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ABSTRACT 

 
A new method of surface inspection for the textured 
materials is investigated. The linear FIR filters that offer 
optimal energy separation between the defect and defect-
free regions of texture have been utilized. Performance of 
different feature separation criterion with reference to 
fabric defects has been evaluated. The issues relating to 
the design of optimal filters for supervised and 
unsupervised web inspection are discussed. A general web 
inspection system based on the optimal filters is proposed. 
The experiments on this new approach have yielded 
excellent results. The on-line computational simplicity 
using the proposed scheme confirms the usefulness of the 
approach for industrial inspection. 
 

1. INTRODUCTION 
 
One of the key factors in the quality assurance of 
industrial textured materials is the surface inspection. 
Traditional manual inspection is labor- and cost-intensive 
and offers major bottleneck in the high-speed production 
lines.  The advantages of automated visual inspection are 
well known; repeatability, reliability and accuracy.  

The design of optimal Gabor filters and wavelets for 
the inspection of textile defects has been detailed in [1]-
[2]. However, the Gabor filters, wavelets and the infinite 
impulse response (IIR) filters are the filters with only a 
few free parameters and therefore the search space for 
optimization is very restricted. Better optimization results 
can be obtained when the number of free available 
parameters of a filter is large. A general finite impulse 
response filter (FIR) has generally more free parameters 
than an IIR or a Gabor filter. The single biggest advantage 
of FIR filters is that they can implement any impulse 
response, provided it is of finite length. The method used 
in this paper [3] uses closed-form optimal solution derived 
from the texture model, unlike iterative loop optimization 
in [1]-[2], and therefore the designed filters are compact 
and computationally simpler to design. The simplicity of 
these spatial filters is very attractive for many real-time 
web inspection problems where large volume of image 
data has to be processed at high speed. 

 A survey of several techniques available for the 
inspection of textured surfaces can be found in [3]. In this 
paper, it is assumed that every texture, i.e. with- or 

without-defects, can be modeled by using its 2D 
autocorrelation function. The linear FIR filters that 
guarantee optimal discrimination of energy in local 
regions rather than optimal representation are used in this 
work. These optimal filters cannot explicitly detect the 
defects but can make the detection an easier task by 
greatly attenuating pixel value in the defect-free region 
relative to regions having defects. 
 

2. STATISTICAL TEXTURE MODEL 
 
The feature extraction model [4] used to design the 
optimal filter is illustrated in figure 1. The objective of the 
optimal filter ),( yxhop  is to extract those frequencies 
where the defect-free texture has low signal energy and 
the texture with defect has high signal energy. In this 
model, it is assumed that the textures being modeled are 
wide sense stationary, and that they can be well described 
by their autocorrelation functions [5]. Let x and y be the 
spatial indices of acquired image ),( yxI  which is filtered 
by the filter ),( yxhop to generate a new image ).,( yxw   
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where M × N is the size of optimal filter to be designed. 
For every pixel in ),( yxw , the output can be rewritten as                      

    ),(),( yxyxw T
op ih=                                                    (2) 

where hop and i(x,y) are the vectors of length Z = M × N, 
obtained by lexicographical ordering of columns of 

),( yxhop  and M × N window of ),( yxI around pixel (x,y) 
respectively. The squaring nonlinear operator 2|.|  
computes the energy of every pixel in the filtered image 

).,( yxw   

      ),(),( 2 yxwyxs =                                                    (3) 
The energy of pixels in (3) is computed in a local region, 
the size of which is determined by the bandwidth of 
smoothing filter. 
 
2.1.  The Feature mean and variance 

 
The mean value of the feature image ),( yxf  can be 
derived as follows [4]: 
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The smoothing filter ),( yxg  is a unity gain low pass 
filter. Therefore, the mean feature value at the output of 
this filter is equal to mean feature value at the input. 
Assuming that the filter coefficients are such that 
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 equation (4) can be written as 
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defining 
     )},( ),({ yxyxE T
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equation (5) can be written as 
        opii

T
opfµ hRh =                                                      (7)                                          

where iiR  is the autocorrelation matrix of the image 
i(x,y). Since the iiR  in equation (6) is symmetric, the 

derivative of mean feature value fµ  is given by 
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Equation (7) and (8) will be used for closed-form 
optimization in section 3. The variance of the feature 
image ),( yxf  is given by 
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where }),(),({ yxyxE T
ss ssR =  is Z × Z autocorrelation 

matrix which can be readily constructed from the 
autocorrelation function of image ),( yxs . 
 

3. CLOSED-FORM OPTIMIZATION 
 
The expected response of optimal filter to the image with 
textured defects is strong, i.e., high 

dfµ . On the other 
hand, when a defect-free textured image is presented to 
this optimal filter, its response should be low, i.e., low 

rfµ . Mahalanobis and Singh [5] have used the ratio 
between the average feature values as the cost function.  
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The optimal solution for (10) is found by setting the 
gradient of )(1 opJ h to zero and using (7)-(8) to obtain the 
following equation. 

opopiiii ψ
dr

hhRR  .1  =−                                                 (11)                                                         

where ψ  is equal to the object function being optimized, 
i.e., )(1 opJ h . Equation (11) is an eigenvalue equation 

where the filter hop is the eigenvector and ψ  is the 
eigenvalue. Therefore, the desired optimal filter is the 

eigenvector hop that yields maximum object function 
)(1 opJ h . 
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The design of optimal filters with respect to object 
function J2(hop) or J3(hop), using closed-form solution, is 
similar and has been detailed in [4].           

                                                                                                  
4. FILTER DESIGN SUMMARY 

 
In summary, the optimal filters corresponding to object 
function J1(hop), J2(hop), or J3(hop) is designed as follows: 

(i) The correlation matrices      and       from fabric 
samples are computed. 
(ii) The eigenvectors of (          ) are computed. 
(iii) The eigenvector yielding maximum object function 
(J1(hop), J2(hop), or J3(hop))is selected, and 
(iv) Optimal filter hop(x,y) is obtained from elements of 
hop, by inverse   lexicographical reordering. 
 

5. EXPERIMENTS 
 
The proposed scheme was evaluated on the images 
captured from the real fabric samples. These image 
samples have been acquired under backlighting condition 
and covered 1.28 × 1.28 inch2 area of fabric [3]. The 
acquired images were digitized into 256 × 256 pixels, 
with eight-bit resolution. A Gaussian low pass filter, with 

8/10 =f  [6], was used for smoothing. The spatial extent 
of this filter was empirically fixed as 11 × 11.  

The fabric defects in each of the gathered images are 
localized in a small region, i.e. they are not global. If the 
complete 256 × 256 pixels image is utilized for designing 
the optimal filter, the discriminating effect of defect from 
its large defect-free background diminishes due to the 
inherent averaging that takes place while computing its 
correlation matrix      . Furthermore, the computational 
time for computing these correlation matrices for the 
complete image is significantly high. Therefore, only a 
small image pitch from the region of image having defect 
(and equal sized image pitch from a defect-free image) is 
utilized for designing optimal filters. The size of this 
image pitch is empirically determined, and it depends on 
the spatial extent of the defect in an image.    
 

6. RESULTS 
 
The experimental results from the proposed defect 
detection scheme were excellent and few of these are 
reproduced here. Figure 2 (a) shows the sample of a twill 
weave fabric with the defect commonly referred to as 
mispick. Using J1(hop) as the object function, a 7 × 7 
optimal filter was designed to segment this defect. Figure 
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Figure 1: Block diagram of the feature extraction model. 

2 (e) shows the magnitude frequency response of this 
optimal filter. It can be seen that the magnitude frequency 
response exhibits passbands where local energy estimate 
is high (corresponding to defect) and stopbands 
elsewhere. The filtered image is shown in figure 2 (b). As 
seen from this image, the standard deviation of individual 
pixels corresponding to defect is much higher than those 
due to defect-free region and therefore defect can be 
segmented by any two class linear discriminant function, 
typically thresholding. The local energy estimate for the 
image in figure 2 (c) is shown in figure 2 (f). Since the 
average local energy for region corresponding to defect is 
4.419 times (greater than one) that of defect-free region, 
the defect can be easily be segmented by simple 
thresholding as shown in figure 2 (d). The optimal filters 
designed in this experiments were found to be robust and 
have successfully detected defects of similar nature lying 
anywhere in the image under inspection. The magnitude 
of the three object functions, i.e. J1(hop), J2(hop), J3(hop), 
for the different optimal filter size (M × N), for the defect 
in image 2 (a), is shown in table 1. With the increase in 
mask size from 3 × 3 to 19 × 19, the maximum eigenvalue 
of equation (11) or the object function J1(hop) increases 
linearly. The high magnitude of J1(hop) results in higher 
attenuation of the defect-free region relative to the region 
having defect, but is computationally expansive.  

The figure 3 shows that results from the 3 × 3 optimal 
filters designed to detect same defect in figure 2(a). The 
robustness of this 3 × 3 filter for the detection of other 
defects is illustrated in figure 3. Due to the nature of 
weaving process, majority of the defects on the textile 
web occurs along two directions i.e. horizontal (h1) and 
vertical (h2). Therefore only two optimal filters that can 
detect mispick like defect in two respective directions 
have been utilized for the web inspection. In this scheme 
the two local energy estimate from the two filters are 
added and the resultant image is binarized.  The two-filter 
scheme is computationally simpler and is quite successful 
as can be seen from results in figure 4 and 5.  
 

7. CONCLUSIONS 
 
In this paper, a new approach for the detection of textured 
defects using linear FIR filters with optimized energy 
separation has been investigated. The optimized filters 
designed to detect a class of defects were robust and 
successful as long as the defect-free background of texture 
does not change. One of the important conclusions of this 
work [3] is that the size of optimal filters has appreciable 
effect on the defect detection performance. The test 
conducted on different types of defect and different styles 
of fabric has yielded promising results. The optimal filters 
suggested in this work can also be used to supplement the 

performance of existing system that fail to detect a class 
of specific defects. 
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Table 1: Maximum object function as a function of mask 

size for the mispick shown in figure 2(a). 
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Optimal filter 
Mask size 

 )(1 opJ h   )(2 opJ h  )(3 opJ h  

3 × 3 1.4082 0.1183 0.4063 
5 × 5 2.8315 1.1846 1.0283 
7 × 7 4.4187 2.6450 0.9406 
9 × 9 5.5855 3.7645 1.0117 

11 × 11 6.6410 4.7916 1.0602 
13 × 13 7.8826 6.0094 0.9269 
15 × 15 8.8267 6.9399 1.1859 
17 × 17 9.8922 7.9932 1.6401 
19 × 19 10.8588 8.9509 1.3436 
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Figure 2: (a) Fabric sample with mispick, (b) after filtering with 7
× 7 optimal filter, (c) local energy estimate of image in (b), (d)
segmented defect after thresholding image (c), (e) amplitude
frequency response of the optimal filter.

Figure 3: Fabric defects detected with 3 × 3 masks designed to detect mispick in figure
2(a), (a)-(c) image samples, (d)-(f) local energy estimates, (g)-(i) segmented defects after
thresholding. 

Figure 4: (a) Fabric sample with defect, (b) output from h1 filter, (c)
output from h2 filter, (c) combined output from h1 and h2 and, (e)
segmented defect after thresholding image (d). 

Figure 5: (a) Fabric sample with defect, (b) output from h1 filter, (c)
output from h2 filter, (c) combined output from h1 and h2 and, (e)
segmented defect after thresholding image (d). 

(e) 
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