9]). In 
[6], manually traced boundaries were used to estimate regional 

II - 2610-7803-7663-3/03/$17.00 ©2003 IEEE ICASSP 2003

➠ ➡



gas and tissue volumes in the lungs of normal subjects. On two-
dimensional (2-D) transverse slices of a pulmonary CT dataset, 
the natural contrast between the low-density lungs and 
surrounding high-density chest wall can be used to guide image 
segmentation. In [6][9] 2-D edge tracking was used to find the 
boundaries of the left and right lungs. The disadvantage of this 
algorithm is that errors can occur in detecting the edges; this 
error increases as the contrast of the CT decrease.  
In this paper, we describe a fully automatic method for 
identification and visualization of the lungs and trachea for 
isolating blatant abnormalities in the lung, which spread over 
several slices in the spiral CT scans.  
 

2. METHODS  
 

2.1 DATA ACQUISITION  
In Jewish hospital project, 1000 symptomatic patients greater 
than 60 years of age with positive smoking history (> 10 pack-
years) will undergo screening with LDCT and chest 
radiography. The LDCT was performed with the following 
parameters: Slice thickness of 8 mm reconstructed every 4 mm, 
Scanning pitch 1.5. Our method consists of four main steps: 1) 
lung extraction; 2) abnormality detection; 3) 
identification/classification; and visualization.  
 

2.2 LUNG EXTRACTION  
 

The goal of the lung extraction step is to separate the voxels 
corresponding to lung tissue from those belonging to the 
surrounding anatomical structures. Since the gray level of the 
background is close to the gray level of the lung tissues, it is 
advantageous to remove the background (all pixels outside the 
chest cavity) from each slice before doing extraction of the lung 
regions, in order to increase the accuracy of segmentation. 
Background is simply removed as follows: starting from the 
edges of the CT slices, all pixels that have similar gray levels, 
within a certain range, are removed. This process is applied, on 
each slice, from the left to right corners (i.e., horizontally or 
row-wise) as well as vertically (column-wise), in order to cover 
the whole slice. This simple approach has been shown to be 
quite adequate for removal of the background pixels outside the 
chest cavity region.   
After removing the background from each slice, we assume that  
each CT slice (image) contains only two types of pixel: 1) Lungs 
- pixels within very dense regions in the CT scan. These pixels 
have an average gray level µb.; and 2) other tissues/organs – low 
density pixels within the lungs and the surrounding regions (e.g., 
ribs, heart, liver, and other parts in the chest cavity). These 
pixels have average gray level µn 
The segmentation algorithm consists of two steps. The first step 
is to select the optimum decision level to create initial labeling 
image that will be used in step 2. The segmentation decision 
level is selected through an iterative procedure. Similar to 
existing approaches in the literature (e.g., [10]), the new decision 
level for step i + 1 is updated iteratively until there is no change 
using the following formula:  

)                       T                               (1) ( 2/    1 ii
b n

µµ +=+i

The initial decision level T ocan be selected based on the CT 
number for pure air and CT number for pixels within the chest 
wall/body. In our experiments, the initial decision level has been 
arbitrary selected. Due to the decision level process some 

information may be lost due to region discontinuities so that the 
step 1 is not enough to create accurate segmentation for the lung 
regions, So the next step of our algorithm is to use Gibbs 
Markov Random Field (GMRF) model to extract the lung tissues 
from each slice.  
    A typical outline for statistical-based image segmentation is as 
follows: The observed image process G is modeled as a 
composite of two random processes, a high level process Gh and 
a low level process Gl , that is, G = (Gh , Gl). Each of the three 
processes is a random field defined on the same lattice S. The 
high level process (the labeling or coloring process which 
computed from step 1) Gh is used to characterize the spatial 
clustering of pixels into regions. Fig. (1) shows Neighborhood 
system for Gibbs-Markov random field up to order 5 for 
rectangular lattice. 
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The low level process (pixel process) Gl describes the statistical 
dependence of pixel gray level values in each region. The 
maximum a posteriori (MAP) segmentation involves the 
determination of  gh that maximizes P(Gh = gh |G = g) with 
respect to gh . In order to carry out the MAP segmentation 
algorithm. one needs to specify the parameters in the two 
processes. A popular model for the high level process is the 
GMRF. In this paper we select the model for the low level 
process is Gaussian model. In order to estimate the mean and 
variance for each class for low level image we will use the 
Expectation-Maximization (EM) algorithm. In order to select the 
initial value of the mean for each class we compute the 
histogram for the low level image and select the values 
corresponding to the two peaks in the histogram. For binary 
classification (two classes), we arbitrarily select the initial 

estimate . The new mean and new variance will be 

computed from the following two equations. 
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iteration stops when the new parameters are equal to the old 
parameters or the change is smaller than certain tolerance.  
By using the iterative conditional mode (ICM) approach [11], 
we can classify any pixel g using the fact that P(Ci/g) is  
proportional to P(g/Ci)P(Ci/b); i.e.,  
 

               P(Ci/g)α P(g/Ci)P(Ci/ηs)                                   (4) 
where ηs is the neighbor set to site S belonging to class Ci, 
P(Ci/ηs) is computed from the following equation  
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where  m is the portion of ηs belonging to class Ci,     
Since the algorithm compares between probabilities to find a 
decision, Z can be neglected. The parameter λ is the clique 
potential- we will set it as an arbitrary negative parameter. There 
exist various approaches to estimate the clique potentials in the 
GMRF literature (e.g., [11]) in this paper we will select λ 
empirically. For example λ = 0 corresponds to no dependence on 
the neighbors, i.e Bayes classifier. With |λ|>0, the larger the 
value of |λ|, the stronger is the dependence on the neighbors, and 
the more homogeneous results. Finally P(g/Ci) is computed from 
the following equation 
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where , and  are the mean, and variance for class C
iCµ 2

iCσ i,  

2.3 DETECTING ABNORMAL TISSUES  
 
 

We assume that the segmented lung volume is formed of two 
types of voxels: normal, which describes the healthy lung tissue, 
and abnormal, which describes all abnormalities in the lungs, the 
bronchi and bronchioles.  
The first step to detect the abnormalities is to remove the normal 
tissues. The gray level histogram shows the distribution of the 
intensity of lung, which is usually a homogenous region. Lung 
abnormalities show in the histogram of the CT slices as bright 
(or homogeneous) areas with distinct gray levels from the 
surrounding lung tissues. Therefore, it is logical to assume that 
the abnormalities will correspond to the peaks (usually one) in 
the gray level histogram. Therefore, as a first step in isolating 
the abnormities, we threshold all pixels having a gray level 
below the gray level value of the peak of the histogram. These 
pixels will correspond to normal lung tissues.  
The abnormalities, in general, appear as elliptical-shaped regions 
in the lungs. These elliptical shapes can be isolated by the 
analysis of the distribution of the gradient maxima in the 
neighborhood of each pixel. Ellipses and rings are patterns 
symmetrical relatively to their centroids. In the case of the polar 
co-ordinates, the expression of the intensity and spatial 
distribution of the most significant edges has characteristics 
properties of symmetry and uniformity. In the case of CT 
images, the gradient should show local maxima at the point on 
the border of the bronchi, bronchioles, and abnormal tissues.   
 

Let I(x,y) be the image after removing the normal tissues, we 
consider the local polar co-ordinates (r, θ) centered at (xo, yo), 
and a neighborhood of Ω of radius ro. the maximum of the 
intensity gradient within  along direction θ is defined as 
e(θ)[12]:  
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With its corresponding radius defined as r(θ). The size ro is 
defined as the maximum radius of abnormality that appears in 
the CT scans. Fig. 2 shows a schematic representation of the 
definition of e (θ) , and r(θ) for a pixel (xo, yo) located inside an 
elliptical ring, shown in Fig. (2-a). By searching along direction 
dθ, the gradient maximum e (θ) at distance r (θ) relatively to (xo, 
yo), shown in the gradient profile in Fig. (2-b). We note that e(θ) 
is the same for bronchi, bronchioles and abnormal tissues 
especially after we remove the normal tissues. In order to 

distinguish between the abnormal tissues and bronchi and 
bronchioles we define the following three parameters  
• The value R(x, y) measures the uniformity of the radial 

distribution of the edges. It can be computed as  
 

                 R (x, y)  = max (r (θ)) – min (r (θ))                         (8) 
 

• The value C(x, y) measures the connectivity that the pixel (x, 
y) appear in the same location in different slice  

• The value P(x, y) measures the position of the pixel (x, y) 
right lung, or the left lung edges. P(x,y) is computed from the 
following equation. 

 

 P(x,y)=min[abs(I(x,y)-R_E(x1,yr)),abs(I(x,y1)-L_E(x1,yl))]    (9) 
 

Where I(x,y) is the current pixel which want to classify if it is 
normal or abnormal tissues, R_E(x,yr) is the position of the right 
edge at row x, L_E(x,yr) is the position of the lift edge at row x 
Based on the previous three parameters, we will give the 
following three ranks for each pixel:  
• NR, this rank measures the uniformity distribution of the 

edges. NR is computed from the following equation 
 

                                                                 (10) 

2y)] ,[R(x -e  NR =
• NC, this rank measures the connectivity that the pixel (x, y) 

appears in the same location in different slices. NC 
approaches 1 if the pixel (x, y) appears in the same location in 
different slice, NC becomes zero if the pixel (x, y) appears in 
one slice 

• NP, each pixel given a rank NP reflecting its position relative 
to the edge of the right lung or the left lung. Since the 
distribution of the bronchi, and bronchioles increase in the 
center of the right lung, and left lung, and decrease as we 
move towards its edges, then NP approaches one as P(x,y) 
approach zero, also NP approaches zero as P (x, y) becomes 
large, NP will be computed from the following equation 

                                                                (11) 
The three ranks are then combined to provide a list of pixels 
sorted according to the value of N defined as:  

2y)] ,-[P(x e  NR =

 
                                     N= NR + NC + NP                                            (12) 
 
In our algorithm the pixel that has rank (N) greater than 2 
represent the position of the most dominate abnormality 
elliptical ring within the image. The ranking mechanism ensures 
that there is no need to normalize and weight the three quantities 
R (x, y), C(x, y), and P(x, y). Since pixels are sorted according 
to each criteria independently, the final ranking does not depend 
on how rapidly the numerical expressions of R, C, and P 
increase. Since the typical size of the elliptical pattern to be 
identified is less than 12 pixels, it is possible to drive a precise 
approximation of them by considering only eight points, taken 
along eight principle directions, rather than considering all 
points of an ellipse. The eight directions are taken along 
horizontal, vertical, and principle diagonal axes. Edge 
information is derived from the image after removing the normal 
tissues by pre-computing the gradient along the previous 8 
directions, and then computes the quantities R (x, y), C (x, y), P 
(x, y), NR, NC, NP, and N as illustrated in the previous section. 
After locating the pixels that present the center of abnormal 
elliptical rings, we will take it a seed to pick up all the neighbors 
pixels which have the same gray level from the original image.  
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Fig. 2.  (a) Schematic representation of the function I(x, y) for 
an elliptical ring. (b) The profile of the intensity gradient along 
the direction dθ. the distance to the pixel (xo, yo) is denoted r. 

measures the intensity of the gradient. rI ∂∂ /
 

3. RESULTS  

The algorithm was evaluated on the CT scans of 50 subjects 
enrolled in the screening study. Ten subjects had abnormalities 
in their CT scans, and forty were normal. We applied the 
algorithm on these 50 scans. Results of the above algorithm were 
compared with the radiologists. Fig. 3 shows some results of 
isolating the lungs, bronchi and bronchioles, and abnormal 
tissues from a spiral CT scan of one patient enrolled in the chest 
screening study. We use the VTK visualization tool kit to build 
3-D models for the abnormal and the entire lung regions. Fig. 4 
shows an example of reconstructed lung. Table 1. Shows 
different shapes of abnormalities and their volume.  
 
 

4. Conclusion  
 

We have introduced a novel approach for automatic 
segmentation and visualization of the chest cavity from CT 
scans. As the resolution of the CT scans is increased, the 
accuracy of the reconstructed 3-D volume will increase; hence, 
the diagnosis of abnormal tissues Our current efforts are focused 
on improving the segmentation, and validating the 3-D models 
with respect to human experts. Long-term focus is to develop an 
expert system for chest cancer screening based on CT and X-ray 
scans.  
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(a) (c) (d) (b) 

(e) (f) (h) (g) 

Fig. 3. : Results of segmentation, reconstruction of the lungs, 
and isolation of abnormal tissues for a patient enrolled in the 
screening program.(a): original slice from a spiral CT scan of a 
patient; (b)  Slice after  removing the background;; (c) Desired   
tissues; (d) High level image (Labeling Image); (e) The isolated 
lungs using GMRF; (f)  Bronchi, bronchioles  and abnormal 
tissues.(g) Abnormal tissues (magnified for visualization) 
detected by our algorithm (h) Manual detection by expert doctor 
                                                                               
 
 
 
 
 
 
 
 
 
 
 

Fig. 4.  3-D Model for whole lung tissues 
 

Abnormality 
     

Volume (cm3) 1.25 1.987 0.51 0.489 1.5 
Cancer 

/No Cancer Cancer Cancer Cancer Cancer Cancer 

Abnormality 
     

Volume (cm3) 0.597 1.96 0.586 0.421 0.351 
Cancer 

/No Cancer Cancer Cancer Cancer No 
Cancer 

No 
Cancer 

 

Table 1:  Morphologies of 10 detected abnormalities, and the 
assigned diagnosis by a radiologist. 
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