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ABSTRACT

Recently we have proposed an approach for user-customized pass-
word speaker verification; in this approach, we combined a hybrid
HMM/ANN model (used for utterance verification) and a GMM
model (used for speaker verification). In this paper, we extend our
investigations. First, we propose a new similarity measure that
uses confidence measures developed in the HMM/ANN frame-
work. Secondly, we analyze the contribution of each model using
a weighted sum combination technique. Experiments conducted
on asubset of the PolyVar database show that for a short password
the performance of the combined system did not improve signifi-
cantly compared to the performance using the GMM model aone,
and that the HMM/ANN did not contribute much in the combined
system. We discuss possible reasons for this.

1. INTRODUCTION

This paper addresses the problem of the User-Customized Pass-
word Speaker Verification (SV-UCP) where the user has the pos-
sibility to chose higher password from an unconstrained vocabu-
lary. Thisrises some difficulties. First, we have to infer the hidden
Markov model of the password. Second, we have to create (or
adapt) a speaker dependent model which capturessmodels both the
lexical content of the password and the speaker characteristics us-
ing asmall amount of enrollment data.

Recently [1], we have proposed an approach that combined
the hybrid HMM/ANN [2] and GMM [3] models in the same sta-
tistical framework. In the HMM/ANN model, the artificial neural
network (ANN) is used to estimate the emission posterior prob-
abilities of the inferred Hidden Markov Model (HMM). The ad-
vantages of the hybrid HMM/ANN system is that the estimated
posterior probabilities can be used to derive some confidence mea-
sure to tell us how well the pronounced utterance matches a word
model [4, 5]. The GMM model is used as usually done in text-
independent speaker verification to model the characteristics of the
speaker. We have shown [1] that the adapted speaker-dependent
ANN with its associated maximum a posteriori probability mainly
modeled the lexical content of the password. To accept a speaker,
we have used the following decision rule:

P(My, Sx|X) > P(M, S|X) @
where P(M;, S| X) isthejoint posterior probability that the cor-
rect speaker pronounced the correct password and P (M, S| X) is

the joint posterior probability that any speaker pronounced any
text. By developing (1) and using Bayes rule with assumptions that
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all speakers have the same a priori probability and P(M |S, X) = 1%,
the final decision was rewritten as follows:

Ponis ] |5 > 2 @

where A isthe threshold.

In this paper, we extend our investigation by processing sepa-
rately impostors pronouncing the correct password of the claimant
and impostors pronouncing the wrong password. Usually, we make
autterance verification step, so, if the pronounced utterance matches
the password model of the claimant then we verify the identity of
the speaker. In this work, we have used a weighted sum com-
bination technique to combine the utterance verification and the
speaker verification scores. We also investigated and analyzed the
contribution of each model (HMM/ANN and GMM) to the fina
decision.

2. DECISION RULE
In SV-UCP, speaker S pronouncing the word M and claiming the
identity of the user S, is accepted if:

P(My, S| X) > P(Mj, Si|X) ®)

where P(Mj,, Si|X) isthe joint posterior probability that an im-

postor pronounced the correct password and P(Mj, S|X) is the
joint posterior probability that any speaker (client or impostor)
pronounced any other password (text).

Devel oping these two Equations and using Bayes rule with the
assumption that all speakers have the same a priori probability,

decision rules (3) and (4) can be rewritten as follows:

s
P(M[Sk, X)| | P(X|Sk)| =
P(My|Sk, X) | [ P(X|Sk)

[P(MkIS,X)} [P(X|S)} 2 Az ®)

where A; and A, are the thresholds.

In these Equations, there are two kinds of scores. The like-
lihood ratio scores used for speaker verificatiorand the posterior
probability scores used for utterance verification The likelihood
ratios are estimated as usually done in text-independent speaker
verification. The model used to estimate the denominator (referred

IWhich is true if we use Baum-Welch algorithm instead of Viterbi de-
coding without taking into account the transition probabilities.
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to as world model) has a discriminative role: it discriminates be-
tween true speakers and impostors.

The posterior probabilities are estimated through a neural net-
work, which istrained (or adapted) in adiscriminative way (unlike
the maximum likelihood). It has been found (for speech recogni-
tion) that these posterior probabilities are equivalent to the likeli-
hood ratio used for utterance verification [6]. So, taking theratio of
two posterior probabilities estimated by two different neural net-
work isnot useful. So, al the posterior probabilitiesin (5) and (6)
should be estimated using the same neural network (the adapted
speaker dependent neural network in occurrence). Thisyields the
following simplifications:

P(My|Sk, X)

2o =1 ™
P(M;|Sy, X)
and
N n
P(Mk|S7X) -1 p(qlr:est|1’n)

where N isthe length of the utterance X. Assuming that the tran-

sition probabilities are equal?, % represents the posterior
probability of being inthe decodeé’ e(Sé(:cordi ng to the forced Viterbi
alignment) state g, at time n given the frame z,, divided by the
best posterior probability of that frame at the time n. This Con-
fidence Measure (CM) which is called Relative Posterior Confi-
dence Measure (RPCM) [5], tells us how close the score of the
decoded word is compared to the best acoustic score of the utter-
ance. If aword is correctly recognized 3, this RPCM will be equal
to 1. Substituting (7) and (8) into (5) and (6) respectively, and
taking the logarithm, decision rules (5) and (6) can be rewritten as
follows:

log P(X|Si) — log P(X[S4) > & ©

Zlog { qbq’“|”|””i)] + [log P(X|Sk) — log P(X]|S)] > &

(10
As explained in the introduction, a weighted sum combination
technique is used. If we refer to the scoresin (9) and (10) as s1
and s- respectively, the combined score can be written as follows:

Scom = as1 + (1 — a)s2 (12)

In this work, we have represented S' and Sk by the same model.
By expending Equation (11), we obtain the following decision rule
to accept a speaker:

<Zlog { qQk|Tn))]>+[logP(X|Sk) +logP(X|§k)] >0
best|Tn

(12)
The parameter o (0 < a < 1) indicates how much the contri-
bution of the posterior probability score (related to the utterance
verification) isin the final decision. Aswe can see, the weight of

2Which is generally the case in HMM/ANN speech recognition sys-
tems.

3Which means that the decoded phone at each time has the best local
posterior probability, even if it is not high.

the likelihood ratio (related to the speaker verification) is equa to
1, indicating the importance of the GMM score in the final deci-
sion. In this paper, we compare the use of RPCM criterion to esti-
mate the confidence measure of the utterance verification with the
Standard Posterior Confidence measure (SPCM) criterion where

(320 tog [ 57tk ] Y isreplacedby (327, log p(ai ).

3. DATABASESAND EXPERIMENT SETUP

Two databases were used in this work. The Swiss French Poly-
Phone database [ 7], was used to train different speaker -independent
speech recognizers. The speaker verification experiments were
conducted using the PolyVar database [7]. This database com-
prisestelephone recordings from 143 speakers, each speaker record-
ing between 1 and 229 sessions. Each session consists of one rep-
etition of the same set of 17 words common for al speakers. This
set of words was divided into two subset datal and data2 with
14 and 3 words respectively. A set of 38 speakers (24 males and
14 female) who have more than 26 sessions were selected. For
each of these speakers, the first 5 utterances (corresponding to the
first 5 sessions) of the same word in datal are used as training
data, between 18 and 22 utterances of the same word were used
as client accesses with the correct password. Each speaker has
a subset of 19 speakers as an impostors. Two accesses with the
correct word from each impostor and, three accesses with wrong
password (form data2 for each speaker (client or impostor) were
added to the test accesses.

For acoustic features, two kinds of features were used: 12
RASTA-PLP coefficients with their first temporal derivatives as
well asthefirst and second derivative of the |log energy were cal cu-
lated every 10 ms over 30 mswindow, resulting in 26 coefficients.
These coefficients, which are more suitable for speech recognition,
were used to train a speaker-independent Multi-layer perceptron
which is used for HMM inference. In order to keep the charac-
teristics of the user, MFCCs were used for speaker adaptation. 12
coefficients with energy complemented by their first and second
derivatives were calculated every 10 ms over 30 ms window, re-
sulting in 26 coefficients.

4. THE APPROACH

As we have seen, there are two problems that we have to solve:
the HMM inference and the speaker adaptation. In this section,
we will describe briefly our approach. More details can be found
in[1].

4.1. HMM Inference

We match (using Viterbi alignment) each of the enrollment utter-
ances with an ergodic HMM model using local posterior probabil-
ities estimated by a large Speaker-Independent Multi-Layer Per-
ceptron (SI-MLP). This SI-MLPistrained on PolyPhone database
with RASTA-PLP. We then chose from the inferred phonetic tran-
scriptions the one with the highest normalized posterior probabil-
ity to build the user HMM model M, as explained in [1].

2. Speaker adaptation
Two models were adapted for each new speaker:

4.2.1. GMM adaptation

The GMM adaptation consisted of adapting the mean of Gaus-
sians of a speaker independent GMM model (referred to as “world
model”) with 120 diagonal covariance Gaussians. Theworld model
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is trained on PolyPhone database with MFCC coefficients. The
adaptation is performed using asimplified version of MAP (maxi-
mum a posterior) adaptation algorithm [3].

4.2.2. Neural network adaptation

As the amount of adaptation data is very limited, the neural net-
work adaptation consisted of adjusting the weights of asmall Speaker-
Independent Single-Layer Perceptron (SI-SLP) in asupervised man-
ner. This SI-SLPistrained on PolyPhone database with MFCC co-
efficients. The segmentation was obtained by matching each of the
enrollment utterances on the inferred HMM model M, using lo-
cal posterior probabilities estimated by the SI-MLP. One difficulty
is that the adaptation data contains a small number of phonemes
(those constituting the user HMM model M}, ). During adaptation,
the neural network will be biased to the outputs bel onging to those
phonemes, and may destroyed the performance on the other out-
puts and thus on the other words. To alleviate this problem, we
added some examples (from PolyPhone) of phonemes that did not
appear in the segmentation. The number of the added examples
for each phoneme is equal to the average number of examples per
phoneme in the segmentation.

5. EXPERIMENTSAND RESULTS

All experiments reported here were conducted using the Torch li-
brary*. To compensate the difference in the dynamic range and to
make the scores (posterior probability and likelihood ratio) more
mathematically convenient, we mapped them to the [0,1] interval
using sigmoid function [8, 9]. A speaker-independent threshold
was set a posteriorito equalize the probability of false acceptance
rate (FAR) and false rgjection rate (FRR). For comparison pur-
poses, results with the a priori knowledge of the correct phonetic
transcription of the password are also reported.

5.1. Results

Figure 1 shows the variations of the equal error rate (EER) as a
function of « and Table 1 gives the performance of each system
using the corresponding optimal value of «. It can be observed
that:

| [ TNF-SPCM_| INF-RPCM | COR-SPCM | COR-RPCM |
a 03 02 05 0.4
EER | 351% 356% 345% 346%

Table 1. The performance of different systems with optimal

e All systems perform comparably and the RPCM criterion
does not improve the result compared to SPCM.

e The value of « in systems with the inferred phonetic tran-
scription is very small (0.2 and 0.3), indicating that the
HMM/ANN score did not contribute much in the combined
score. While in systems with the correct phonetic transcrip-
tion, this value is higher (0.5 and 0.4) but still small.

e Compared to a GMM only approach (Equation (12) with
a = 0, the corresponding EER is equa to 3.57%), the
combined system shows no significant improvement in per-
formance

4http://www.Torch.ch
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Fig. 1. EER variations as a function of the combined paramater
INF (respectively COR) for systems with the inferred (respectively
the correct) phonetic transcription. SPCM (respectively RPCM)
for systems using the SPCM (respectively RPCM) criterion to es-
timate the HMM/ANN score.

e |n Equation (12), if we chose SPCM instead of RPCM cri-
terion and we put « = 1, we will get the decision rule
that has been used in [1]. The corresponding EER is equal
to 3.72%, which is a little worse compared to the optimal
EER.

5.2. Analysisand discussion of theresults

The distribution (after mapping) of the HMM/ANN scores against
the GMM scores for the system with the inferred phonetic tran-
scription and the SPCM criterion (INF-SPCM) is shown in Fig-
ure 2. To make the Figure clear, we did not plot the distribution of
impostors accesses with wrong passwords, since, we have found
that the system is very robust in this situation (as explained later).
The vertical and the horizontal lines correspond to the individual
HMM/ANN and GMM thresholds respectively. The diagonal line
corresponds to the decision boundary as found by the combination
technique. From this Figure, we can conclude that:
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Fig. 2. The distribution of scores: The black point (respectively

the cyan plus) corresponds to the true client (respectively to im-
postors) pronouncing the correct password. The red circle corre-
sponds to the client pronouncing other password. The diagonal
line shows the decision boundary. The distribution upper the deci-
sion line corresponds to the accepted speaker.
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1. Many impostor accesses with the correct password (cyan
plus) obtained a good HMM/ANN score, confirming that
the neural network mainly modeled the lexical content of
the password.

2. Asthe decision boundary shows, the combined system uses
information mainly given by the GMM score. Thisexplains
why the value of the parameter « is very small and why
the performance of the combined system did not improve
significantly compared to the use of only GMM scores.

3. Most of the client accesses with wrong passwords (circles)
obtained alow GMM score, indicating, that the GMM model
did not capture properly the characteristics of the client.
One possible explanation is that the adaptation data con-
tains only afew phonemes (short password). So, the GMM
model keeps only the speaker characteristics that are ex-
tracted from those phonemes, which are not sufficient to
properly model all the speaker characteristics. In redlity,
it could happen that the client can not remember exactly
his/her password. So, for applications with low level of se-
curity, we can use only the decision of the GMM model.

For more analysis, Table 2 shows different acceptance (true and
false) rates related to different situations that may happen in real
life. The first column gives the true acceptance rate of Client pro-
nouncing the Correct Password (CCP). The second column gives
the FAR rate of thetrue Client pronouncing Other Password (COP).
The third column corresponds to the FAR of Impostors pronounc-
ing the Correct Password (ICP) and the last column corresponds
to FAR of Impostors pronouncing Other Password (IOP). For each
situation, the rate corresponds to the ratio of the number of ac-
cepted accesses to the total number of accesses in that situation.
We can make the following observations:

1. Thisapproach isvery robust toimpostor accesses with wrong
passwords, making the SV-UCP system more secure. In-
deed, the fact that the password is chosen from an uncon-
strained vocabulary, makes it more difficult to an impostor
to guess the user password.

2. Thefalse acceptance accesses are mainly caused by impos-
tors pronouncing the correct password or true clients pro-
nouncing other passwords, making the set up of the param-
eter o more difficult. Indeed, in this case, the client will get
(probably) a good GMM score (as it supposed to keep the
characteristics of the speaker) and alow HMM/ANN score
(asit modeled the lexical content of the password). In con-
trast, the impostor will get alow GMM score and a good
HMM/ANN score. Depending on the value of the parame-
ter o, we can distinguish two cases:

e o has a small value. The combined score of client
pronouncing the wrong password will be good enough
and the client will be accepted, while the combined
score of the impostor pronouncing the correct pass-
word will be low and the impostor will be rejected.

¢ o hasahigh value: The combined score of the client
access will be low and the client will be rejected,
while the combined score of the impostor access will
be good and the impostor will be accepted.

So, a small value of parameter o penalizes the impostor
pronouncing the correct password, while a high value pe-
nalizes the client pronouncing the wrong password. An op-

timal value of parameter oz should make a compromise be-
tween these two types of FA. This corresponds to the value
which minimize the sum of this two FAR. As the GMM
model does some work that the HMM/ANN is supposed
to do, by giving a low score to client accesses with wrong
password, the optimal value of o will be small.

[ Models | CCP | COP | ICP | IOP |
INF-SPCM | 96.50% | 8.75% | 8.12% | 0.15%
INF-RPCM | 96.44% | 9.37% | 8.12% | 0.17%

COR-SPCM | 96.55% | 7.04% | 8.23% | 0.07%
COR-RPCM | 96.56% | 7.74% | 8.12% | 0.09%

Table 2. Different false and true acceptance rates corresponding

to different situations for each system.

6. CONCLUSION

In this paper, we investigated and analyzed the combination of the
hybrid HMM/ANN and GMM models for user-customized pass-
word speaker verification. For a short password, we have found
that the GMM model did not properly keep the speaker character-
istics and it did some work that the HMM/ANN was supposed to
do, explaining why the GMM model has much more contribution
in the combined system than the HMM/ANN model.
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