DE-PIPELINE A SOFTWARE-PIPELINED LOOP

Jian Wang *
jiwang@nortelnetworks.com

Bogong Su *
sub@wpunj.edu

Abstract

Software pipelining is a loop optimization technique that
has been widely implemented in modern optimizing
compilers. In order to fully utilize the instruction level
parallelism of the recent VLIW DSP processors, DSP
programs have to be optimized by software pipelining.
However, because of the transformation of the original
sequential code, a software-pipelined loop is often difficult
to understand, test, and debug. It is also very difficult to re-
use and port a software-pipelined loop to other processors
especially when the original sequential code is unavailable.
In this paper we propose a de-pipelining technique, which
converts the optimized assembly code of a software-
pipelined loop back to a semantically equivalent sequential
counterpart. Preliminary experiments on 20 assembly
programs verifies the validity of the proposed de-
pipelining algorithm.

I. INTRODUCTION

Digital Signal Processing (DSP) industry has been growing
rapidly over the past few years [3]. Due to the constant
need to improve the performance and to address a wide
range of applications, a new breed of DSP processors
based on Very Long Instruction Words (VLIW) have been
introduced to the market by most major manufacturers. In

Erh-Wen Hu *
hue@wpunj.edu

MVK 0X32,B0
MVC CSR,B8 ZERO A4 ZERO B5
AND -2,B8,B4
MVC B4,CSR SUB B0,5,B0 MVK 0X2,A1
L1: [BO]B L2
LDH *++A0(4),A3 LDH *++B7(4),B4
LDH *+A0(2),A3 LDH*+B7(2)B4 [B0]B L2
LDH *++A0(4),A3 LDH *++B7(4),B4
L2: LDH*+A0(2)A3 LDH*+B7(2)B4 [B0]B L2
LDH *++A0(4),A3 LDH *++B7(4),84 [BO]SUB B0,1,B0
L3: LDH*+A0(2)A3 LDH*+B7(2)B4 MPY B4,A3,B6
MPY B4,A3,A5
MPY B4,A3,B6
MPY B4,A3,A5
MPY B4,A3,B6
MPY B4,A3,A5

Joseph Manzano *
manzanoj@student.wpunj.edu

order to fully utilize the instruction level parallelism of
these VLIW DSP processors, DSP applications have to be
optimized by software pipelining.

Software pipelining has been studied for many years
[2,4,8]. It is a loop optimization technique widely
implemented in optimizing compilers in order to speed up
the execution of loops on processors with instruction level
parallelism. Such DSP processors include Texas
Instruments' C6X and StarCore’s SC140. As an example,
Figure 1 shows the code of a software-pipelined loop of a
dot-product function. The code is written in the assembly
language of TIC62 processor [7].

De-pipelining is the reverse of pipelining operation; it
restores the assembly code of a software-pipelined loop
back to its semantically equivalent sequential form. That
is, given the code of a software-pipelined loop shown in
Figure 1, de-pipelining will convert it to its semantically
equivalent sequential loop shown in Figure 2.

The motivation for our study of de-pipelining is as follows.
First, due to the transformation of the original sequential
code, the code of a software-pipelined loop is very difficult
to understand, test, and debug. Second, because of the
“binary compatibility” issue, it is a very difficult to reuse

MPY B4,A3,B6
MPY B4,A3,A5
ADD B6,B5,B5
ADD A5,A4,A4
ADD B6,B5,B5
ADD A5,A4,A4
ADD B6,B5,B5
ADD A5,A4,A4
ADD B6,B5,B5
ADD A5,A4,A4

[!A1] ADD B6,B5,B5

[!A1] ADD A5,A4,A4 [Al] SUB AL,1,AL

Figure 1 Software-pipelined loop of dot-product function in TIC62 assembly code

! Dept. of Computer Science, The William Paterson University of New Jersey, Wayne, NJ 07470, USA
2 Wireless Speech and Data Processing, Nortel Networks, Montreal, QC, Canada, H3E 1H6

0-7803-7663-3/03/$17.00 ©2003 IEEE

I -237

ICASSP 2003

and port a software-pipelined loop to other processors.
Third, although a software-pipelined loop is efficient in
term of CPU execution time, it may be inefficient in terms
of memory usage. It may not be suitable for certain
applications with limited memory space. Finally, we note
that most DSP applications have been optimized by
software pipelining and well tested, but their semantically
equivalent sequential loop code may not be available. To
our best knowledge, there is no published report that
addresses de-pipelining problems.

In general, a software-pipelined loop consists of three
parts: the prelude, the loop kernel, and the postlude. As
shown in Figure 1, the prelude part is from L1 to L2, the
loop kernel is from L2 up to L3, and the postlude includes
instructions after L3. There are very strict timing
dependencies among the instructions in the prelude and in
the loop kernel. For example, if instruction at L1 is issued
at cycle t, then the three instructions between L1 and L2
must be issued at cycle (t+1), (t+2) and (t+3), respectively.
Any delay will destroy the semantics of the program.
These strict timing dependencies cannot be represented by
the conventional control dependence and data dependence.
Actually, it is difficult to understand the semantics of a
software-pipelined loop before it is de-pipelined, for
example, the construction of control flow graph of a
software-pipelined loop is awkward due to the multi-cycle
branch delay and the overlap of many iterations.

In this paper, we propose a de-pipelining algorithm. We
first use the strict timing dependencies to identify the loop
kernel. We then build the data dependence graph (DDG) of
the software-pipelined loop with the help of the loop
unrolling technique. Finally, we use the DDG to construct
the semantically equivalent sequential loop.

In the following section, we demonstrate our de-pipelining
algorithm with a working example.

MVK 0X32,B0
ZERO A4
ZERO B5
LE: LDH *++A0(4),A3
LDH *++B7(4),B4
LDH *+A0(2),A3
LDH *+B7(2),B4
[BO] SUB BO0,1,B0
[BO] B LE
MPY B4,A3,B6
NOP
MPY B4,A3,A5
ADD B6,B5,85
ADD A5 A4A4

Figure 2 The semantically equivalent sequential code
of a software-pipelined loop of dot-product function in
TIC62 assembly code

Il-238

I1. DE-PIPELINING ALGORITHM

Our de-pipelining algorithm involves the following steps:
Loop detection.

Live variable analysis.

DDG construction.

Checking software-pipelined loop.

Finding parts of the prelude and the postlude.
Scheduling.

Loop count calculation.

NoghkhowpE

Figure 3 shows a segment of TIC62 assembly code as a
working example; the leftmost column is the line number
and the || symbol means the instruction in the current line
are executed in parallel with the instruction in previous
line.

1 MVK 0X32,B0

2 ZERO A4

3 I ZERO B5

4 SUB B0,5,B0

5 I MVK 0X2.A1

6 [BO1 B L2

7 LDH *++A0(4),A3
8 I LDH *++B7(4),B4
9 LDH *+A0(2).A3
10 I LDH *+B7(2),B4
11 I [BOl B L2

12 LDH *++A0(4).A3
13 I LDH *++B7(4),B4
14 L2 LDH *+A0(2),A3
15 I LDH *+B7(2).B4
16 I [BOl B L2

17 I MPY B4,A3,B6
18 I A1 ADD B6.B5.B5
19 LDH *++A0(4),A3
20 I LDH *++B7(4),B4
21 I [BO1 SUBBO0.1.BO

22 I MPY B4,A3,A5
23 I TA1 ADD A5.A4.A4
24 I TA1l SUBAL1A1

25 LDH *+A0(2),A3
26 I LDH *+B7(2),B4
27 I MPY B4,A3,B6
28 I ADD B6,B5,B5
29 MPY B4,A3,A5
30 I ADD A5.A4,A4
31 MPY B4,A3,B6
32 I ADD B6,B5,B5
33 MPY B4,A3.A5
34 I ADD A5,A4,A4
35 MPY B4,A3,B6
36 I ADD B6,B5,B5
37 MPY B4,A3,A5
38 I ADD A5,A4 A4
39 ADD B6,B5,B5
40 ADD A5,A4,A4

Figure 3 A segment of TIC62 assembly code

1. Loop detection: From the given segment of the
assembly code, identify the body of a software-
pipelined loop.

(1) Find the loop entry: If there is a backward branch

instruction then the target of the branch instruction is the

loop entry. (2) Find the length of the body of the software-
pipelined loop: Define the pre-header as the code area just
above the loop entry whose length equals the branch delay

slots pluses one. If there are some forward branch
instructions within the pre-header area that has a loop entry
as their target, then the length of the body of the software-
pipelined loop is equal to the distance between the nearest
forward branch and the loop entry; otherwise the length of
loop body is equal to the distance between the backward
branch and loop entry plus branch delay slots.

In Figure 3, L2 is the loop entry because it is the target of a
backward branch and the length of the software-pipelined
loop body is 2.

2. Live variable analysis: From a given software-
pipelined loop body, find all last_instructions.

We define last_instructions either as the instructions that

write to registers which are live or the instructions that

perform memory store operations. From the bottom of the

loop area upward we perform a search for all

last_instructions.

In Figure 3, ADD B6,B5,B5 and ADD A5,A4,A4 are
last_instructions.

3. DDG construction: To build the DDG of a software-
pipelined loop.
(1) Unroll loop body k - 1 times, where k equals the
maximum number of instructions in instruction groups in
the loop body. An instruction group is defined as a group
of instructions that are executed in parallel. (2) Starting
from last_instructions, build the DDG bottom up by using
the height-first search algorithm.

Figure 4 shows the DDG of the software-pipelined loop of
the dot-product function.

4. Software-pipelined loop checking: To check whether
a given loop is software-pipelined.

If there exist two instructions li and Ij in the loop body

such that their distance in loop body is less than their

distance in the DDG, then the loop body is the result of

software pipelining.

From Figures 3 and 4, we can confirm that the loop
identified in Figure 3 is a software-pipelined loop.

5. Find parts of the prelude and the postlude: To find
the prelude and the postlude of a software-pipelined
loop in the given assembly code segment.

(1) Starting from the loop entry, search upward until

reaching the top boundary of the software-pipelined loop

to find all instruction groups which contain those
instructions that exist in loop body. The highest instruction
group is the upper boundary of the prelude. (2) Starting
from the bottom of the body of the software-pipelined
loop, search downward until reaching the bottom boundary
of the software-pipelined loop to find all instruction groups
which contain those instructions that exist in the loop
body. The lowest instruction group is the lower boundary
of the postlude.

In Figure 3, the prelude is from line No. 6 through 13, and
the postlude is from line No. 25 through 40.

6. Scheduling: To convert the DDG to sequential code.
(1) From last_instructions, proceeds bottom up with list-
scheduling algorithm to arrange the partial order list of the
critical path of the DDG. It is necessary to satisfy the
latencies of all instructions and insert NOPs as necessary.
(2) Insert all instructions in non-critical paths to scheduled
critical path. (3) Delete all instructions in the prelude and
in the postlude which have the same instructions in the
loop body.

7. Loop count calculation: To figure out the loop count
of the sequential code of a software-pipelined loop.
Besides the initial value of the loop count in the given
software-pipelined loop, one must consider many other
factors such as the number of SUB instructions for
decreasing loop counter in the prelude, the number of
branch instructions in the prelude whose target is the loop
entry, the number of last_instructions in the postlude, the
relative position between the backward branch and the
loop count decrement instructions in the given software-

LDH *+A0(2),A3 LDH *+B7(2),B4 MPY B4,A3,B6 ADD B6,B5,B5 [BO]B L2
LDH *++A0(4),A3 LDH *++B7(4),B4 MPY B4,A3,A5 ADD A5,Ad4,A4 [BOJSUB B0,1,B0 [A1] SUB AL1,Al
LDH *+A0(2),A3 LDH *+B7(2),B4 MPY B4,A3,B6 ADD B6,B5,B5 [BO]B L2
[LoH *++A0@),A3] |LDH *++B7(4),B4] MPY B4,A3,A5 ADD A5,A4,A4 [BOJSUB B0,1,B0 [A1] SUB AL,1,A1
[LoH*+A0(2).A MPY B4,A3,B6 ADD B6,B5,B5 [BO] B L2
LD MPY B4,A3,A5 ADD A5,A4,A4 [BOJSUB BO,1,B0 [A1] SUB AL,1,A1
LDH *+A02)A ADD B6,B5,B5 [BO] B L2
LDH *++A0(4),A3 ADD A5,A4,A4 [BOJSUB B0,1,B0 [A1] SUB AL,1,A1
LDH *+A0(2),A3 ADD B6,B5,B5 [BO] B L2
LDH *++A0(4),A3 LDH *++B7(4),B4 ADD A5, A4, A4 [BOJSUB BO,1,B0 [A1] SUB AL1,A1
LDH *+A0(2),A3 LDH *+B7(2),B4 MPY B4,A3,B5 [[ADD B6.B5.B5] [BosL2]
LDH *++A0(4),A3 LDH *++B7(4),B4 MPY B4,A3,A5 ADD A5,A4A4 [BOJSUB B0,1,B0 [A1] SUB AL,1,Al

Figure 4 DDG of working example

Il-239

Table 1 Experiment Result

Assembly Characteristi Software-pipelined loop De-pipelining result
code aracteristics Initial count | Body length Count value Body length

dot product 1> | Normal 43 1 50 14
dot product 2° | No postlude 50 1 50 14
dot product 3° | Sub & branch in prelude only, no postlude 57 1 50 14
dot product 4> | Branch in prelude only, no postlude 51 1 50 14
dot product 5 | Normal 50 1 50 14
FIR!? No postlude 32 3 32 15
FIRnorld ! No postlude 16 2 16 15
IIR? No postlude 100 4 100 13
Codebook ? No postlude, conditional branch in loop body 32 2 32 9
Vec_mpy? Normal 75 3 75 16
Latsynth ! Normal 200 5 200 25
WVS ° Normal 49 2 50 16
Add_test ! No postlude 5 2 5 6
Loop_test 11 Branch in prelude only 50 2 50 6
Loop_test 21 Branch in prelude only 100 2 100 7
Loop_test 31 Branch in prelude only 100 3 100 7
Loop_test 41 | normal 50 5 50 11
Loop_test 81 | No prelude 20 9 20 21
Loop_test 12 | No prelude 25 23 25 27
Loop_test 16 * | No prelude 50 17 50 35

note: * generated by Compiler; 2 generated by Linear assembler

pipelined loop body, etc. From Step 6 and 7 we obtain the
sequential code of the dot-production function as shown in
Figure 2, which is semantically equivalent to the given
loop in Figure 3.

IV. EXPERIMENT

We conducted experiment on 20 assembly code segments
belonging in different applications with different loop
length and various situations of the prelude and the
postlude. The code segments are generated by TIC62
compiler either or linear assembler for hand crafting [7].
First, we convert these assembly code segments to
sequential code by using de-pipelining technique
manually. We then use the TIC62 simulator to run both
original assembly code and the converted sequential code.
All computation results show our de-pipelining algorithm
is valid for these programs. Table 1 summarizes the
characteristics of the software-pipelined loops and the de-
pipelining results of these 20 programs.

V. SUMMARY

We present our de-pipelining technique and the
experimental result. Our approach will be a very useful
tool for DSP users to understand and debug software-
pipelined assembly code. Furthermore, our de-pipelining
technique can be extended to solve the “compatibility
issue” that involves software-pipelined loops of VLIW
computers. Although the “compatibility issue” was solved
by using dynamic rescheduling [1], it does not address the
code that involves software-pipelined loops. By using the
de-pipelining technique, one can convert the software-

pipelined code from a source VLIW processor to a set of
semantically equivalent sequential code at an intermediate
level. The intermediate code can then be fed into the
compiler of the target VLIW processor. Finally, our
approach can be adapted to convert the assembly code
from one VLIW DSP processor to other DSP processors

[6].

ACKNOWLEDGEMENT

Su and Manzano would like to thank the Center for Research,
College of Science and Health, William Paterson University, for
research support in the summer of 2002.

REFERENCES

[1] Conte T., and Sathaye S., Optimization of VLIW
Compatibility Systems Employing Dynamic Rescheduling,
Journal of Parallel Programming, vol.35, no.2, 1997

[2] Fisher J. and Rau R., "Instruction-Level Parallel Processing",
Science vol.253, 1991.

[3] Strauss, Will; “Digital Signal Processing: The New
Semiconductor Industry Technology Driver”; IEEE Signal
Processing Magazine, March 2000

[4] Su B., Ding S., and Xia J., "URPR - An Extension of URCR
for Software Pipelining", Proc. of the 19th Microprogramming
Workshop(MICRO-19), Oct. 1986,

[5] Su B., Wang J., and Hu E., “Code Migration from
Conventional DSPs to VLIW DSPs”, Proc. of ICPSAT2000, Oct.
2000

[6] Su B., Wang J., Hu E., and Manzano J., Assembly Code
Conversion Through pattern Mapping Between Two VLIW DSP
Processors: A Case Study, Proc. of ICSP'02, Aug. 2002.

[7] TMS320C62x/C67x Programmer’s Guide

[8] Wang J., Eisenbeis C. Su B. & Jourdan M., "Decomposed
Software Pipelining: A New Perspective and A New Approach".
International Journal on Parallel Processing, Vol.22, No.3, 1994

Il - 240

