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ABSTRACT

This paper describes a new training approach based on two differ-
ent techniques (Minimum Classification Error and eigenvoices) in
order to achieve a better robustness when only poor training data
is provided. In the first two sections of this paper we describe
the MCE training and the eigenvoice approach. Then a unified
MCE/eigenvoice training algorithm is proposed describing theo-
retical advantages. We compare the proposed method with classi-
cal ML/eigenvoice methods for a speaker identification task. The
identification rate improvement is hugefor sparsetraining data (up
to 50% in the best case).

1. INTRODUCTION

It is well known in speech recognition that available training data
is an important issue that can strongly affect performance. In fact
when alarge amount of datais provided, classical approacheslike
Maximum Likelihood methods yield quite satisfactory results. In
[1], Reynolds obtains a speaker identification error rate of almost
0% using a gaussian mixture to model voice pdf and training those
models with a Maximum Likelihood criterion. On the other side
when alarge amount of training datais not available, performances
are strongly affected. We focused our attention on two different
techniques that can improve robustness when only sparse data is
available.

The first one is the eigenvoice method introduced in [2] for
speaker adaptation purposes and used in [3] to perform speaker
identification and verification. The eigenvoice approach consists
in assuming that each speaker model can be represented in are-
duced space (the eigenspace) as a linear combination of only a
few eigenvectors (the eigenvoices). The weights of this combina-
tion are representative of a given speaker. As a consequence the
data quantity needed to estimate speaker model is also reduced.
In other words, a strong a priori knowledgeis introducedi.e. the
speaker belongsto a subspace of the space of all possible models.
The price to pay, when using this technique is a model approxi-
mation that can be very far from reality. Until now, the eigenvoice
framework was based on the Maximum Likelihood criterion.

It's well known that ML training is a suboptimal training ap-
proach that does not achieve good performance when training data
is sparse. Many other training criteria were proposed and among
them, the Minimum Classification Error (MCE) [4]. This method
attempts to minimize directly the recognition error using param-
eters from all competing classes. In fact while ML strives to de-
termine the best achievable model, MCE strives to optimize the
classificationtask of al possible models.
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Theoretically the use of MCE instead of ML in determining
eigenvoices can improve results because MCE criterion is less af-
fected than ML criterion by poor model approximation. So an d-
gorithm that uses MCE training and eigenvoice technique should
be more robust to lack of data (because of eigenvoices) and more
robust to poor model approximation (because of MCE) typically
caused by the construction of the eigenspace. We can figure out
that the classic M L/eigenvoiceapproachaims at estimating amodel
Acigennrr that isan approximation of aML model A »r 1 thatisit-
self an approximation of the speech signal. On the contrary the
model constructed by MCE/eigenvoice, let say A cigennsrc g, @Ms
directly at maximizing the classification task independently from
the eigenspace construction and dimension (parameters that typi-
cally affects ML strongly). In section 2 we briefly review eigen-
voicesand in section 3 minimum classification error training, then
in section 4 we describe our approach and in section 5, we illus-
trate some experiments.

2. EIGENVOICESAPPROACH

The eigenvoice approach is based on space reduction methods ap-
pliedto thevectorial space generated by the mean vectorsof HMM
output probability density functions.

The goal is to represent the speaker mean vectors /i set as a
linear combination of [e(1),e(2), .., ()] eigenvoicesi.e.

K
= [0 D] = eet) @

Sothe representation of the speech (or the speaker) in the eigenspace
is given by his K coefficients w(z). Eigenvoices are computed
using a large number of speaker dependent models and applying
a space reduction technique like Principal Component Analysis
(PCA) or Linear Discriminant Analysis (LDA) (see[2]). Oncethe
eigenspaceis defined, the problem isto find the speaker represen-
tation given some speech utterances O = {01, ..., 0:}. The prob-
lem wasfirst solved by Nguyenin [5] proposing a Maximum Like-
lihood Eigen Decomposition (MLED), but other aternative tech-
nigues were proposed (see [6]).

Another interesting point is the adaptation of the eigenspace
to the speaker set in order to obtain a Maximum Likelihood Eigen
Space (MLES) describedin [7].

The performance of eigenvoice techniques strongly depends
on the quality of the eigenspace. The choice of the eigenspacedi-
mension i isacrucial point in the system design. Another main
point is the way in which the eigenspace is constructed i.e. the
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space reduction technique used (PCA,LDA,...), and the represen-
tativity of the speaker dependent models (see[2]).

An application of this method to speaker identification and
verification can be found in [3]. Results from this paper show that
when rich enrollment datais provided, classical ML/GMM meth-
odsoutperform eigenvoiceapproach. In the case of sparsetraining
data, we have the opposite situation becausein this casethe strong
apriori constraints play afundamental role.

Two different methods for identifying a speaker using eigen-
voices are proposed:

1. Find the test speaker coordinates in the eigenspace using
MLED, then find the distance between test speaker coor-
dinates and client coordinates- this technique was named
eigendistance decoding

2. Use a speaker model (in this case GMM) generated from
client pointsin eigenspaceto cal culatethe likelihood of test
data- this technique was named eigenGMM decoding.

3. MINIMUM CLASSIFICATION ERROR

The MCE training is an alternative training approach that aims at
minimizing directly the recognition error (see[4]). Classical ML
training aims at realizing a model that represent the speech obser-
vations in the best sensible way. The problem is that this model
is just an approximated one because the exact mathematical ex-
pression for the speech signal is unknown. The classification per-
formance is based on the assumption that this model is accurate
enough to distinguish between two different speech models. MCE
takes advantages of the fact that the model can not be arbitrary
accuratein some situations and tries to maximize the distance be-
tween all competing classesin order to facilitate the recognition
task. Let’'s consider the main MCE training step.

Letg:(X,A),s=1,..., M beaset of classconditional likeli-
hood functions, where A = {A\(? ..., \(} isaparameter set. The
decision rule C that associatesa class C'; to an observation X is
thus the following one:

C(X) =Gy, if gi(X; A) = maz;g;(X; A). 2

Then a class misclassification measureis introduced:

1/n
di(X) = —gi(X;A) +log {ﬁ > 69:19[9]()(;/\)77]}
JJ#
®)

where 7; is a positive number. The misclassification measure is
embedded into smoothed zero-one function I; (X; A) = I(d:(X))
where!l isasigmoid function of thistype: I(d) = 1/(14+exp(—~d+
6)). ¢ isnormally set to zero and ~ is a parameter that can make
the convergenceof the optimization method faster. v issetto > 1.
The classifier performance is measured by the following function:

X;A) = ili(xﬂ\)l(X € i) 4

Equation (4) is minimized using a gradient like technique called
Gradient Probabilistic Descent (GPD) method described in [4].

GPD isbased on the ideathat it is possibleto achievealocal min-
imum of a loss function, using an iterative procedure based on
individual lossi.e. the parameter update formulais:

At+1 :At—ﬁtUtvl(Xt7A)|A:At (5)

where X isthetraining vector at time ¢ and it can be demonstrated
that when ¢ — oo, alocal minimum is achieved.

4. MCE/EIGENVOICESTRAINING

Gaussian mixture model (GMM) is a very efficient technique for
speaker identification tasks (see[1]). Let’s assume that the speech
pdf can bemodeledusingaGMM i.e. speaker pdf isassumedto be
of theform p(o) = S"M_ | ¢, N (ktm, Cin) Whereo isan acoustic
features vector and pt,,,, Chn, ¢y, are respectively the mean vector,
the covariancematrix and the weight of each multivariate gaussian
N(pm, Cm). The approach we proposein this paper is based on
the use of the MCE training, assuming that the parameter set A is
constituted by wj(’) with: = 0,...,K andj = 0,...,E i.e. the
j-th weight of thei-th classreferred to the j-th eigenvoice. In other
wordsthe class conditional likelihood function can be written as:

g:(X:A) = P(X|]ADY = P(X[wl?, .. 0ld) (6)

and eguation (5) becomes:

w(t+1) =l (t) — e 3 @
Wy
al; Al od;
ol  od, 8wj(i) (8
al;
=~ Li(d)(1 =1;(d; 9
S L)1) ©

od; " 1 om
= 2 om(—€] O X i e )N ptim, Com) (20)
7 m

where pim = >, w;(,’)e;" is the new estimated gaussian mean
vector, assuming that e;;" is the pth eigenvoice component referred
to the mth gaussian distribution and N (i, Crs) is a gaussian
distribution with mean ., and covariance matrix C'y,. Thanks
to eigenvoices, this approach should be more robust when poor
training datais provided. Furthermore, becauseof MCE, modeling
problems typically related to eigenvoices should have a reduced
impact on recognition performance.

5. EXPERIMENTS

To compare M CE and ML eigenvoicetraining we carried out speaker
identification experiments on the TIMIT database. Acoustic vec-
torsconsistin 16 MFCC (mel-cepestral coefficients). Each speaker
is modeled using a 20 components GMM.

The eigenspace is built using the 462 speakers contained in
the train set: 462 speaker independent models were generated us-
ing a Baum-Welch algorithm and then a PCA was applied to their
mean vectors matrix as describedin [6]. Experiments wererun on
subset of 11 speakersrandomly selected (i.e. the dimension of the
smallest TIMIT directory).

We studied theidentification scoreof MCE and ML inrelation
with two parameters: quantity of data and eigenspace dimension
using the eigenGMM decoding technique. For the first parameter,
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we took inspiration from [1] where 8 of the 10 sentencesprovided
for each test speaker were used for enrollment data and 2 for iden-

tification. In order to simulate agrowing quantity of available data
we achieved 3 sets of experiments with 2,5,7 training sentences
with respectively 1,2,3 test sentences. On the other sidewe studied
aswell the performancefor an eigenspaceof dimension 10, 30 and

50; using more than 50 eigenvoicesthere’s no significant improve-

ment. The ML/eigenvoicetraining was achieved using a conjugate
gradient algorithm while the MCE/eigenvoice training was done
usingaGPD agorithmwithé =0, y = 2ande; = eo(1 — ¢/7).
To reduce computational charge, eq (3) has been computed using

the 3 best competitors instead of all competing classes following
the approach described in [8]. We decided not to use GPD for ML

training becausethe form of thefunction to minimizeis easier than
inthe caseof MCE andit is till possibleto apply aclassical gradi-
ent method instead of a stochastic gradient approximation. Results
teken from [9] areillustrated in tables 1 and 2. Table 3 showsthe
relative gain of the M CE approach on the ML approach.

Error rate decreases when el genspace dimension increases or
data quantity increasesfor both training criteria

Anyway MCE outperforms ML almost for all parametersval-
uesbut thegainisnot alwayshuge. Whenasmall quantity of train-
ing datais used, the M CE improves greatly the identification score
(up to 50%). On the other hand when the model obtained using
the ML training is good enough, there is no improvement at all. In
fact in the case where we have alarge amount of training data, and
an eigenspace of dimension 30 (or 50) the ML/eigenvoice models
isvery precise (only 1.13% of error rate) and even applying MCE
training there is no improvement.

It isinteresting to notice that the identification rate of 1.13%
represents the upper bound for both MCE and ML imposed from
the space reduction; to increase the score, the system needs some
information that cannot be represented in the eigenspace.

training/test 10 30 50

sentences | eigenvoices | eigenvoices | eigenvoices
2-1 56.81% 23.86% 13.63%
5-2 36.36% 4.54% 2.27%
7-3 30.68% 1.13% 1.13%

Table 1. Speaker identification error rate using ML/eigenvoice
training

training/test 10 30 50

sentences | eigenvoices | eigenvoices | eigenvoices
2-1 48.86% 19.31% 12.49%
5-2 24.99% 3.4% 1.13%
7-3 22.72% 1.13% 1.13%

Table 2. Speaker identification error rate using MCE/eigenvoice
training

5.1. MCE and ML inter-classdistance

Fig. 1isaplot of the position of 11 speakersin a bi-dimensional
eigenspace after ML and MCE training. It is easy to notice that
the MCE trained models have a bigger inter-class distance than

training/test 10 30 50
sentences | eigenvoices | eigenvoices | eigenvoices
2-1 13.9% 19.04% 8.3%
5-2 31.25% 25% 50%
7-3 25.92% 0% 0%

Table 3. MCE/eigenvoicetraining relative gain on ML/eigenvoice
training

the ML trained models and as consequencethe recognition task is
favorized.! o

Let'sdefinethe distance between two speakersasd ;; = ||w*—
w?|| where the norm is the euclidean norm and w?, w7 are coeffi-
cient vectorsthat characterize the ith and jth speaker. To quantify
theincreased inter-speaker distance, wecompute D = E[(d ymce—
darr)/dar ]l wheredy o g andd 1, areaverageinter-speaker dis-
tance computed on competing models obtained using MCE and
ML training. Thevalueof > wefound for our testssetis0.261i.e.
after MCE training the distance between all the competing speak-
ersisincreased of 26.1% compared to the previous ML trained
models.

This distanceis a physical distance in the eigenspace that not
necessarily measure the error rate reduction; to quantify the effect
of MCE training in the recognition task the KL-distance between
different models can be used. Let's define

Dy = [ talatos™ AL 4z = D pielalipte)) 1)
where p(z|q) is the likelihood of z giventhemodel ¢ and p(z) =
>, p(r)p(z|r). The discriminability of a set of models can be
defined as:

D=3 p(a)Dy(p(xla)llp(x)) 12)

To compute D, we used a humerical integration method as de-
scribed in [10] (appendix C) using as models for p(z|q) the 20
components GMM obtained using the ML and the MCE training.
Before doing this computation we applied a space reduction trans-
formation based on the KL-transform in order to reduce the com-
putational charge of this task and we reduced the integration do-
mainto [min;(pi.a — 304,4), maz;(p5,a+30j,q)] where p; ¢ and
a;,q are the mean and the variance of the component i for dimen-
sion d. The average value of the gain (D arce — D)/ Dt
computed on our test set is 0.036. Obviously a significant gain of
one of those distance measure does not correspond to a significant
gain in the identification rate becausethe original ML models can
be very accurate and the MCE training cannot improve them.

6. CONCLUSION AND FUTURE WORKS

Even if results are interesting we must outline two problems that
we found using this approach and that may explain the gain differ-
encesfor different parameters values.

First of all, there existsaproof that the GPD algorithm achieves
aloca minimum of the loss function when N — oo where N
is the number of observation vectors. In reality co means large

1A demoon theeffect of MCE training on speaker models can befound
at this URL: ecwww.eurecom.fr/~valentef/mce.html
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Fig. 1. Difference between ML and MCE training in a bi-

dimensional eigenspace

amount of data but when only little training data is provided the
stochastic approximation is no more valid, there’s no guarantee of
convergence; the GPD is not the best optimization techniquewhen
only sparsetraining datais available.
The second problem concernsthe construction of the eigenspace.

In previous sections we said that using MCE training is more ro-
bust than ML to poor eigenspace construction and experimental
results seemsto confirm our impression. Anyway thereisno guar-

anty that theM CE optimal configurationis containedin the eigenspace.

The problem is analogousto the MLES[7] which describeseigen-
vectors adaptation to build a ML eigenspace. Basically what we
obtain with thisapproachis the projection of the MCE minimum in
a ML eigenspacethat can bereally different from the MCE min-
imum in a MCE eigenspace or in an unconstrained space. This
issueisdescribedin fig. 2: starting from atraining data set, MCE
training can be used to obtain a A a7z model (middle pattern).
This task is not always achievable because of lack of data; for
this reason a space reduction technique is applied before train-
ing the system with a MCE technique. In the upper pattern the
space reduction is a space reduction optimal in the sense of ML
that producesamodel A a7, —arc  Which can be very far from the
ideal model A e . For this reason the space reduction should
be optimal from the MCE criterion point of view (lower pattern)
and the model A nrc - o 5 should be closer to the ideal model.
The MCE space reduction problem has already been discussed in
the pattern recognition framework. In [11], an algorithm based
on GPD method called Minimum Error Learning Subspacewhich
enables to directly pursue the minimum error recognition is de-
scribed. In [12] a comparison between MCE subspace and LDA
subspaceis done.

Those algorithms work directly on the projection matrix that
allows the space reduction. As outlined in [5], it is not aways
efficient to work on the projection matrix in speech recognition
problems so future works should focus on the possibility of per-
forming an alternative space reduction technique based on MCE.
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