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ABSTRACT

This paper describes a new training approach based on two differ-
ent techniques (Minimum Classification Error and eigenvoices) in
order to achieve a better robustness when only poor training data
is provided. In the first two sections of this paper we describe
the MCE training and the eigenvoice approach. Then a unified
MCE/eigenvoice training algorithm is proposed describing theo-
retical advantages. We compare the proposed method with classi-
cal ML/eigenvoice methods for a speaker identification task. The
identification rate improvement is huge for sparse training data (up
to ��� in the best case).

1. INTRODUCTION

It is well known in speech recognition that available training data
is an important issue that can strongly affect performance. In fact
when a large amount of data is provided, classical approaches like
Maximum Likelihood methods yield quite satisfactory results. In
[1], Reynolds obtains a speaker identification error rate of almost
�� using a gaussian mixture to model voice pdf and training those
models with a Maximum Likelihood criterion. On the other side
when a large amount of training data is not available, performances
are strongly affected. We focused our attention on two different
techniques that can improve robustness when only sparse data is
available.

The first one is the eigenvoice method introduced in [2] for
speaker adaptation purposes and used in [3] to perform speaker
identification and verification. The eigenvoice approach consists
in assuming that each speaker model can be represented in a re-
duced space (the eigenspace) as a linear combination of only a
few eigenvectors (the eigenvoices). The weights of this combina-
tion are representative of a given speaker. As a consequence the
data quantity needed to estimate speaker model is also reduced.
In other words, a strong a priori knowledge is introduced i.e. the
speaker belongs to a subspace of the space of all possible models.
The price to pay, when using this technique is a model approxi-
mation that can be very far from reality. Until now, the eigenvoice
framework was based on the Maximum Likelihood criterion.

It’s well known that ML training is a suboptimal training ap-
proach that does not achieve good performance when training data
is sparse. Many other training criteria were proposed and among
them, the Minimum Classification Error (MCE) [4]. This method
attempts to minimize directly the recognition error using param-
eters from all competing classes. In fact while ML strives to de-
termine the best achievable model, MCE strives to optimize the
classification task of all possible models.

Theoretically the use of MCE instead of ML in determining
eigenvoices can improve results because MCE criterion is less af-
fected than ML criterion by poor model approximation. So an al-
gorithm that uses MCE training and eigenvoice technique should
be more robust to lack of data (because of eigenvoices) and more
robust to poor model approximation (because of MCE) typically
caused by the construction of the eigenspace. We can figure out
that the classic ML/eigenvoice approach aims at estimating a model
�eigenML that is an approximation of a ML model �ML that is it-
self an approximation of the speech signal. On the contrary the
model constructed by MCE/eigenvoice, let say �eigenMCE , aims
directly at maximizing the classification task independently from
the eigenspace construction and dimension (parameters that typi-
cally affects ML strongly). In section 2 we briefly review eigen-
voices and in section 3 minimum classification error training, then
in section 4 we describe our approach and in section 5, we illus-
trate some experiments.

2. EIGENVOICES APPROACH

The eigenvoice approach is based on space reduction methods ap-
plied to the vectorial space generated by the mean vectors of HMM
output probability density functions.

The goal is to represent the speaker mean vectors �� set as a
linear combination of �e���� e�	�� ��� e�K�
 eigenvoices i.e.
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So the representation of the speech(or the speaker) in the eigenspace
is given by his K coefficients w�i�. Eigenvoices are computed
using a large number of speaker dependent models and applying
a space reduction technique like Principal Component Analysis
(PCA) or Linear Discriminant Analysis (LDA) (see [2]). Once the
eigenspace is defined, the problem is to find the speaker represen-
tation given some speech utterances O � fo�� ���� otg. The prob-
lem was first solved by Nguyen in [5] proposing a Maximum Like-
lihood Eigen Decomposition (MLED), but other alternative tech-
niques were proposed (see [6]).

Another interesting point is the adaptation of the eigenspace
to the speaker set in order to obtain a Maximum Likelihood Eigen
Space (MLES) described in [7].

The performance of eigenvoice techniques strongly depends
on the quality of the eigenspace. The choice of the eigenspace di-
mension K is a crucial point in the system design. Another main
point is the way in which the eigenspace is constructed i.e. the
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space reduction technique used (PCA,LDA,...), and the represen-
tativity of the speaker dependent models (see [2]).

An application of this method to speaker identification and
verification can be found in [3]. Results from this paper show that
when rich enrollment data is provided, classical ML/GMM meth-
ods outperform eigenvoice approach. In the case of sparse training
data, we have the opposite situation because in this case the strong
a priori constraints play a fundamental role.

Two different methods for identifying a speaker using eigen-
voices are proposed:

1. Find the test speaker coordinates in the eigenspace using
MLED, then find the distance between test speaker coor-
dinates and client coordinates- this technique was named
eigendistance decoding

2. Use a speaker model (in this case GMM) generated from
client points in eigenspace to calculate the likelihood of test
data- this technique was named eigenGMM decoding.

3. MINIMUM CLASSIFICATION ERROR

The MCE training is an alternative training approach that aims at
minimizing directly the recognition error (see [4]). Classical ML
training aims at realizing a model that represent the speech obser-
vations in the best sensible way. The problem is that this model
is just an approximated one because the exact mathematical ex-
pression for the speech signal is unknown. The classification per-
formance is based on the assumption that this model is accurate
enough to distinguish between two different speech models. MCE
takes advantages of the fact that the model can not be arbitrary
accurate in some situations and tries to maximize the distance be-
tween all competing classes in order to facilitate the recognition
task. Let’s consider the main MCE training step.

Let gi�X���, i � �� ����M be a set of class conditional likeli-
hood functions, where� � f����� ���� ��i�g is a parameter set. The
decision rule C that associates a class C i to an observation X is
thus the following one:

C�X� � Ci , if gi�X� �� �maxjgj�X� ��� (2)

Then a class misclassification measure is introduced:

di�X� � �gi�X� �� 
 log

��
�

�

M � �

X
j�j ��i

exp�gj�X� ���


��
�

���

(3)

where � is a positive number. The misclassification measure is
embedded into smoothed zero-one function l i�X��� � l�di�X��
where l is a sigmoid function of this type: l�d� � ����
exp���d

���. � is normally set to zero and � is a parameter that can make
the convergence of the optimization method faster. � is set to � �.
The classifier performance is measured by the following function:

l�X� �� �
MX
i��

li�X� ����X � Ci� (4)

Equation (4) is minimized using a gradient like technique called
Gradient Probabilistic Descent (GPD) method described in [4].

GPD is based on the idea that it is possible to achieve a local min-
imum of a loss function, using an iterative procedure based on
individual loss i.e. the parameter update formula is:

�t�� � �t � 	tUtrl�Xt���j���t
(5)

whereXt is the training vector at time t and it can be demonstrated
that when t��, a local minimum is achieved.

4. MCE/EIGENVOICES TRAINING

Gaussian mixture model (GMM) is a very efficient technique for
speaker identification tasks (see [1]). Let’s assume that the speech
pdf can be modeled using a GMM i.e. speaker pdf is assumed to be
of the form p�o� �

PM
m�� cmN��m� Cm� where o is an acoustic

features vector and �m , Cm, cm are respectively the mean vector,
the covariance matrix and the weight of each multivariate gaussian
N��m� Cm�. The approach we propose in this paper is based on
the use of the MCE training, assuming that the parameter set � is
constituted by w

�i�
j with i � �� ����K and j � �� ����E i.e. the

j-th weight of the i-th class referred to the j-th eigenvoice. In other
words the class conditional likelihood function can be written as:

gi�X��� � P �Xj��i�� � P �Xjw�i�
� � ����w

�i�
E � (6)

and equation (5) becomes:
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where �im �
P

pw
�i�
p emp is the new estimated gaussian mean

vector, assuming that emp is the pth eigenvoice component referred
to the mth gaussian distribution and N��im� Cm� is a gaussian
distribution with mean �im and covariance matrix Cm. Thanks
to eigenvoices, this approach should be more robust when poor
training data is provided. Furthermore, because of MCE, modeling
problems typically related to eigenvoices should have a reduced
impact on recognition performance.

5. EXPERIMENTS

To compare MCE and ML eigenvoice training we carried out speaker
identification experiments on the TIMIT database. Acoustic vec-
tors consist in 16 MFCC (mel-cepestral coefficients). Each speaker
is modeled using a 20 components GMM.

The eigenspace is built using the 462 speakers contained in
the train set: 462 speaker independent models were generated us-
ing a Baum-Welch algorithm and then a PCA was applied to their
mean vectors matrix as described in [6]. Experiments were run on
subset of 11 speakers randomly selected (i.e. the dimension of the
smallest TIMIT directory).

We studied the identification score of MCE and ML in relation
with two parameters: quantity of data and eigenspace dimension
using the eigenGMM decoding technique. For the first parameter,
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we took inspiration from [1] where 8 of the 10 sentences provided
for each test speaker were used for enrollment data and 2 for iden-
tification. In order to simulate a growing quantity of available data
we achieved 3 sets of experiments with 2,5,7 training sentences
with respectively 1,2,3 test sentences. On the other side we studied
as well the performance for an eigenspace of dimension 10, 30 and
50; using more than 50 eigenvoices there’s no significant improve-
ment. The ML/eigenvoice training was achieved using a conjugate
gradient algorithm while the MCE/eigenvoice training was done
using a GPD algorithm with � � �, � � 	 and 	t � 	���� t�T �.
To reduce computational charge, eq (3) has been computed using
the 3 best competitors instead of all competing classes following
the approach described in [8]. We decided not to use GPD for ML
training because the form of the function to minimize is easier than
in the case of MCE and it is still possible to apply a classical gradi-
ent method instead of a stochastic gradient approximation. Results
taken from [9] are illustrated in tables 1 and 2. Table 3 shows the
relative gain of the MCE approach on the ML approach.

Error rate decreases when eigenspace dimension increases or
data quantity increases for both training criteria.

Anyway MCE outperforms ML almost for all parameters val-
ues but the gain is not always huge. When a small quantity of train-
ing data is used, the MCE improves greatly the identification score
(up to ���). On the other hand when the model obtained using
the ML training is good enough, there is no improvement at all. In
fact in the case where we have a large amount of training data, and
an eigenspace of dimension 30 (or 50) the ML/eigenvoice models
is very precise (only ����� of error rate) and even applying MCE
training there is no improvement.

It is interesting to notice that the identification rate of �����
represents the upper bound for both MCE and ML imposed from
the space reduction; to increase the score, the system needs some
information that cannot be represented in the eigenspace.

training/test 10 30 50
sentences eigenvoices eigenvoices eigenvoices

2-1 56.81% 23.86% 13.63%
5-2 36.36% 4.54% 2.27%
7-3 30.68% 1.13% 1.13%

Table 1. Speaker identification error rate using ML/eigenvoice
training

training/test 10 30 50
sentences eigenvoices eigenvoices eigenvoices

2-1 48.86% 19.31% 12.49%
5-2 24.99% 3.4% 1.13%
7-3 22.72% 1.13% 1.13%

Table 2. Speaker identification error rate using MCE/eigenvoice
training

5.1. MCE and ML inter-class distance

Fig. 1 is a plot of the position of 11 speakers in a bi-dimensional
eigenspace after ML and MCE training. It is easy to notice that
the MCE trained models have a bigger inter-class distance than

training/test 10 30 50
sentences eigenvoices eigenvoices eigenvoices

2-1 13.9% 19.04% 8.3%
5-2 31.25% 25% 50%
7-3 25.92% 0% 0%

Table 3. MCE/eigenvoice training relative gain on ML/eigenvoice
training

the ML trained models and as consequence the recognition task is
favorized.1

Let’s define the distance between two speakersas d ij � jjwi�

wjjj where the norm is the euclidean norm and w i, wj are coeffi-
cient vectors that characterize the ith and jth speaker. To quantify
the increased inter-speaker distance, we computeD � E��dMCE�
dML��dML
where dMCE anddML are average inter-speaker dis-
tance computed on competing models obtained using MCE and
ML training. The value of D we found for our tests set is 0.261 i.e.
after MCE training the distance between all the competing speak-
ers is increased of 	���� compared to the previous ML trained
models.

This distance is a physical distance in the eigenspace that not
necessarily measure the error rate reduction; to quantify the effect
of MCE training in the recognition task the KL-distance between
different models can be used. Let’s define

Dq �

Z
p�xjq�log

p�xjq�

p�x�
dx � Dq�p�xjq�jjp�x�� (11)

where p�xjq� is the likelihood of x given the model q and p�x� �P
r p�r�p�xjr�. The discriminability of a set of models can be

defined as:

D �
X
q

p�q�Dq�p�xjq�jjp�x�� (12)

To compute D, we used a numerical integration method as de-
scribed in [10] (appendix C) using as models for p�xjq� the 20
components GMM obtained using the ML and the MCE training.
Before doing this computation we applied a space reduction trans-
formation based on the KL-transform in order to reduce the com-
putational charge of this task and we reduced the integration do-
main to �mini��i�d���i�d��maxj��j�d
��j�d�
 where �i�d and
�i�d are the mean and the variance of the component i for dimen-
sion d. The average value of the gain �DMCE � DML��DML

computed on our test set is 0.036. Obviously a significant gain of
one of those distance measure does not correspond to a significant
gain in the identification rate because the original ML models can
be very accurate and the MCE training cannot improve them.

6. CONCLUSION AND FUTURE WORKS

Even if results are interesting we must outline two problems that
we found using this approach and that may explain the gain differ-
ences for different parameters values.

First of all, there exists a proof that the GPD algorithm achieves
a local minimum of the loss function when N � � where N
is the number of observation vectors. In reality � means large

1A demo on the effect of MCE training on speaker models can be found
at this URL: ecwww.eurecom.fr/�valentef/mce.html
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Fig. 1. Difference between ML and MCE training in a bi-
dimensional eigenspace

amount of data but when only little training data is provided the
stochastic approximation is no more valid, there’s no guarantee of
convergence; the GPD is not the best optimization technique when
only sparse training data is available.

The second problem concerns the construction of the eigenspace.
In previous sections we said that using MCE training is more ro-
bust than ML to poor eigenspace construction and experimental
results seems to confirm our impression. Anyway there is no guar-
anty that the MCE optimal configuration is contained in the eigenspace.
The problem is analogous to the MLES [7] which describes eigen-
vectors adaptation to build a ML eigenspace. Basically what we
obtain with this approach is the projection of the MCE minimum in
a ML eigenspace that can be really different from the MCE min-
imum in a MCE eigenspace or in an unconstrained space. This
issue is described in fig. 2: starting from a training data set, MCE
training can be used to obtain a �MCE model (middle pattern).
This task is not always achievable because of lack of data; for
this reason a space reduction technique is applied before train-
ing the system with a MCE technique. In the upper pattern the
space reduction is a space reduction optimal in the sense of ML
that produces a model �ML�MCE which can be very far from the
ideal model �MCE . For this reason the space reduction should
be optimal from the MCE criterion point of view (lower pattern)
and the model �MCE�MCE should be closer to the ideal model.
The MCE space reduction problem has already been discussed in
the pattern recognition framework. In [11], an algorithm based
on GPD method called Minimum Error Learning Subspace which
enables to directly pursue the minimum error recognition is de-
scribed. In [12] a comparison between MCE subspace and LDA
subspace is done.

Those algorithms work directly on the projection matrix that
allows the space reduction. As outlined in [5], it is not always
efficient to work on the projection matrix in speech recognition
problems so future works should focus on the possibility of per-
forming an alternative space reduction technique based on MCE.
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