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ABSTRACT

This paper presents a fast discriminative training algo-
rithm for sequences of observations. It considers a sequence
of feature vectors as one single composite token in training
or testing. In contrast to the traditional EM algorithm, this
algorithm is derived from a discriminative objective, aim-
ing at directly minimizing the recognition error. Compared
to the gradient-descent algorithms for discriminative train-
ing, this algorithm invokes a mild assumption which leads
to closed-form formulas for re-estimation, rather than rely-
ing on gradient search, without sacrificing the algorithmic
rigor. As such, it isin general much faster than a descent
based al gorithm and does not need to determinethelearning
rate or step size. Our experiment shows that the proposed
algorithm reduces error rate by 14.65, 66.46, and 100.00%
for 1, 5, and 10 seconds of testing data respectively, in a
speaker identification application.

1. INTRODUCTION

Pattern recognition is one of the core techniques for com-
puter applications. It constructs mathematical pattern clas-
sifiersusing pre-collected training data. Current approaches
to pattern classifier design fall into two categories. (1) the
distribution-estimation approach based on Bayses' decision
theory; and (2) the discriminative training approach based
on minimizing the classification error rate [1]. Since the
second approach aims directly at minimizing the error rate,
it usually providesbetter performance compared to the more
traditional distribution estimation approach. Interm of train-
ing algorithms, the first approach usesthe EM algorithm for
maximum likelihood estimation of the data distributions. It
is usualy very efficient even though it is an iterative proce-
dure. For speech recognition, it often takesonly afew itera
tionsfor the solution to converge. The second approach uses
gradient-descent algorithms, which usually need more care
in numeric treatments, need to properly determinethe learn-
ing rate or step size for parameter update, and take more it-
erations during optimization. To address the training prob-
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lem in the second approach, we proposed a new discrimina:
tivetraining algorithm called thefast MER estimationin[2],
wherethe results showed that the new algorithm can provide
better performance with much faster training comparedto a
conventional gradient-descent based algorithm for discrim-
inative training.

In our previous paper [2], the fast MER algorithm is a
fixed-dimensional agorithm, i.e. we assume that one train-
ing or testing token is one observation or a single feature
vector. It isfor general pattern recognition applications. In
this paper, we extended the algorithm to a sequence-based
algorithm, i.e. we assume that one training or testing to-
ken is an observation sequence or a set of feature vectors.
A natural application for this extended algorithm is speaker
identification, which is important today for security appli-
cations. We then verify the proposed a gorithm on the per-
formance of a speaker identification task.

2. OBJECTIVE FUNCTION

In an M -class classification problem, we are asked to make
a decision to identify a sequence of observations, X, as
member of aclass, say, C;. Thetrueidentity of X, say C;,
isnot known, except in the design or training phasein which
observations of known identity are used as referencefor pa-
rameter optimization. We denote event «; as the action of
identifying an observation as classi. Thedecisioniscorrect
if « = j, otherwiseincorrect. It is natural to seek adecision
rule that minimizes the probability of error, or empirically,
the error rate, which entails a zero-one loss function:

ceien ={ § 171

It assigns no loss to a correct decision and assigns a unit
loss to an error. The probabilistic risk of a;; corresponding
to thisloss functionis

i,j=1,..,. M (1)

M
R(ai|X) = Y~ L(ai|C))P(C41X) = 1= P(Ci|X) (2)
j=1
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where P(C;|X) is the a posteriori probability that X be-
longsto C;. Tominimizethe probability of error, one should
therefore maximize the a posteriori probability P(C;|X).
This is the basis of Bayes maximum a posteriori (MAP)
decision theory and is aso referred to as minimum error
rate (MER) [3] in an idea setup. The a posteriori prob-
ability P(C;|X) is often modelled as Py, (C;|X), a func-
tion defined by a set of parameters \;. Since the parameter
set \; has a one-to-one correspondence with C';, we write
Py, (Ci|X) = P(\;|X) and other similar expressions with-
out ambiguity. For training, we further define an “aggre-
gate” a posteriori (AAP) probability:

1 A & pXKinan|Am) P
J M mX::l 7; p(Xm,n) ®
where X, ,, isthe n'th training token from class m, M is
the total number of classes, NV, is the tota number of to-
kensfor class m, and P,, is the corresponding prior proba-
bility. Let usassume: (1) onetoken, X, ,,, consists of a se-
quence of observations (or frames): X . = {Xym.n.q} oo
where ()., is the total number of the observations or frames
in the n'th token; and (2) the observations are indepen-
dent, identically distributed (i.i.d.). Thus, probability or
likelihood p(X | Am) is calculated as: p(Xpn|Am) =
[12%, P(Xim,n.qlAm)- Note that the MAP objective can be
rewritten for the AAP probability as:

R 1 M N, 1 M Nm
maXJzﬁzzé(dm,n)zﬁzzém,n (4)

m=1 n=1 m=1n=1

1
14+e~dm,n

where {(d,.) = isasigmoid function, and
j#m

represents a log probability ratio between the true class m
and competing classes j # m. The sigmoid function pro-
vides different weights to different training data. For those
data that are hardly ambiguous in their classification, the
weight is close to 1 (i.e., decisively wrong) or O (i.e., deci-
sively correct); for those data near the classification bound-
ary, the weighting is in-between. The slope of the sigmoid
function is controlled by the parameter a;, where a > 0.
Thus, the values of a can affect the training performance
and convergence. Thevalue needsto be pre-selected for dif-
ferent tasks asin other discriminative training algorithms.
For numeric consi stency, weintroduceaweighting scalar
L, into (5). Thus, we have d,., ,, = 1og p(Xn.n|Am )P —
L1083 i 4 P(Xim,n|Aj) Py, where 0 < L,, < 1. For
simplicity, we denote L,,, = L. Intuitively, L represents
the weighting between true class m and competing classes
Jj #m.When L < 1,it meansthat thetrueclassismoreim-
portant than the competing classes. When L = 1, it means

the true class and competing classes are equally important.
The range of the values of L can be determined during esti-
mation. When L = 1anda = 1, wehave J = J.

3. SEQUENCE-BASED ESTIMATION FORMULAS

We now apply this formulation to a classifier design em-
ploying, specifically, the Gaussian mixture model (GMM)
as the conditional probability density function:

I
p(xm,n,qp\m) = Zcm,ip(xm,n,qp\m,i) (6)

i=1

where p(Xum,n,q| Am ) iISamixturedensity, p(X.m n,q|Am,i) IS
a component density, ¢, ; IS the mixing parameter subject
to Zf ¢m,i1, and I is the number of mixture components
that constitute the conditional probability density. The pa
rameters for the component density is a subset of the pa-
rameters of the mixture density, i.e., A, ; C Ay, In Most
applications, the component density is defined as an Gaus-
sian kernel.

Let Vy,, ;J bethe gradient of J with respectto6,,,; C
Am,i. Vanishing the gradient to maximize J, we have:

N Qn
Vem,ij = Z Z Qm,i(xm,n,q)vﬂm,i logp(xm,n,q|)\m,i)
n=1¢g=1
N;
_L Z
j#mn=

-0 (7)

Qn
> 0500 V.. 108 D(X; 5| Am.i)
1g=1

Cm,iP(Xm,n,q| Am,i)
Qm,i(xm,n, )= Zmyn(l — me) ) i, , )
' P(Xmn,gAm)

Cm,ip(xj,n@p\m,i)Pm 9
> ki P(Xjm,alAk) Pr

where £ is computed using (5) to represent the (unregul ated)
error rate. (Thisis deliberately set to separate, in concept,
theinfluence of atoken from the relativeimportance of vari-
ous parameters of the classifier upon the performance of the
classifier.) To find the solution to (7), we assume that 2, ;
and 2; ; can be approximated as constants.

1) Estimation of Covariance Matrices. For a Gaussian
component, we have

Qji(x5m.7) = a1 —ng)

log p(Xm,n,q|Am,i) = _IOg[(QW)d/2|Em,i|1/2]
1 _

5 (g = ) S Ko = o).
where p.,,, ; and X,,, ; are the mean vector and covariance
matrix of thei’th component of the m’th GMM. d isthe di-
mension of observation vectors, and 7' represents the vector
or matrix transpose.
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For optimization of the covariance matrix, we take the where( < n < lisapre-selected constant and it iseasier to

derivative with respect to matrix X, ; determine compared to the learning rate in gradient-descent
algorithms.
Vs, 108 p(Xnmmgl Arms) = Z\m12 3) Esp mation of Mean Vectors: We take the derivative
2 of (10) with respect to vector i, ;:
1
+2X " Xna — i) Kmmoe — fm.i) T 2L ~
g o = Hnd) B = Honi ) S Ve 08Dl M) = S = i) (A7)
(10)
d
o < defined i » 5 14 where V, is defined as a vector operator V,, = [%] )
= K :1
where'Vs I_S inedasam n?(oper orV-g - [3_51\1‘}2‘,_]-:1’ where v; is an entry of vector u, and d is the dimension
where s; ; is an entry of matrix X, and d is the dimension number of observation vectors. Bringing (17) into (7) and
number of observation vectors. Bringing (10) into (7) and rearranging the terms, we obtain the solution for mean vec-
rearranging the terms, we have: tors:
E-LF
Em,i = T (11) D
Ny Qn
N Qn E= Z Z Qm,i(xm,mq)xmm,q (19)
A= Z Z Qm,i(xm,n,q)(Xm,n,q_Nm,i)(xmm,q_ﬂm,i)T n=1g=1
n=1g=1 N; Qs
(12) N
N; Q. F= Z Z Zﬂjd(xa‘,ﬁ,q)xmﬁ (20)
= > > Y Qi) Kga—Hnd) K= )" jrmnt i
j#mn=1g=1 and D is defined in (14). Again, for simplicity, we ignore
(13) subscripts m, i for E, F, and D. We note that the both E
N @n N Qﬁ and F are vectors, and scalar L has been determined when
DZZZsz Xm,n,q) Z Z 3 (Xj,n,)- estimating X, ;.
n=lg¢=1 j#mn=1g=1 (14) 4) Estimation of Mixture Parameters. Thelast step isto

computefor the mixture parametersc,,, ; subject to Zf Cm,i =

Both A and B arematricesand D isascalar. For simplicity, 1. Introducing Lagrangian multipliers ., we have

we ignore subscriptsm, i for A, B, and D.

2) Determination of Weighting Scalar: The estimated -
covariance matrix, X,,, ;, must be positive definite. We use T=T+> vm (Z Cmyi — 1) : (21)
this requirement to determine the upper bound of theweight- — ;
ing scalar L. ) ] o o o

Using the eigenvectors of A—'B, we can construct an Taking thefirst derivative and vanishing it for maximization,
orthogonal matrix U, suchthat (1) A— LBU (A —LB)U, we get 5
whereboth A and B arediagonal, and (2) both A — LB and aJ Dt~ —0. 22)
A — LB havethe same eigenvalues. We have proved these OCm.i Cmi Tm =
clamsin[4]. L canthen be determined as:

Rearranging the terms, we then have

~ d
L < min { Cf—k} , (15 Cm.i = _LD‘ (23)
k 7/ k=1 Tm
wherea; > 0 and b; > 0 are the diagona entries of A Summing over ¢y, ;, fori = 1...1, we can solve y,,, as
and B, respectively. L also needs to satisfy D(L) > 0 and
0 < L < 1. Thus, for thei’th mixture component of model Ym = —(G — LH) (24)
m, we can determine L, ;. If model m has I mixtures,
we need to determine one L, to satisfy al mixture com- Ny Qn L
ponents in the model. Therefore, the upper bound of L ,,, is G = Z Z Qm,i(Cis Xm,nq) (25)
Ly, < min{Lp, 1, L2, .-, Ly} In numerical compu- n=1¢=14=1
tation, we need an exact number of L; therefore, we have N; Qa I
H = Qﬂ' Cz‘,X'ﬁ - 26
L = nmin{Lm1, Lmo,- - Lot} (16) ot ; silei-Xin) ()
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Bring (24) into (23), we have

D

Cm,i = m . (27)

5) Remarks: So far, we only discussed the necessary
condition for optimization, i.e,, Vg, .J = 0. Intheory, we
aso need to meet the following sufficient conditions:

1.V} J < 0. Thisisto ensurean maximum solution;

2. |V0m,iQm,i| ~ 0 and |v0m)¢Qj,i| ~ 0 around Gm,i.
Thisisto ensure that ©,,, ;(6,,,,;) and Q; ; (6., ;) in (7) are
approximately constant so as to support the closed-form re-
estimation formulas. While theoretical proof of this as-
sumptionis not available, we validate the algorithm through
experiments and useit in applications.

4. TRAINING PROCEDURE

Thetraining procedureof the proposed fast MER estimation
can be summarized as follows:

1. Initidlize all models parametersfor all classes by ML
estimation;

2. For every mixture component 4 in model m, compute
Qi and Q,,, ; using (8) and (9), and compute A, B, and D
using (12), (13), and (14);

3. Determine the weighting scalar L by (16);

4. For every mixture component ¢, compute X ,,, ; ftm i,
and c,,, ; using (11), (18), and (27);

5. Evaluate the performance using (4) and (5) for model
m. |f the performance is improved, save the best model
parameters;

6. Repeat Step 2 to 5 for the required number of itera-
tions for model m;

7. Use the saved model for class m and repeat the above
procedure for all untrained models.

8. Output the saved models for testing and applications.

5. EXPERIMENTS ON SPEAKER
IDENTIFICATION

We applied the proposed string-based MER estimation to a
text-independent speaker identification task. There were 11
speakersin a group. Each speaker had 60 seconds of train-
ing data and 30 - 40 seconds of testing data. The speak-
ers were randomly picked up from the 2000 NIST Speaker
Recognition Evaluation database. The speech data were
first converted into 12-dimensiona (12-D) Mel-frequency
cepstral coefficients through a 30 ms window shifted every
10 ms. Thus, for every 10 ms, we have one 12-D MFCC
feature frame. The silence frames were then removed by a
batch-mode endpoint detection algorithm [5]. The testing
performanceis eval uated based on segments of 1, 5, and 10
seconds of testing speech. The speech segment was con-
structed by moving awindow of the length of 10, 50, or 100

Table 1. SPEAKER IDENTIFICATION ERROR RATES ON
DIFFERENT ALGORITHMS AND TESTING DATA (%)

Algori- Itera Test Length
thms tions 1sec [ 5sec | 10sec
ML Estimation 5 3141 | 6.59 1.39
String-Based MLE5 || 26.81 | 2.21 0.00
MER (Propossed) | + MER1

Error Reduction | 14.65 | 66.46 | 100.00

frames at every frame on the testing data. A detailed intro-
duction to speaker identification and typical ML estimation
approach can be found in [6].

We first constructed GMM with 8-mixture components
for every speaker using the ML estimation. Each GMM
was then further trained discriminatively using the proposed
sequence-based MER estimation. During test, for every
segment, we computed the likelihood scores of al trained
GMM'’s. The speaker with the highest score was labelled as
the owner of the segment.

The experimental results are listed in Table 1. For 1, 5,
and 10 seconds of testing data, the proposed string-based
MER algorithm made 14.56%, 66.46%, and 100.00% rela-
tive error rate reduction compared to the ML estimation.

6. CONCLUSIONS

We extended the frame-based, fast MER estimation to a

seguence-based one. It showed significant improvement in

text-independent speaker i dentification application compared
the traditional ML estimation. It will be straightforward

to extend this string-based MER agorithm to train hidden

Markov models for speech recognition.
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