
A DSP-BASED APPROACH FOR THE IMPLEMENTATION OF FACE RECOGNITION
ALGORITHMS

A. U. Batur B. E. Flinchbaugh M. H. Hayes III

Center for Signal and Image Proc. Imaging and Audio Lab. Center for Signal and Image Proc.
Georgia Inst. Of Technology Texas Instruments Georgia Inst. Of Technology

Atlanta, GA Dallas, TX Atlanta, GA

ABSTRACT

Face recognition is an important part of today’s emerging bio-
metrics and video surveillance markets. Recent years have wit-
nessed an exploding interest in the development of face recogni-
tion algorithms and products. Currently, face recognition systems
are usually implemented on general purpose processors. As face
recognition algorithms move from research labs to the real world,
power consumption and cost become critical issues. This moti-
vates searching for implementations using a digital signal proces-
sor (DSP). Our goal in this paper is to explore the feasibility of im-
plementing DSP-based face recognition systems. To achieve this
goal, we implement a fully automatic face recognition system on
Texas Instruments’ TMS320C6416 DSP, profile performance, and
analyze opportunities for optimization. The results of our experi-
ments demonstrate that a generic C implementation with a modest
C level optimization effort results in a face recognition software
prototype that has low CPU and memory requirements. Hence, it
appears that well-optimized face recognition implementations on
DSPs can be an effective choice for embedded face recognition
products.

1. INTRODUCTION

Biometrics and automatic video surveillance are two emerging mar-
kets that are attracting an increasing interest from the research
community and the industry. An important technology for these
markets is automatic face recognition, which is the task of identi-
fying a person based on an image of his or her face. Although face
recognition has been a research area for almost thirty years, there
has been a significantly increased research activity since 1990,
which has resulted in the development of successful algorithms
and the introduction of the first commercial products. Currently,
the common hardware choice for the implementation of face recog-
nition systems is a general purpose processor. However, the cost
and power issues that come with general purpose processors moti-
vate searching for other platforms. Our goal in this paper is to ex-
plore the possibility of implementing face recognition systems on
DSP-based platforms. DSPs can provide attractive opportunities
for low-cost and low-power implementation of face recognition
algorithms, and these advantages may be critical for high volume
deployment of face recognition systems in real world settings. To
determine the feasibility of implementing DSP-based face recog-
nition systems, we implement a fully automatic face recognition

This work has been performed at Texas Instruments, Dallas, TX

system on Texas Instruments’ TMS320C6416 DSP, profile perfor-
mance, and analyze opportunities for optimization. We determine
the CPU and memory requirements for the final prototype system,
and we identify important performance bottlenecks. Our results
can give an overview of the advantages and challenges of imple-
menting face recognition systems on DSPs.

In the next section, we first describe the face recognition al-
gorithms we implemented. This description can make it easier for
the reader to interpret the performance results we have obtained
since different algorithms may have different complexities. Then,
in Section 3, we give a detailed description of our implementation.
Finally, in Section 4, we show the performance profile of our pro-
totype system and discuss the performance bottlenecks we have
identified.

2. SYSTEM DESCRIPTION

The goal of face recognition is to determine the identity of an indi-
vidual based on a still image or video sequence of his or her face.
Based on whether the input is a still image or a video sequence,
face recognition takes different approaches, each of which has its
advantages and challenges. Figure 1 shows the block diagrams of
two possible approaches to face recognition. For simplicity, the
block diagrams assume that there is a single face in the given im-
age or video sequence. In case multiple faces exist, the systems
should process each of them separately.

With a still image input, the system whose block diagram is
shown in part (a) of Figure 1 first finds the location of the face
with a face detection module. Then, it searches for specific facial
features, usually the eyes, to register the face image. Finally, the
registered image is normalized, and a classification algorithm de-
termines the identity of the person. Note that searching for the face
and the features in still images is a computationally intensive task.
In the case of a video sequence input, the system whose block di-
agram is shown in part (b) of Figure 1 finds and tracks the face
using video information. Since motion is a very important clue, a
video sequence can significantly simplify face detection and fea-
ture localization stages. For example, the movement of the face
and the blinks of the eyes can quickly give an idea about where
the face and the eyes are. Having this information, the normalized
face image can be easily obtained and sent to the classification al-
gorithm. If a face detection and tracking algorithm that utilizes
video information is not available, then the system should some-
how select some specific frames from the video according to some
criteria, and send them to the face recognition block. In this case,

II - 2530-7803-7663-3/03/$17.00 ©2003 IEEE ICASSP 2003

➠ ➡

Face Detection

Feature Localization
(for registration)

Face and Feature
Detection and Tracking

Face Classification

Still Image Video Sequence

Face Image in Normalized Frame

Recognition result

Face Classification

Face Image in Normalized Frame

Recognition result

FACE RECOGNITION
FROM STILL IMAGES

FACE RECOGNITION
FROM VIDEO

Face Normalization Face Normalization

(a) (b)

Fig. 1. Face Recognition Block Diagram.

the video problem boils down to the still image problem where no
motion information is used.

We implemented a fully automatic DSP-based face recogni-
tion system that operates on still images. Our implementation fol-
lows the block diagram shown in part (a) of Figure 1. In this sec-
tion, we shortly review the algorithms we implemented. Our sys-
tem consists of a face detection block, an eye localization block,
a face normalization block, and two face classification blocks. A
face recognition system clearly needs only one face classification
block, but our goal was to explore DSP feasibility for different ap-
proaches. The references for the algorithms we implemented are
[1], [4], [5], and [7]. For a detailed discussion of these algorithms
and their detection or recognition rates, please refer to these pa-
pers.

We can give a short description of our face recognition sys-
tem as follows: For face detection, we used the probabilistic vi-
sual learning approach proposed by Moghaddam and Pentland [5].
According to their approach, face images are modeled as a multi-
dimensional Gaussian distribution that is estimated with the help
of a Karhuenen Loeve Transform (KLT) based dimensionality re-
duction. To detect faces in still images, blocks at different scales
and locations are extracted from the image, and their probabil-
ities of being a face is calculated using the density mentioned
above. Since searching a large image at multiple scales and lo-
cations is a computationally intensive task, we tried to decrease
the search space with the help of a rule proposed by Kotropou-
los and Pitas [4]. Assuming that there is a single face in a given
image, Kotropoulos and Pitas suggest that abrupt changes in the
horizontal and vertical profiles of the image correspond to head
boundaries. The horizontal profile is obtained by averaging the

pixels at each column, and the vertical profile is obtained by aver-
aging the pixels at each row. However, in the general case, if the
person is in front of an arbitrary background, it is rarely possible to
find the head boundaries with this approach because there are other
abrupt changes caused mainly by the background. But, even in this
case, we found the rule still useful to decrease the search space for
the face. In the horizontal profile, we find the first and last abrupt
changes and assume that at least half of the face is located be-
tween these two boundaries. If there are false detections due to
the background, this just increases our search space without caus-
ing us to miss the face. Similarly, in the vertical profile, we find
the first abrupt change, and assume that the face is located below
that upper boundary. We search the space between these bound-
aries at multiple scales and locations using the method proposed by
Moghaddam and Pentland that we have explained above. After the
location of the face is found, eye localization is performed, where
we search for the two eyes inside the face at multiple scales and
locations. We again use the density estimation technique proposed
by Moghaddam and Pentland, this time to model the distribution
of the eyes. After we find the eyes, we rotate the face image to
make the eyes horizontal, crop it to exclude the background, and
decimate it down to a size of 128x128. We call these steps face
normalization. An illustration of the face detection, eye localiza-
tion, and face normalization steps is shown in Figure 2.

(a) (b)

(c) (d)

(e)

Fig. 2. : Illustration of the face detection, eye localization and face
normalization stages. (a) Original image (b) The box shows the
reduced search space for the face after the rule-based technique
is applied. At least half of the face is assumed to be inside these
boundaries. (c) Result of the face detection stage (d) Result of the
eye localization stage (e) Normalized face image

After the face image is normalized, we send it to a face classi-
fication algorithm that compares it to a database of known people
and returns the most likely person. We implemented two differ-
ent face classification algorithms. The first one is the well-known
eigenfaces algorithm proposed by Turk and Pentland, which is
considered to be a baseline algorithm for face recognition [7]. Ac-
cording to this approach, face images are first projected into a sub-
space that is obtained by performing principal component analysis

II - 254

➡ ➡

on the training images. Then, recognition is performed by mini-
mum distance classification. The second classification algorithm
we implemented is the segmented linear subspaces algorithm pro-
posed by Batur and Hayes [1]. This algorithm’s primary goal is to
perform reliable face recognition under varying illumination con-
ditions. According to this approach, each person’s face images
with a fixed pose under varying illumination are modeled with a
segmented linear subspace model, and recognition is performed
by computing the distance of the image to the subspace models in
the database.

We first implemented the training and recognition procedures
for the complete face recognition system in MATLAB, and then,
we tested the system using a subset of Yale Face Database B that
contains a total of 300 frontal images of 10 people where the light-
ing direction changes between 0 and 50 degrees [3]. For each per-
son, we used 5 images for training, and the remaining 25 images
for testing. For face detection and eye localization, we used 15 di-
mensional subspaces to estimate the multi-dimensional Gaussian
densities. For eigenfaces, we used a 30 dimensional subspace rep-
resentation, and for the segmented linear subspaces, we used 4
dimensional subspaces with 64 regions. For the fully automatic
system, the recognition rate with the eigenfaces classification was
88%, and the recognition rate with the segmented linear subspaces
classification was 93%. However, our purpose in this paper is not
to evaluate the detection and recognition rates of the specific al-
gorithms we implemented. More detailed information about the
performances of these algorithms can be found in their respective
papers. After we finalized our algorithms in MATLAB, we started
the C implementation of the face recognition system on a DSP.
We kept the training procedures in MATLAB because training is
usually done offline in controlled environments.

3. IMPLEMENTATION ON A DSP

We implemented the fully automatic face recognition system de-
scribed in Section 2 on a Test Evaluation Board that contains Texas
Instruments’ TMDX320C6416 fixed-point DSP and 16 MB of ex-
ternal memory. The DSP runs at 500Mhz and has a two level in-
ternal memory architecture. The first level contains a program and
a data memory that are 16KB each, and the second level contains a
1024KB memory, called L2. The first level memories can only be
used as cache while L2 can be configured as partial static RAM and
partial cache. In our implementation, we configured L2 as 256KB
cache and 768KB static RAM, which is the configuration with the
largest possible amount of cache. We chose this configuration be-
cause our system processes a lot of data, which makes the external
memory accesses a performance bottleneck, and a large cache in-
creases the efficiency of internal memory usage significantly.

Our original implementation was a double-precision, floating-
point generic C code. We compiled it using Texas Instruments’
Code Composer Studio C compiler with the optimization options
turned on. It consisted of a face detection block, an eye localiza-
tion block, a face normalization block, and two face classification
blocks. Considering that it took around 2 minutes to recognize
a single face image, we concluded that this initial generic C im-
plementation was not satisfactory in terms of computation time.
Therefore, we performed various C-level optimizations to increase
the speed. The significant gains we achieved as a result of these
optimizations proved that some sort of optimization effort over
generic C code is clearly necessary and is well-worth the effort.
In the next section, we first describe the performance bottlenecks

we identified throughout our tests, and then, for each of these bot-
tlenecks, we explain the C level optimization tasks we performed
to increase the performance. We believe that most of these bottle-
necks are not specific to the algorithms we selected, and they can
in general apply to the DSP-based implementation of other face
recognition algorithms.

3.1. C-level optimizations

The most important performance penalty that our generic C code
suffered was due to the overhead of floating-point computations on
a fixed-point DSP. Therefore, our initial optimization task was to
convert computationally intensive parts of our code to fixed-point
arithmetic. The most computationally intensive operations were
subspace projections that were computed throughout the face de-
tection, eye localization, and face classification stages. Especially
during the search for the face and the eyes at multiple scales and
locations, many subspace projections were needed to find the prob-
abilities, and these projections dominated the computational load
of the face recognition system. Converting the computations of
our detection and classification algorithms to fixed-point was quite
straightforward, and the resulting loss in computational accuracy
did not seem to be significant since the recognition rates remained
exactly the same after the conversion.

Another significant performance penalty for our system was
due to not effectively utilizing the parallel computation capabili-
ties of the DSP. Computationally intensive parts of face detection
and recognition algorithms are usually large vector-matrix opera-
tions that are inherently parallel. Well-known algorithms such as
[5], [7], [2], and [6] can be given as examples. Therefore, a hard-
ware platform that specifically facilitates efficient computation of
these vector-matrix operations can significantly improve the per-
formance of a face recognition system. The TMS320C6416 pro-
vides special instructions for packed data processing to optimize
such inherently parallel operations. In fact, the associated DSP
library contains assembly-optimized routines that exploit paral-
lelism for some common vector operations. In our system, we
used functions from this library to perform subspace projections
and vector length calculations. At certain places, we used com-
piler intrinsics to access special DSP instructions directly from C
without switching to assembly to implement fixed-point arithmetic
efficiently. Conversion to fixed-point, use of the optimized rou-
tines from the DSP library, and use of the intrinsics provided a
factor of fourteen increase in the speed.

Another bottleneck for performance was the external memory
accesses. Face recognition systems in general process a lot of im-
age data. Storing and accessing this data would probably be the
most dominant bottleneck in DSP-based face recognition imple-
mentations. In our case, the cache significantly helps to decrease
this penalty, but the performance can still be improved by an op-
timized allocation of data into the internal and external memories.
We placed the face detection and eye localization subspaces and
other frequently used data into the internal memory, which pro-
vided a factor of two increase in speed. The eigenfaces, the seg-
mented linear subspaces, and the program code were placed in the
external memory due to their large sizes.

Finally, we compiled our code using the optimization options
of the C compiler.

The optimizations we explained above are clearly not com-
plete, and the code can be further optimized to achieve even more
gains. We can propose a few major areas for improvement. First

II - 255

➡ ➡

Number Computation Memory
of Time Consumption

Cycles (CPU at for
(x106) 500 Mhz) Data

Face Detection 1161 2.32 sec. ∼392 KB
Eye Localization 585 1.17 sec. ∼436 KB

Face Normalization 56 0.11 sec. ∼32 KB
Face Classification 18 0.04 sec. ∼1055 KB

(Eigenfaces)
Face Classification 22 0.05 sec. ∼2064 KB
(Segm. Lin. Sub.)

Fig. 3. Performance profile of the prototype system

of all, to increase the memory access performance and to decrease
the memory consumption, DMA can be used, and memory bank-
ing and data alignment issues can be addressed. In addition to this,
all of the code can be converted to fixed-point to avoid the floating-
point overhead completely, and the critical loops in the code can
be better organized for software pipelining. Finally, some parts
of the code can be optimized at the assembly level for maximum
performance.

4. PERFORMANCE PROFILE

We profiled our face recognition system on the DSP by running
the recognition software on a 480x640 image that contains a single
face. The database we used had 10 people. For the performance
profiles, the images processed by the system were available in in-
ternal or external memory. Since the rule based approach we used
for decreasing the search space for face detection causes variabil-
ity in computation time, we averaged the performance results over
a certain number of input images. The resulting CPU and memory
requirements are shown in Figure 3.

A quick look at these results reveals that the face detection and
eye localization blocks consume most of the computation time,
and the face classification blocks consume most of the memory.
These results are expected since searching for faces and features
in still images at multiple scales and locations is known to be a
computationally intensive task, and the classification blocks have
to store the subspace models and the face databases which are large
in size. Note that an increase in database size will linearly increase
the CPU and memory requirements of the classification blocks.
Our implementation follows the still image processing approach
shown in part (a) of Figure 1. Therefore, based on the results
shown in Figure 3, we conclude that it takes around 3.7 seconds
to find and recognize a single face in a 480x640 still image. Most
of this time is spent during the face detection and eye localiza-
tion stages. Hence, choosing faster algorithms for these stages can
increase the recognition speed significantly. Also, an implemen-
tation that uses video information can speed up the face detection
and eye localization stages by using motion information, which
can further decrease the total recognition time.

The memory consumption of the face recognition algorithms
can be the single most important issue in DSP-based applications.
The classification blocks are the critical components for this prob-
lem. Memory issues can make the allocation of large databases
on the DSP impractical. This can motivate an approach where the
initial stages of the face recognition system, until the end of the
dimensionality reduction are performed on the DSP, and the final

stage where the feature vector is compared to the database is per-
formed at a central server. This approach has the advantage of
decreasing the on-chip requirements for memory. Also, maintain-
ing a large database at a central location can be advantageous for
some applications.

Finally, a trade-off is clear when we compare the two classi-
fication algorithms we implemented. Eigenfaces classification is
faster, consumes less memory, and, as we have mentioned in Sec-
tion 2, provides a lower recognition rate than the segmented linear
subspaces method. Similar trade-offs would probably exist for all
face classification algorithms.

5. CONCLUSION

The results we have shown in the previous section demonstrate that
a generic C implementation and a modest C level optimization ef-
fort results in a face recognition system with low CPU and memory
requirements on a DSP. The MATLAB, C, and optimized C pro-
grams described in this paper were implemented in less than three
person-months in a summer research project at Texas Instruments.
Keeping in mind that further optimizations can produce even lower
CPU and memory requirements, DSP-based implementations ap-
pear to be a cost- and power-effective choice for embedded face
recognition products.

6. ACKNOWLEDGEMENTS

The authors would like to thank Ram Sathappan and Oliver Sohm
for their valuable comments.

7. REFERENCES

[1] A. U. Batur and M. H. Hayes. ”Linear Subspaces for
Illumination-Robust Face Recognition,”Proc. IEEE Conf.
Computer Vision and Pattern Recognition, pp.296-301, 2001.

[2] P. Belhumeur, J. Hespanha, and D. Kriegman. ”Eigenfaces vs.
Fisherfaces: Recognition Using Class Specific Linear Projec-
tion,” IEEE Trans. Pattern Analysis and Machine Intelligence,
Vol. 19, No. 7, pp. 711-20, 1997.

[3] A. S. Georghiades, P. N. Belhumeur, and D. J. Kriegman.
”From Few to Many: Illumination Cone Models for Face
Recognition Under Variable Lighting and Pose,”IEEE Trans.
Pattern Analysis and Machine Intelligence, Vol. 23, No. 6, pp.
643-60, 2001.

[4] C. Kotropoulos and I. Pitas. ”Rule-Based Face Detection in
Frontal Views,”Proc. Int’l Conf. Acoustics, Speech and Signal
Processing, Vol. 4, pp. 2537-2540, 1997.

[5] B. Moghaddam and A. Pentland. ”Probabilistic Visual Learn-
ing for Object Representation,”IEEE Trans. Pattern Analysis
and Machine Intelligence, Vol.19, pp. 696-710, July 1997.

[6] K. K. Sung and T. Poggio, ”Example-Based Learning for
View-Based Human Face Detection,”IEEE Trans. Pattern
Analysis and Machine Intelligence, Vol. 20, No. 1, pp. 39-51,
Jan. 1998.

[7] M. A. Turk and A. P. Pentland. ”Face Recognition Using
Eigenfaces,”Proc. IEEE Conf. Computer Vision and Pattern
Recognition, pp. 586-91, 1991.

II - 256

➡ ➠

