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ABSTRACT

A new method of surface inspection for the textured
materials is investigated. The linear FIR filters that offer
optimal energy separation between the defect and defect-
free regions of texture have been utilized. Performance of
different feature separation criterion with reference to
fabric defects has been evaluated. The issues relating to
the design of optimal filters for supervised and
unsupervised web inspection are discussed. A general web
inspection system based on the optimal filters is proposed.
The experiments on this new approach have yielded
excellent results. The on-line computational simplicity
using the proposed scheme confirms the usefulness of the
approach for industrial inspection.

1. INTRODUCTION

One of the key factors in the quality assurance of
industrial textured materials is the surface inspection.
Traditional manual inspection is labor- and cost-intensive
and offers major bottleneck in the high-speed production
lines. The advantages of automated visual inspection are
well known; repeatability, reliability and accuracy.

The design of optimal Gabor filters and wavelets for
the inspection of textile defects has been detailed in [1]-
[2]. However, the Gabor filters, wavelets and the infinite
impulse response (IIR) filters are the filters with only a
few free parameters and therefore the search space for
optimization is very restricted. Better optimization results
can be obtained when the number of free available
parameters of a filter is large. A general finite impulse
response filter (FIR) has generally more free parameters
than an IR or a Gabor filter. The single biggest advantage
of FIR filters is that they can implement any impulse
response, provided it is of finite length. The method used
in this paper [3] uses closed-form optimal solution derived
from the texture model, unlike iterative loop optimization
in [1]-[2], and therefore the designed filters are compact
and computationally simpler to design. The simplicity of
these spatial filters is very attractive for many real-time
web inspection problems where large volume of image
data has to be processed at high speed.

A survey of severa techniques available for the
inspection of textured surfaces can be found in [3]. In this
paper, it is assumed that every texture, i.e. with- or
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without-defects, can be modeled by using its 2D
autocorrelation function. The linear FIR filters that
guarantee optimal discrimination of energy in loca
regions rather than optimal representation are used in this
work. These optimal filters cannot explicitly detect the
defects but can make the detection an easier task by
greatly attenuating pixel value in the defect-free region
relative to regions having defects.

2. STATISTICAL TEXTURE MODEL

The feature extraction model [4] used to design the
optimal filter isillustrated in figure 1. The objective of the
optimal filter £, (x,y) is to extract those frequencies

where the defect-free texture has low signal energy and
the texture with defect has high signal energy. In this
model, it is assumed that the textures being modeled are
wide sense stationary, and that they can be well described
by their autocorrelation functions [5]. Let x and y be the
spatial indices of acquired image /(x, y) which is filtered
by thefilter 4,, (x, y) to generate a new image w(x, y).
M-1N-1
w(x,7) = Y " by, (m,n) I(x=m, y=n) (1)
m=0n=0
where M x N is the size of optimal filter to be designed.
For every pixel in w(x,y) , the output can be rewritten as

w(x, y) =hg,i(x,) 2
where h,, and i(x,y) are the vectors of length Z = M x N,
obtained by lexicographical ordering of columns of
h,y, (x, ) and M x N window of /(x, y)around pixel (x,y)
respectively. The squaring nonlinear operator | |?
computes the energy of every pixd in the filtered image
w(x, y).

s(x,y) =w*(x, ) €©)
The energy of pixelsin (3) is computed in alocal region,
the size of which is determined by the bandwidth of
smoothing filter.

2.1. The Feature mean and variance

The mean value of the feature image f(x,y) can be
derived asfollows[4]:
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ty = E{f(x,0)} = E{s(x,»)* g(x, )} 4
The smoothing filter g(x,y) is a unity gain low pass

filter. Therefore, the mean feature value at the output of
this filter is equal to mean feature value a the input.
Assuming that the filter coefficients are such that
> g(x,y) =1, equation (4) can bewritten as

py =E(w?(x, )} = E{(hg,i (x, »)(hg,i (x, »))}

o ©
=hy, Hi(x, y)i” (x,y)ih,,
defining
Ry = E{i(x,»)i" (x,»)} (6)
equation (5) can be written as
,u_/' = hOTpRiihop (7)

where R, is the autocorrelation matrix of the image
i(x,y). Since the R, in equation (6) is symmetric, the
derivative of mean feature value My isgiven by

ou, o’ R,h
luf - ( op’ Vil op) =2Riih0 ) (8)
oh,, oh,, v
Equation (7) and (8) will be used for closed-form
optimization in section 3. The variance of the feature

image f'(x,y) isgivenby
of = E{(9"S(x, »))(@" S(x, )} - u}
=9'R,g-4]
where R = E{s(x,y)s  (x,y)} is Z x Z autocorrelation

matrix which can be readily constructed from the
autocorrelation function of image s(x, ) .

(9)

3. CLOSED-FORM OPTIMIZATION

The expected response of optimal filter to the image with
textured defects is strong, i.e., high x, . On the other

hand, when a defect-free textured image is presented to
this optimal filter, its response should be low, i.e., low
g . Mahalanobis and Singh [3] have used the ratio

between the average feature val ues as the cost function.

T
i,y = e = NopRisNep (10)
l( op) T
fuf, hopRiirhop

The optimal solution for (10) is found by setting the
gradient of Ji(h,,) to zero and using (7)-(8) to obtain the

following equation.

RiR, Ny, =w.h,, (11)
where y is equal to the object function being optimized,
ie, J(h,)- Equation (11) is an eigenvalue equation
where the filter h,, is the eigenvector and y is the
eigenvalue. Therefore, the desired optima filter is the

eigenvector h,, that yields maximum object function
']l (h op) )

—p,)? (uy, =1, )
sy y =Y T g, = Bl (12)
'u/;/’uf, O-fu +O-fv
The design of optimal filters with respect to object
function Jx(h,,) or Js(h,,), using closed-form solution, is

similar and has been detailed in [4].
4. FILTER DESIGN SUMMARY

In summary, the optimal filters corresponding to object
function Ji(h,,), Jo(h,), or Js(h,,) is designed as follows:
(i) The correlation matrices R;; and R, from fabric
samples are computed. r
(ii) The eigenvectors of (R;'R, ) are computed.
(iii) The eigenvector yielding maximum object function
(i(hyp), J2(hyy), or J5(h,,))is selected, and
(iv) Optimal filter h,,(x,y) is obtained from elements of
h,,, by inverse lexicographical reordering.

5. EXPERIMENTS

The proposed scheme was evaluated on the images
captured from the real fabric samples. These image
samples have been acquired under backlighting condition
and covered 1.28 x 1.28 inch? area of fabric [3]. The
acquired images were digitized into 256 x 256 pixels,
with eight-bit resolution. A Gaussian low pass filter, with
fo =1/8 [6], was used for smoothing. The spatial extent

of thisfilter was empirically fixed as 11 x 11.

The fabric defects in each of the gathered images are
localized in a small region, i.e. they are not global. If the
complete 256 x 256 pixelsimage is utilized for designing
the optimal filter, the discriminating effect of defect from
its large defect-free background diminishes due to the
inherent averaging that takes place while computing its
correlation matrix  Rii,. Furthermore, the computational
time for computing these correlation matrices for the
complete image is significantly high. Therefore, only a
small image pitch from the region of image having defect
(and equa sized image pitch from a defect-free image) is
utilized for designing optimal filters. The size of this
image pitch is empirically determined, and it depends on
the spatial extent of the defect in animage.

6. RESULTS

The experimental results from the proposed defect
detection scheme were excellent and few of these are
reproduced here. Figure 2 (a) shows the sample of a twill
weave fabric with the defect commonly referred to as
mispick. Using Ji(h,,) as the object function, a 7 x 7
optimal filter was designed to segment this defect. Figure
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2 (e) shows the magnitude frequency response of this
optimal filter. It can be seen that the magnitude frequency
response exhibits passbands where local energy estimate
is high (corresponding to defect) and stopbands
elsewhere. The filtered image is shown in figure 2 (b). As
seen from this image, the standard deviation of individual
pixels corresponding to defect is much higher than those
due to defect-free region and therefore defect can be
segmented by any two class linear discriminant function,
typically thresholding. The local energy estimate for the
image in figure 2 (c) is shown in figure 2 (f). Since the
average local energy for region corresponding to defect is
4.419 times (greater than one) that of defect-free region,
the defect can be easily be segmented by simple
thresholding as shown in figure 2 (d). The optimal filters
designed in this experiments were found to be robust and
have successfully detected defects of similar nature lying
anywhere in the image under inspection. The magnitude
of the three object functions, i.e. Ji(h,), J2(h,p), J3(hop),
for the different optimal filter size (M x N), for the defect
in image 2 (a), is shown in table 1. With the increase in
mask size from 3 x 3to 19 x 19, the maximum eigenvalue
of equation (11) or the object function Ji(h,,) increases
linearly. The high magnitude of Ji(h,,) results in higher
attenuation of the defect-free region relative to the region
having defect, but is computationally expansive.

The figure 3 shows that results from the 3 x 3 optimal
filters designed to detect same defect in figure 2(a). The
robustness of this 3 x 3 filter for the detection of other
defects is illustrated in figure 3. Due to the nature of
weaving process, mgjority of the defects on the textile
web occurs along two directions i.e. horizontal (hl) and
vertical (h2). Therefore only two optimal filters that can
detect mispick like defect in two respective directions
have been utilized for the web inspection. In this scheme
the two local energy estimate from the two filters are
added and the resultant image is binarized. The two-filter
scheme is computationally simpler and is quite successful
as can be seen from resultsin figure 4 and 5.

7. CONCLUSIONS

In this paper, a new approach for the detection of textured
defects using linear FIR filters with optimized energy
separation has been investigated. The optimized filters
designed to detect a class of defects were robust and
successful as long as the defect-free background of texture
does not change. One of the important conclusions of this
work [3] is that the size of optimal filters has appreciable
effect on the defect detection performance. The test
conducted on different types of defect and different styles
of fabric has yielded promising results. The optimal filters
suggested in this work can also be used to supplement the

performance of existing system that fail to detect a class
of specific defects.
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Table 1: Maximum object function as a function of mask
size for the mispick shown in figure 2(a).

optma fiter | Jy(h,,) | Ja(hy,) | Jalhy,)
3x3 1.4082 0.1183 0.4063
5x5 2.8315 1.1846 1.0283
7x7 4.4187 2.6450 0.9406
9x9 5.5855 3.7645 1.0117
11x11 6.6410 4.7916 1.0602
13x13 7.8826 6.0094 0.9269
15x 15 8.8267 6.9399 1.1859
17 x 17 9.8922 7.9932 1.6401
19x19 10.8588 8.9509 1.3436
Image —»| hop(x’Y)

I(x,y) optimal fiter

w(x, y)

Y

[

squaring nonlineariety

s(x,»)

A

a(x.y) > Features
smoothing filter S(x)

Figure 1. Block diagram of the feature extraction model.
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Figure 2: (a) Fabric sample with mispick, (b) after filteringwith 7 Figure 3: Fabric defects detected with 3 x 3 masks designed to detect mispick in figure
x 7 optimal filter, (c) local energy estimate of image in (b), (d) 2(a), (a)-(c) image samples, (d)-(f) local energy estimates, (g)-(i) segmented defects after

segmented defect after thresholding image (c), (¢) amplitude  thresholding.
freniencv resnonse of the ontimal filter.
(d) (C]
Figure 4. (a) Fabric sample with defect, (b) output from h1 filter, (c) Figure 5! (a) Fabric sample with defect, (b) output from h1 filter, (c)
output from h2 filter, (c) combined output from hl and h2 and, (e) output from h2 filter, (c) combined output from hl and h2 and, (€)
segmented defect after thresholding image (d).

segmented defect after thresholding image (d).
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