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ABSTRACT

This paper proposes a Support Vector Machine (SVM)
based combining scheme that incorporates ideolectal and
acoustic characteristics for speaker recognition. Two
statistical model paradigms, namely GMM for acoustic
modeling and Bigrams for language modeling, provide
multilevel speaker information that affords a better
classification performance when SVM-based fusion is
accomplished. This combining approach is useful for all
speaker recognition tasks where a considerable amount of
data is available. Motivated by the absence of Spanish
databases that made feasible our research experiments,
more than nine hours of Spanish conversational speech
was collected and manually transcribed from broadcasted
radio talk shows.

1. INTRODUCTION

Current speaker recognition systems rely amost
exclusively on short-time acoustic information. MAP-
adapted Gaussian Mixtures Models [1] represent the state-
of-the-art technique in text independent speaker
recognition and achieve a very good performance but is
susceptible to acoustic corruptions such as channel
variability and noise. However, there are other levels of
information in speech which convey speaker identity and
are not under the influence of those corrupting factors.
These higher-level information sources are the subject of
intensive research efforts at present, as shown with the
inclusion of the “extended data’ speaker detection task in
the NIST [2] yearly evaluation and the recently held
SuperSID workshop [3] whose main focus was to analyze,
characterize, extract and apply high-level information to
speaker recognition tasks.

Among other long term speech patterns, idiolectal
differences between speakers have proven to be one of the
most promising spesker information sources [3,4]. To
exploit these potential benefits, a considerable amount of
speech is required in order to perform accurate Bigram
models [4]. Therefore, only a subset of speaker
recognition tasks presents a propitious scenario for
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multilevel speaker information fusion. Good examples are
some forensic areas, specificaly those where fully-
automated remote acquisition can be easily accomplished.
Particularly fitting into that situation we find the Spanish
scenario, where once a judge has emitted a lega
authorization for an investigation, substantial amount of
data can be automatically collected by means of wire
tapping the telephone line. Also, human transcriptions of
the speech information are required by the judge to follow
the investigation.

Hence, multilevel speaker information fusion affords a
promising departure point in Spanish forensic scenarios.
No prior work has been done on Spanish conversational
speech so this provides an important motivation for the
present work.

2. BASELINE SYSTEMS
2.1. Acoustic system

Acoustic scores have been calculated with our GMM
system used in the 2002 NIST evaluation [5]. A gender-
independent 256 mixtures UBM was trained with
approximately 2 hours (gender balanced) of microphonic
speech extracted from Ahumada corpus [6]. Target
speaker models have been trained via MAP adaptation of
the UBM. Score normalization, namely TNORM and
ZNORM [1] was performed to develop a common
likelihood scale.

2.2. Idiolect system

A language model for each target speaker has been
trained using word bigrams [4] and a conventiona
likelihood ratio test was used to calculate test segments
scores. The scoring formulais expressed as follows:

A { Nigens (K) H0GIL 1 (K)/ L 5 (KT}
Score =k -
a { Ntokens(k)}
k
where Niyens(K) is the number of occurrences of bigram
type k in the test segment and Ltg(k), Lgs(k) are the
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estimated likelihood of bigram k for the target speaker
model and a background speaker model respectively. Nine
hours of speech were used to train the background model.

3. FUSION STRATEGIES

Kittler et al. considered in [7] the task of combining
classifiers in a probabilistic bayesian framework. Several
ways to combine individual scores were obtained (sum,
product, max, min, ...), based on the Bayes theorem and
certain hypothesis, from which the Sum Rule (adding
individual scores normalized to range {0,1}) proved to be
the best in the experimental comparison (in a multilevel
biometric fusion problem). This perspective will be
referred as to rule-based fusion.

Multilevel fusion can aso be treated as a pattern
classification problem if the scores given by individual
classifiers are considered as input patterns to be labeled as
accepted/rejected (for the verification task). Under this
point of view, any learning machine approach can be
applied as a fusion strategy. In a recent contribution
following this approach [8], the paradigm of Support
Vector Machines (SVMs) has been proved to outperform
other learning-based (including Neural Networks) and
rule-based fusion strategies. This objective result
motivates  the SVM-based idiolectal-acoustical
combination proposed in this paper.

3.1. SVM-based fusion

The principle of SVM relies on a linear separation in a
high dimension feature space where the data have been
previousy mapped, in order to take into account the
eventual non-linearities of the problem.

Formally, the training set X =(x,)l_,1 R®, wherel is
the number of training vectors, R stands for the real line
and R is the number of modalities, is labeled with two-
classtargets (y,)._,, where:

y. T {-13 ={"Impostors","Clients'} . F:R*® F
maps the data into a feature space F. Vapnik [9] has
proved that maximizing the minimum distance in space F
between F(X) and the separating hyperplane
H(w,b)={fT F|<w,f>_+b=0},
denotes inner product in space F), is a good means of
reducing the generalization risk. Vapnik also proved [9]

that the optimal hyperplane can be obtained solving the
convex quadratic programming (QP) problem:

(where <>

. 1, 2 g
Minimize —|w| +CQ X
SIwl ax @

with y(<w,F(x)> +b)3 1-x i=1.,l

where constant C and slack variables x; are introduced to
take into account the eventual non-separability of F (X)

into F. Applying the Karush-Kuhn-Tucker conditions to

the problem in (2), the following sparse expression is

obtained for the optimal hyperplane H(w',b’):
W*:é.aiyiF(Xi) ®

il sv
where SV ={ila, >0} is the set of support vectors.
Taking into account that the decision function D that
classifies atest pattern xt is:
D(x;) = sign{< WL F(X;) >, +b*} 4
defining  K(x;,X;) =<F(x;),F(X;) >
function and using (3) leads to:

as the kerng

. .0
D(xT)=sgn1éaiyiK(xi,xT)+bg ®)
Tl sv

Problem (2) is generally solved for (a,)l_, and b’ inits
dua form with QP solvers which, together with decision
function (5), avoids manipulating directly the elements of
F and starting the design of the SVM for classification
directly from the kernel function. Typical choices for K
are:

Linear Kernel:

Polynomia Kernel:

K(x: ,xj) =<Xi ) Xj >pn
K(x, 1Xj) = (<X 1Xj 2ok +1)°
. 2
Gaussian kernel: K(x;,X;) = exp(- ||xi - xj" /25 0]
In [8], the fusion strategy relies on the computation of
the decision function D. A modification in order to obtain
not a final classifier decision, but a combined multilevel
score based on the proximity of the test pattern to the
separating surface is proposed here. The combined score
s;T R of the multilevel pattern x. T R® will be
calculated as:
S = Q& YK, x)+b (6)
it sv
Following this approach, the verification threshold
parameter can be adjusted to reach different working
points. This modification aso permits to compare
competing multilevel fusion strategies in terms of DET

plots.
4. EXPERIMENTS

4.1. Database

There are not publicly available Spanish conversational
speech databases that alow exploring the benefits of
fusing acoustic and idiolect speaker information.
Therefore, more than nine hours of Spanish conversational
speech were collected and manually transcribed from
broadcasted radio talk shows, during a period of time of
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two months, ensuring enough variability in both acoustic
and idiolect characteristics. Nine speakers compound the
database (7 male, 2 female) and each speaker data was
divided into training and testing subset. For the idiolect
experiments the training subset of associated transcription
files were divided into three text segments of an equivalent
duration of 30, 15, and 10 minutes of speech. The testing
subset was dived into 5 segments of 3 equivaent minutes
of speech. Regarding to the acoustic data, a NIST [2]
oriented scheme was followed. Two minutes segments
were created for training each speaker model and 20
seconds of speech were extracted from each of the 5 test
segments.

Bigram models were trained for each of the nine
speakers with the 30 minutes-equivalent text training
segment of the database. GMM were trained using the 2
minutes training segments corresponding to each speaker.
To assess both systems performance the same testing
strategy was conducted in each of them. Scores for each
target were calculated with 5 target trials and 40 non-target
trials.

4.2. Asymptotic performance

A dstatistically-motivated experimental procedure has been
applied to the resulting DET curves in order to smooth
them. Due to the inherent difficulty to collect a larger
database in Spanish some scarcity data side effects seem to
appear in the DET plots, adding an arduous effort to
accomplish avisual comparison. The smoothing procedure
works as follows: two GMM with 4 components each are
estimated respectively from client and impostor score
histograms using the EM agorithm [10]. Then 10,000
points from the resulting distributions are generated and
used as input for the performance testing DET plots.
Figure 1 shows an example of a DET plot without
smoothing (top) and with the smoothing procedure
(bottom).

4.3. Rule-Based Fusion

For rule-based fusion strategies, all test scores will be used
for testing the verification performance.

Figure 1 shows the results from both systems and also
the resulting scores of two rule-based combination
strategies, namely sum and product (where idiolectal and
acoustic scores were previously mapped linearly into
{0,1} range). As may be observed, the acoustic system
performance is a least twice better than the idiolect
system in al the operating points. Therefore, ideolectal
speaker information may be considered as a potential
boosting factor for acoustic speaker recognition
performance but not as an isolated system.

The rule-based combination strategies accomplished
were not capable to exploit the potential synergy between
speaker language characteristics and acoustic traits.
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Figure 1.- Baseline systems performance without smoothing
(top) and with smoothing procedure (bottom).

4.4, SVM-Based Fusion

For the SVM-based fusion experiments, the leave-one-out
method [7] will be used to maximize the size of the
training and testing data of the learning machine, while
maintaining their independence. Idiolectal and acoustic
scores from one user will be combined with a SVM trained
on other users, generating 5 client and 40 impostor
combined scores. This strategy is carried out on the
remaining 8 subjects, yielding 5" 9 = 45 client and 40" 9 =
360 impostor combined test scores. A Gaussian kernel
(Radial Basis Function) has been used, and s ? parameter
has been varied in order to find a good generalization
point. Figure 3 shows the detection performance of the
SVM-based fusion approach with three different kernel
parameters.
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Figure 2.-User and impostor acoustic-idiolect normalized score map used for training and testing one SVM
with the trained separating hyperplane (bold) and curves of equal combined score (dashed).

In order to visualize the discrimination capability of the
RBF SVM fusion approach, client and impostor maps of
idiolectal and acoustic scores before the fusion are plotted
in Figure 2. Decision boundaries and curves of equal
combined score for one user of the leave-one-out
procedure, whose client and impostor scores have been
enlarged, have aso been included.
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Figure 3.- RBF SVM fusion results varying the s ? parameter

As a result, the performance comparison of idiolectal,
acoustic and SVM-based combined verification systems is
plotted in Figure 4.

5. CONCLUSIONS

SVM fusion techniques provide an excellent framework
for combining ideolectal and acoustic speaker information
in Spanish conversational speech. Compared to the best
performing baseline system (acoustic), an improvement of
at least 40% in al the operating points was achieved by
the SVM fused system. Ruled-based fusion techniques
were not able to exploit the potential benefits of
combining two different level information sources.
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Figure 4.- Performance improvement of the SVM fusion
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