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ABSTRACT: In this paper, we combine independent 
component analysis in the frequency domain (ICA-FD) 
and Morlet wavelet filtering for gearbox fault diagnosis. 
Collected vibration signals from a gearbox are separated 
into two components with ICA-FD. Morlet wavelet 
filtering is then applied to the separated components. The 
optimal shape parameter β of the basic Morlet wavelet is 
obtained by minimizing the wavelet entropy. Better 
diagnosis results are obtained with this combination than 
using wavelet filtering alone.  
 
 

1. INTRODUCTION 

Vibration signals from equipment form a time series. 
Various analysis techniques have been used on such a time 
series for fault detection of the equipment. Kurtosis may 
give a crude indication of defects. Fourier Transform has 
been used extensively for identification of different types 
of faults in equipment. When different faults give rise to 
harmonics and/or sidebands, cepstrum and envelope are 
more effective methods.  
 
Independent Component Analysis (ICA) or Blind Source 
Separation (BSS) is a recently developed method of signal 
processing. It has been used for processing of mixtures of 
simultaneous speech signals that have been picked up by 
several microphones, brain waves recorded by multiple 
sensors, interfering radio signals arriving at a mobile 
phone, or parallel time series obtained from an industrial 
process [1]. For speech signals, Torkkola [2] applied the 
information theoretic approach proposed by Bell and 
Sejnowski [3] to convolutive mixtures. Lee et al. extended 
this approach [4, 5]. Smaragdis applied the information 
theoretic approach to audio signal separation in the 
frequency domain [6]. However, there exists an inherent 
permutation problem in applying ICA in the frequency 
domain (ICA-FD).  The problem is that permutations of 
the separated sources all generate the same observed 
signals. Mitianoudis et al. used a nonstationary time 
varying scale parameter to solve this permutation problem 
[7]. For complex valued signals, Bingham and Hyvarinen 
proposed a fast fixed-point algorithm for ICA [8].  
 
For application of ICA on rotating machine, Ypma et al. 
used a bilinear forms based convolutive mixture model for 
blind source separation of two coupling machines [9]. 

Gelle et al. applied BSS to acoustical and vibration analysis 
of rotating machines [10, 11]. Li et al. [12] studied noise 
signals from diesel engines using ICA. Lin and Zuo [13] 
applied ICA to fault diagnosis through feature separation for 
one dimensional time series. 
 

 
2. INDEPENDENT COMPONENT ANALYSIS 

Humans can focus their attention on a single source and 
discern other sound sources out of a mixture. This was 
termed the “cocktail party effect” by Cherry [14]. The ICA 
technique was developed to deal with the “cocktail party” 
problem. It is a statistical method for transforming the 
obtained multichannel signals into components that are 
statistically independent from each other as much as 
possible [15, 16]. 

 

2.1 ICA in the Time Domain [16] 

Assume that we have collected two signals in the time 
domain, x1(t) and x2(t), from two separate sensors. Each of 
the two observed signals is a combination of two source 
signals, s1(t) and s2(t). Without considering the time delays 
for the source signals to reach the sensors, we have  

x = As,                                   (1) 

where x = (x1,x2)T, s = (s1,s2)T, A is the matrix representing 
the transform relationship between s and x. Hence, we can 
obtain: 

s = A-1x.                                                (2) 

Let y = Wx. If we can find W and make W = A-1, then y = 
s. Now, the problem to be solved is how to find the matrix 
W. According to the fixed-point algorithm proposed by 
Hyvärinen [16], the following equations are used: 

w+ = w – λ[E{xg(wTx)}-ηw]/[E{g’(wTx)}-η],                 (3) 

wnew = w+/||w+||,    (4)  

η = E{wTxg(wTx)},    (5)  

where w is the vector that makes up the row vector of 
matrix W; wT is the transpose of w; E{.} is the 
mathematical expectation; g(.) the derivative of G(.); and λ 
is a step size parameter that is updated with each iteration. 
The initial value of the parameter λ is selected to be 1 first 
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and decreased gradually (λ/10) until convergence is 
satisfactory. The function form G is selected to be 
log(0.1+|wTx|2) in this paper. Uniformly distributed 
random numbers are generated and used as the initial 
elements of w in this paper. When the largest element of 
||w+|-|w|| is less than 0.0001, we stop the iteration and 
search for the next row vector w of matrix W. This is how 
the matrix  W is obtained.  
 
 
2.2 ICA in the Frequency Domain [8] 
 
In the time domain, the ICA technique can solve the 
instantaneous mixing problem. However, this method does 
not work for the convolved mixing problem in the time 
domain, which is closer to real problem. According to the 
theory of Fourier transform, convolved mixing in the time 
domain corresponds to instantaneous mixing in the 
frequency domain. Hence, the ICA method has been used  
in the frequency domain. The difference is that the real 
valued signals in the time domain are changed to complex 
valued signals in the frequency domain. Accordingly, the 
algorithms can be expressed as: 

  w+ = E{x(wHx)*g(|wHx|2)} 

     - E{g(|wHx|2)+|wHx|2g’(|wHx|2)}w     (6) 

wnew= w+/||w+||,   (7)  

where wH stands for the Hermitian of w, that is, w 
transposed and conjugated. The iterative procedure for 
refining the w vectors is the same as that in the time 
domain. The procedure for ICA-FD is as follows. 
• Performing FFT of the inputs x(t) and obtaining X(f); 
• Using learning rule (6) to find the unmixing matrix 

W; 
• From W, we can obtain the estimated S(f); 
• Performing Inverse Fast Fourier Transform (IFFT) of 

S(f) and obtaining the estimate of the original signals 
s(t); 
 
 

3. WAVELET ANALYSIS 
 

In contrast to the Fourier transform, the wavelet transform 
breaks the signal into its "wavelets", scaled and shifted 
versions of the mother wavelet. In comparison to the sine 
wave which is smooth and of infinite length, the wavelet is 
irregular in shape, which makes wavelets an ideal tool for 
analyzing signals of a non-stationary nature. Their local 
property lends them to analyzing signals with sharp 
changes. The translation and dilation operations applied to 
the mother wavelet are performed to calculate the wavelet 
coefficients, which represent the correlation between the 
wavelet and a localized section of the signal. The wavelet 
coefficients are calculated for each wavelet segment, 

giving a time-scale function relating the wavelets 
correlation to the signal.  
 
In the field of rotating machine fault diagnosis, researchers 
use wavelet transform to analyze faults in gearbox and 
rolling element bearings [17,18,19]. In wavelet family, 
Morlet wavelet is often used in the gearbox diagnosis 
because it is comparatively alike to the impulse symptoms 
of gearbox faults. A Morlet wavelet is defined as  

                   ψ(t)=exp(-β2t2/2+jπt) .                  (8) 
Considering the real part, we can use the following basic 
wavelet 

                   ψ(t)=exp(-β2t2/2)cos(πt).                (9) 
A daughter wavelet can be obtained by using the scale 
parameter a  and shift parameter b. 

       ψa,b(t)=exp[-β2(t-b)2/(2a2)]cos[π(t-b)/a]    (10) 
 
Lin et al [18] used wavelet entropy to search for the optimal 
shape parameter β of the basic Morlet wavelet. The wavelet 
entropy can be calculated by  

                    En = -∑dilogdi ,                            (11) 
where di=ci/∑cj, {ci}i=1~M is the class of the wavelet 
coefficients, ci=ψ(t)*x(t), i.e. the convolution between signal 
x(t) and the wavelet function ψ(t). The steps need to find the 
optimal β is as follows. 
Step 1   Selecting the initial β = 0.1; 
Step 2   Calculating the wavelet entropy En ; 
Step 3   Let β=β+η, the step length η = 0.1;  
Step 4   Repeating step 2 and step 3, if β =20, go to step 5; 
Step 5   Finding the minimal En. 

 
 

4. FAULT DIAGNOSIS WITH BOTH ICA-FD AND 
WAVELET FILTERING 

 
4.1. Gearbox Fault Analysis with Wavelet Filtering only 
 
A gearbox is a typical rotating machine. Gear tooth failure 
is the main type of fault in a gearbox. The signals from a 
gearbox are often complicated since there are many 
components in a gearbox. Some traditional methods for 
signal processing such as FFT have been used together with 
wavelet filtering.  
 
In our experiment, we used two accelerometers to obtain 
signals from a gearbox dynamics simulator. The 
experimental setup is shown in Figure 1. Damage on one of 
the teeth of the gear on shaft 1 was introduced. The rotating 
frequency of shaft 1, fr1, is 20Hz. The signals were sampled 
at 5120Hz. The rotating frequency of shaft 2 is 6.67Hz. The 
calculated gearmesh frequency, fm1, of gears a’ and b should 
be 320Hz. For a gear with a damaged tooth, the gearmesh 
frequency modulated by shaft rotating frequency should be 
observed [20]. Figure 2 shows the experimental results in 
the frequency domain.  
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4.2. Gearbox Fault Analysis with both ICA-FD and 
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Now, we consider performing ICA-FD first followed by 
wavelet filtering since the signals are complicated. We hope 
to be able to separate complicated signals from two 
channels into two relatively simple signals. Then we hope 
that one of them can provide us more distinctive 
information about the fault of gear tooth damage. Figure 4 
shows the results after performing ICA in the frequency 
domain.  

 
Figure 1 Gearbox Dynamics Simulator 

 
 

 

 
Figure 2 The spectrum plots in Channel 1 and Channel 2 

 Figure 4 The spectrum plots after performing ICA-FD From Figure 2, we can observe that multiples of 120Hz are 
distinctive. However, the source of this symptom is 
unknown to us. We are unable to find any indication of the 
introduced tooth damage on the gear on shaft 1. The 
spectrum plots after Morlet wavelet filtering are shown in 
Figure 3. We got the optimal shape parameter β = 0.3 by 
minimizing wavelet entropy. We selected the scale 
parameter a =2n with n = 0,1,2,3,4,5. 

 
The signals are separated into two components. The 
separated signal 1 contains mostly components of k*120Hz. 
We used Morlet wavelet filtering to each of these two 
separated signals. The result from signal 1 is not indicative 
of the introduced fault at all. The results from the separated 
signal 2 are shown in Figure 5. 
 

 

 
 Figure 5 The spectrum plots after performing ICA-FD and 

Morlet wavelet filtering Figure 3 The spectrum plots after Morlet wavelet filtering 
  
In the subplot a=32 of Figure 3, we can observe multiples 
of shaft 1 rotating frequency k*20Hz for k=1,2,3,4,5,6. In 
the subplot a=8, the peak spectral line is 360Hz. We 
expect to see some obvious indications of the gear with a 
damaged tooth, i.e., the gearmesh frequency with 
sidebands. However, they do not exist in Figure 3 either.   

In subplot a=8 of Figure 5, we can observe that the peak 
spectral line is 317.5Hz, which is very close to the 
calculated gearmesh frequency of 320 Hz. The other two 
distinctive spectral lines are 277.5Hz and 297.5Hz, which 
are fm1 - 2fr1  and  fm1 - fr1, respectively, where fm1  is the gear 
mesh frequency of the gear on shaft 1 and fr1 is the rotating 
frequency of shaft 1. We can also observe two spectral lines  
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at 337.5Hz and 357.5Hz on the right hand side of 317.5Hz. 
They are fm1+fr1 and fm1+2fr1, respectively. The symptom of 
a gear tooth fault, the gearmesh frequency modulated by 
the rotating frequency, is obviously shown in this subplot 
of a = 8. This shows that using both ICA-FD and wavelet 
filtering is more effective for identifying this fault than 
using wavelet filtering alone. 
 
 

5. CONCLUSIONS 
 
In this paper, the ICA in the frequency domain and Morlet 
wavelet filtering are used in combination to analyze the 
vibration signals from a gearbox simulator. A comparison 
was carried out between the results of Morlet wavelet 
filtering alone and with the combined method. The results 
indicate that the ICA technique in the frequency domain is 
promising for fault diagnosis of a rotating machine such as 
a gearbox together with other analysis techniques. 
However, it is still inconclusive and much further work is 
needed for the industrial application. For rotating 
machines, the signals from rotating components are often 
complicated. The combination applications of several 
signal-processing techniques can provide us more and 
distinctive fault information.  
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