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ABSTRACT

This paper presents a fast discriminative training algo-
rithm for sequences of observations. It considers a sequence
of feature vectors as one single composite token in training
or testing. In contrast to the traditional EM algorithm, this
algorithm is derived from a discriminative objective, aim-
ing at directly minimizing the recognition error. Compared
to the gradient-descent algorithms for discriminative train-
ing, this algorithm invokes a mild assumption which leads
to closed-form formulas for re-estimation, rather than rely-
ing on gradient search, without sacrificing the algorithmic
rigor. As such, it is in general much faster than a descent
based algorithm and does not need to determine the learning
rate or step size. Our experiment shows that the proposed
algorithm reduces error rate by 14.65, 66.46, and 100.00%
for 1, 5, and 10 seconds of testing data respectively, in a
speaker identification application.

1. INTRODUCTION

Pattern recognition is one of the core techniques for com-
puter applications. It constructs mathematical pattern clas-
sifiers using pre-collected training data. Current approaches
to pattern classifier design fall into two categories: (1) the
distribution-estimation approach based on Bayses’ decision
theory; and (2) the discriminative training approach based
on minimizing the classification error rate [1]. Since the
second approach aims directly at minimizing the error rate,
it usually provides better performance compared to the more
traditional distribution estimation approach. In term of train-
ing algorithms, the first approach uses the EM algorithm for
maximum likelihood estimation of the data distributions. It
is usually very efficient even though it is an iterative proce-
dure. For speech recognition, it often takes only a few itera-
tions for the solution to converge. The second approach uses
gradient-descent algorithms, which usually need more care
in numeric treatments, need to properly determine the learn-
ing rate or step size for parameter update, and take more it-
erations during optimization. To address the training prob-

lem in the second approach, we proposed a new discrimina-
tive training algorithm called the fast MER estimation in [2],
where the results showed that the new algorithm can provide
better performance with much faster training compared to a
conventional gradient-descent based algorithm for discrim-
inative training.

In our previous paper [2], the fast MER algorithm is a
fixed-dimensional algorithm, i.e. we assume that one train-
ing or testing token is one observation or a single feature
vector. It is for general pattern recognition applications. In
this paper, we extended the algorithm to a sequence-based
algorithm, i.e. we assume that one training or testing to-
ken is an observation sequence or a set of feature vectors.
A natural application for this extended algorithm is speaker
identification, which is important today for security appli-
cations. We then verify the proposed algorithm on the per-
formance of a speaker identification task.

2. OBJECTIVE FUNCTION

In an � -class classification problem, we are asked to make
a decision to identify a sequence of observations, �, as
member of a class, say, ��. The true identity of �, say �� ,
is not known, except in the design or training phase in which
observations of known identity are used as reference for pa-
rameter optimization. We denote event �� as the action of
identifying an observation as class �. The decision is correct
if � � �, otherwise incorrect. It is natural to seek a decision
rule that minimizes the probability of error, or empirically,
the error rate, which entails a zero-one loss function:

�������� �

�
� � � � �� � � �� �����
� � �� ��

(1)

It assigns no loss to a correct decision and assigns a unit
loss to an error. The probabilistic risk of �� corresponding
to this loss function is
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���

��������	 ��� ��� � �� 	 ������ (2)
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where 	 ������ is the a posteriori probability that � be-
longs to��. To minimize the probability of error, one should
therefore maximize the a posteriori probability 	 �� ����.
This is the basis of Bayes’ maximum a posteriori (MAP)
decision theory and is also referred to as minimum error
rate (MER) [3] in an ideal setup. The a posteriori prob-
ability 	 ������ is often modelled as 	��������, a func-
tion defined by a set of parameters 
�. Since the parameter
set 
� has a one-to-one correspondence with � �, we write
	�������� � 	 �
���� and other similar expressions with-
out ambiguity. For training, we further define an “aggre-
gate” a posteriori (AAP) probability:

� �
�

�
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���

���
���

�������
��	�
�������

(3)

where ���� is the 
’th training token from class �, � is
the total number of classes, �� is the total number of to-
kens for class �, and 	� is the corresponding prior proba-
bility. Let us assume: (1) one token,����, consists of a se-
quence of observations (or frames): ���� � ������	�


�

	��,
where �� is the total number of the observations or frames
in the 
’th token; and (2) the observations are indepen-
dent, identically distributed (i.i.d.). Thus, probability or
likelihood �������
�� is calculated as: �������
�� ��
�

	�� �������	�
��� Note that the MAP objective can be
rewritten for the AAP probability as:
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where ������� �
�

���������
is a sigmoid function, and

���� � 
�� �������
��	��
��
�
� ���

�������
��	� (5)

represents a log probability ratio between the true class �

and competing classes � �� �. The sigmoid function pro-
vides different weights to different training data. For those
data that are hardly ambiguous in their classification, the
weight is close to 1 (i.e., decisively wrong) or 0 (i.e., deci-
sively correct); for those data near the classification bound-
ary, the weighting is in-between. The slope of the sigmoid
function is controlled by the parameter �, where � � �.
Thus, the values of � can affect the training performance
and convergence. The value needs to be pre-selected for dif-
ferent tasks as in other discriminative training algorithms.

For numeric consistency, we introduce a weighting scalar
�� into (5). Thus, we have ���� � 
�� �������
��	� �
�� 
��

�
� ��� �������
��	� � where � � �� � �. For

simplicity, we denote �� � �. Intuitively, � represents
the weighting between true class � and competing classes
� �� �. When � � �, it means that the true class is more im-
portant than the competing classes. When � � �, it means

the true class and competing classes are equally important.
The range of the values of � can be determined during esti-
mation. When � � � and � � �, we have 	� � � .

3. SEQUENCE-BASED ESTIMATION FORMULAS

We now apply this formulation to a classifier design em-
ploying, specifically, the Gaussian mixture model (GMM)
as the conditional probability density function:

�������	 �
�� �

��
���

�����������	 �
���� (6)

where �������	�
�� is a mixture density, �������	 �
���� is
a component density, ���� is the mixing parameter subject
to
��

� �����, and � is the number of mixture components
that constitute the conditional probability density. The pa-
rameters for the component density is a subset of the pa-
rameters of the mixture density, i.e., 
��� � 
�. In most
applications, the component density is defined as an Gaus-
sian kernel.

Let 	
���
� be the gradient of � with respect to ���� �


���. Vanishing the gradient to maximize � , we have:
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���������	� � ������� �����
�����������	 �
����

�������	�
��
(8)
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�������������	 �
����	��

� ��� ���������	�
��	�
(9)

where � is computed using (5) to represent the (unregulated)
error rate. (This is deliberately set to separate, in concept,
the influence of a token from the relative importance of vari-
ous parameters of the classifier upon the performance of the
classifier.) To find the solution to (7), we assume that 
���

and �
��� can be approximated as constants.
1) Estimation of Covariance Matrices: For a Gaussian

component, we have


�� �������	 �
���� � � 
����������������
����

�
�

�
������	 � �����

�������������	 � ������

where ���� and ���� are the mean vector and covariance
matrix of the �’th component of the �’th GMM. � is the di-
mension of observation vectors, and � represents the vector
or matrix transpose.
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For optimization of the covariance matrix, we take the
derivative with respect to matrix ����

	����

�� �������	�
���� � �

�

�
������

�
�

�
������������	 � �����������	 � �����

�������

(10)

where	� is defined as a matrix operator	� 

�

�
�����

��
�����

�

where ���� is an entry of matrix �, and � is the dimension
number of observation vectors. Bringing (10) into (7) and
rearranging the terms, we have:
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�
(11)
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(14)
Both� and� are matrices and � is a scalar. For simplicity,
we ignore subscripts �� � for�, �, and �.

2) Determination of Weighting Scalar: The estimated
covariance matrix, ����, must be positive definite. We use
this requirement to determine the upper bound of the weight-
ing scalar �.

Using the eigenvectors of ����, we can construct an
orthogonal matrix�, such that (1)������ ���������,
where both �� and �� are diagonal, and (2) both���� and
��� ��� have the same eigenvalues. We have proved these
claims in [4]. � can then be determined as:

� � ���

�
	��
	��

��
���

� (15)

where 	�� � � and 	�� � � are the diagonal entries of 	�
and 	�, respectively. � also needs to satisfy ���� � � and
� � � � �. Thus, for the �’th mixture component of model
�, we can determine ����. If model � has � mixtures,
we need to determine one �� to satisfy all mixture com-
ponents in the model. Therefore, the upper bound of �� is
�� � ��������� ����� � � � � ������ In numerical compu-
tation, we need an exact number of �; therefore, we have

�� �  ��������� ����� � � � � ������ (16)

where � �  � � is a pre-selected constant and it is easier to
determine compared to the learning rate in gradient-descent
algorithms.

3) Estimation of Mean Vectors: We take the derivative
of (10) with respect to vector ����:

	����

�� �������	�
���� � ������������	 � ����� (17)

where 	� is defined as a vector operator 	� 

�

�
���

��
���

�

where !� is an entry of vector �, and � is the dimension
number of observation vectors. Bringing (17) into (7) and
rearranging the terms, we obtain the solution for mean vec-
tors:

���� �
�� ��

�
(18)
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and � is defined in (14). Again, for simplicity, we ignore
subscripts �� � for �, �, and �. We note that the both �
and � are vectors, and scalar � has been determined when
estimating ����.

4) Estimation of Mixture Parameters: The last step is to
compute for the mixture parameters ���� subject to

��
� ���� �

�. Introducing Lagrangian multipliers "�, we have

�� � 	� �
��
���

"�

�
���
���

���� � �

	
� (21)

Taking the first derivative and vanishing it for maximization,
we get

# 	�

#����

�

����
� � "� � �� (22)

Rearranging the terms, we then have

���� � �
�

"�
�� (23)

Summing over ����, for � � ����� , we can solve "� as

"� � ��$� �%� (24)

$ �
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Bring (24) into (23), we have

���� �
�

$� �%
� (27)

5) Remarks: So far, we only discussed the necessary
condition for optimization, i.e., 	
���

� � �. In theory, we
also need to meet the following sufficient conditions:

1. 	�

���

� � �. This is to ensure an maximum solution;

2. �	
���

���� � � and �	
���

�
���� � � around ����.
This is to ensure that 
��������� and �
��������� in (7) are
approximately constant so as to support the closed-form re-
estimation formulas. While theoretical proof of this as-
sumption is not available, we validate the algorithm through
experiments and use it in applications.

4. TRAINING PROCEDURE

The training procedure of the proposed fast MER estimation
can be summarized as follows:

1. Initialize all models parameters for all classes by ML
estimation;

2. For every mixture component � in model �, compute

��� and �
��� using (8) and (9), and compute�,�, and �

using (12), (13), and (14);
3. Determine the weighting scalar � by (16);
4. For every mixture component �, compute ���� ����,

and ���� using (11), (18), and (27);
5. Evaluate the performance using (4) and (5) for model

�. If the performance is improved, save the best model
parameters;

6. Repeat Step 2 to 5 for the required number of itera-
tions for model �;

7. Use the saved model for class � and repeat the above
procedure for all untrained models.

8. Output the saved models for testing and applications.

5. EXPERIMENTS ON SPEAKER
IDENTIFICATION

We applied the proposed string-based MER estimation to a
text-independent speaker identification task. There were 11
speakers in a group. Each speaker had 60 seconds of train-
ing data and 30 - 40 seconds of testing data . The speak-
ers were randomly picked up from the 2000 NIST Speaker
Recognition Evaluation database. The speech data were
first converted into 12-dimensional (12-D) Mel-frequency
cepstral coefficients through a 30 ms window shifted every
10 ms. Thus, for every 10 ms, we have one 12-D MFCC
feature frame. The silence frames were then removed by a
batch-mode endpoint detection algorithm [5]. The testing
performance is evaluated based on segments of 1, 5, and 10
seconds of testing speech. The speech segment was con-
structed by moving a window of the length of 10, 50, or 100

Table 1. SPEAKER IDENTIFICATION ERROR RATES ON

DIFFERENT ALGORITHMS AND TESTING DATA (%)
Algori- Itera- Test Length
thms tions 1 sec 5 sec 10 sec

ML Estimation 5 31.41 6.59 1.39
String-Based MLE5 26.81 2.21 0.00

MER (Propossed) + MER1

Error Reduction 14.65 66.46 100.00

frames at every frame on the testing data. A detailed intro-
duction to speaker identification and typical ML estimation
approach can be found in [6].

We first constructed GMM with 8-mixture components
for every speaker using the ML estimation. Each GMM
was then further trained discriminatively using the proposed
sequence-based MER estimation. During test, for every
segment, we computed the likelihood scores of all trained
GMM’s. The speaker with the highest score was labelled as
the owner of the segment.

The experimental results are listed in Table 1. For 1, 5,
and 10 seconds of testing data, the proposed string-based
MER algorithm made 14.56%, 66.46%, and 100.00% rela-
tive error rate reduction compared to the ML estimation.

6. CONCLUSIONS

We extended the frame-based, fast MER estimation to a
sequence-based one. It showed significant improvement in
text-independent speaker identification application compared
the traditional ML estimation. It will be straightforward
to extend this string-based MER algorithm to train hidden
Markov models for speech recognition.
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