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ABSTRACT have been applied to speaker recognition in several in-

A framework for combining support vector machines with Stances [5, 6, 7]. Because of discriminative training meth-
hidden Markov models (HMM’s) is given. A HMM is used ods, SVM's satisfy many of the alternativ_e_needs stateo!.
with a Viterbi alignment to generate a set of subsequences e propose a new method for combining HMM’s with

of feature vectors. Each subsequence is then scored us®VM's. The idea is based upon the probabilistic framework
ing a support vector machine sequence kernel. ExperimentgOr scoring derived in [3]. The same computational advan-
are performed for both text-independent and text-prompted {@ges are preserved by the new approach; i.e., both compu-
speaker recognition tasks. Results show that the method caf@tional scalability (with the number of speakers) and low

dramatically reduce error rates over a support vector ma- computational complexity are maintained. In this paper, we
chine (SVM) only system. focus on the problem of speaker verification, but the meth-

ods are applicable to speaker identification also.

The outline of the paper is as follows. In Section 2,
we review support vector machines and issues for speech
processing. In Section 3, we review a sequence kernel for
speaker recognition. Section 4 proposes a new framework

1. INTRODUCTION

Hidden Markov models (HMM's) and Gaussian mixture
models (GMM'’s) have been popular methods for imple-

menting speaker verification, see [1] and [2] respectively. fohr. scoring \g'th ggesngral|z§bd I|neard|scr|m.|n'ant/HMrl:/l gr_l
In both cases, a log likelihood score between a speakerC Itecture. Section 5 describes our new training method. In

model and a background is used for verification. For hid- S€ction 6, we show experiments comparing a SVM only

den Markov models, a speaker model is constructed by con-System with the new SVM/HM_M system. Based_ upon
catenating speaker-specific models of subwords; the back-Whether a text—prompted_or text-independent scenario is se-
ground is constructed using a speaker independent ASR sysleCted' we obtain quite different results.
tem. For Gaussian mixture models, a typical strategy is
to use MAP adaptation on a background model to create 2. SUPPORT VECTOR MACHINES FOR SPEECH

a speaker model [2]; the background model is created by PROCESSING

training a GMM on a large population of speakers.

Alternatives to HMM’s and GMM'’s have emerged in A support vector machine is typically constructed as a two-
the research literature because of several needs. First, methelass classifier. The classifier is constructed from sums of a
ods which minimize speaker model size and memory foot- kernel functioni’(., -),
print are required in many applications (e.g., cell phones). N
Disc_riminatively_t_rained c_Iassifiers produce systems which f(x) = Z it K (x,%;) + b; 1)
maximize the utility of trainable parameters. Second, com- —
putational scalability is desirable for large server applica-
tions or large speaker identification problems; low com- where thet; are targets, an@ﬁil a;t; = 0. The vectors
putation minimizes hardware and/or decreases transactionx; are support vectors and obtained from the training set by
time. Discriminatively trained classifiers do not require an optimization process [8]. The target values are either
background scoring and with certain structures can be madeor —1 depending upon whether the corresponding support
computationally scalable [3, 4]. vector is in clasd or class2. For classification, one looks

An exciting area of recent focus has been the appli- at the sign off (x) and makes a class decision based upon
cation of support vector machines (SVM’s) in many dif- whether the value is positive or negative.
ferent fields. In several applications, SVM's have excited The kernelK (-, -) is constrained to have certain proper-
much fervor because of their superior performance. SVM'’s ties (the Mercer condition), so th&f(-, -) can be expressed
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as b; is a mapping fronR™ to R, andd is the vector of dis-
K(x,y) = b(x)'b(y) ) criminant model parameters. One can then show that mean-
squared error training for the speaker verification problem
whereb(x) is a mapping from the input space (whete  gives
lives) to a possibly infinite dimensional space. If the explicit d=R'b,. (5)
form of b(x) is available (which is not usually the case),

! The vectorb,, is defined as
then f(x) can be written as

~ 1 Qe
b, = E;b(xi), (6)

N
f(X) = b(X)t lz aitib(x,-) +b= [b(X) 1]tw (3)

andR is a correlation matrix derived from a large back-
ground population. Scoring on the remaining utterance

t produces the Generalized Linear Discriminant Sequence
(GLDS) kernel,

wherew is the sum in brackets in (3) with the scalaap-
pended. The advantage of the form (3) over (1) is that i
involves only storage and computation with the vestoss
opposed to the support vectors. If the dimensiob ©f) is Kcips({xi},{y:}) = bR 'b,. (7
“small” and there are a significant number of support vec-
tors, using (3) can significantly reduce storage space and”/

computation. . . . .
Generalizing support vector machines to a classification SINce we are using an exp_I|C|t expansiof), We can sim-
plify to a single model as in (3). Second, optimization us-

task involving speech presents several difficulties. First, ! the k | q A
speech feature vectors (e.g., cepstral coefficients) tend tond e Kernel proauces suppasquences. As a conse-

produce classification problems with complex overlapping quence, we find sequences from the. ;pegker and from the
classification regions. This along with other factors pro- background set of speakers (in a verification problem) that

duces many support vectors. This problem can be miti- construct the decision surface.

gated by using either the alternate form (3) (our approach)

or methods which reduce the number of support vectors, 4. SCORING

e.g. [9]. Second, speech classification problems involve se- _ _ _

quences of feature vectors rather than the typical usage of' "€ GLDS kernel can be combined in a straightforward
a SVM as a single input classifier. Since the (“soft’) SymM Manner with a HMM. For the case of text-prompted speaker
output f(x) is not a probability, this presents a challenge. '€cognition, we assume we have a left to right HMM with

To solve this problem, one can use an ad hoc method wherdhe states corresponding to subwords in the _u_tterance. For
the SVM outputf(x) is used to approximate an emission the case of text-independent speaker recognition, we trans-

probability for a HMM [6]. Alternatively a kernel which ~ formasingle GMM to a multi-state HMM where each indi-

compares sequences of speech feature vectors directly ca¥idual Gaussian is a state.
be constructed [5, 7]. Now suppose we have a sequence of feature vectors,

{xi}f\ﬁg. If we perform a Viterbi alignment using an HMM
model, we obtain a series of statgs}. Supposd < s; <
3. A SEQUENCE KERNEL Ns andS; = {j|s; = i}. Now define

hereb, is defined in an analogous manner to (6).
Two items should be noted about the kernel in (7). First,

Following the approach in [7], we review a kernel based by = |;'| Z b(x;). 8
upon comparingequences of speech feature vectors. Sup- ties:

pose we have two utterances from two speakers (possiblyIf the setS, is empty, we lefb, ; = 0. We can then con-
the same speaker), and they are represented by sequences gf |+ HI\;IM/SVM kernel (Hg:_DS) as follows\| > 0):
speech vectorgx; } Y+, and{yi}f\;”1 (e.g., each vectoris the

cepstral coefficients for a frame of speech). We construct a N, S

kernel by first training on one utterance using a generalized Kucrps({xi}, {yi}) = Z Ajbg jR; by . (9)
linear discriminant. Then, the resulting model is scored on J=1

the remaining utterance using the standard independence Of-lere,Rj is calculated by finding correlations in the sub-

observations assumption. sequences of feature vectors that decode into gtdte
In detail, suppose we are using a generalized linear dis-ytterances from the background set. The function (9) is
criminant of the formd*b(x) where also a kernel since it is the sum of GLDS kernels to ap-
plied to subsequences labeled by the states [8]. We choose
b(x) = [bi(x) by(x) ... b(x)]", @) A =]|S|/N,.
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5. TRAINING 6.1. Text-Prompted Experiments

YOHO uses combination lock phrases such as “26-81-57."
Subwords (and states) corresponding to decades (20, 30, 40,
etc.) and digits (1-9) were used. Both the GLDS kernel and
the HGLDS kernel with full covarianc® were applied to

Training with the new HGLDS kernel entails some diffi-
culty. For any two utterances from two speakers, the same
sequence of subwords may not be spoken (and not neces

sarily in the same order). One could, of course, just assignth datab Inout feat ¢ 12 tral -
a zero average expansidm, ; = 0, to the particular sub- € dalabase. Input features vectors were 1z cepstral coetli-

sequence and then evaluate the kernel. Alternatively, oneCi€Bnts and 12 delta-cepstral coefficients. A vector of mono-
might expand a speaker’s set of utterances (for the purpose§nIaIS up to degreg .2 was usgd_as the exparisian. The

of training) to include all possible concatenations of differ- dat.a_bas.e was spl!t Into tWO.dIStII’]Ct parts for enrollment_ and
ent subsequences. This is the approach we use. This proye”.ﬁ.c""t'.On to avoid usee'.ﬁ'" impostors (see [19] for deta|I§).
cess allows one to take an instance of the speaker sayin Verification was done usingrphrase tests. This resulted in

“4" and “7” in different utterances and combine them into 322 *82(()) :V\C;ﬂo V?j“d (;Iahmsﬁlrgpiostor attempts nLémberedf
a new utterance with “4” and “7” as subsequences (if states "~ """ € used a lradeolt between margin and error o

correspond to digits). Note that for impostors in the back- ¢ = Lwith SVMTorch [11]. ,

ground, we pool all impostors together so a valid sequence ~ Results for the text-prompted case are shownin the DET

may contain subsequences from distinct speakers. plotin Figure 1. From this figure, we see that the HGLDS
A second source of difficulty with the new kernel arises kernel is clearly superior to the GLDS kernel. The equal er-

during training. Expanding the set of utterances by allow- ror rate (EER) drops in this case fran4 for the SVM to

ing arbitrary concatenations creates a huge data set. Thus?'54% for the SVM/HMM. This result compares favorably

- A . with methods in the literature for HMM’s, where a typical
to simplify optimization, we assume that the problem is sep- 1-phrase EER is, for example.62% [1]
arable. That is, the support sequences can be found by find- P ' ple.bs70 L2

ing supporssubsequencesfor each state individually.

The algorithm for training after these two assumptionis 6.2. Text-Independent Experiments
straightforward. For each state, we construct a kernel based ) .
only upon the feature vectors that decode into that particular /€ applied the SVM/HMM classifier system to th@9s
state for both a particular speaker and all impostors in the NIST one-speaker detection task. In this case, since the
background. SVM training using the original GLDS ker- task is text-independent speaker recognition, a GMM split

nel is then applied producing a model of the speaker in that into Gaussian states was used for decoding. An impostor
state. background was constructed from th@d7 NIST speaker

When scoring with the HGLDS kernel under this frame- recognition database. Four separate HGLDS kernels and

work, one ignores transitions and orderings of states (an-
other way to view this is that states are tied). That is, if
the test utterance is “4-7-5", then apply a speaker model for

“4” to the subsequence of the utterance corresponding to 0T
“4”, etc., even if this particular ordering of subwords was
never seen in training (as is typical in HMM speaker mod- 20 |

elling [1]).
10 t

6. EXPERIMENTS

Miss probability (in %)
(6]

We performed two distinct tasks with the HGLDS ker- i
nel. One task applied HGLDS in text-prompted mode on 1|
the YOHO database using decades and digits as subwords.
A second task involved using HGLDS with &mixture

GMM applied to the NIST 1998 speaker recognition evalu- 0271
ation. 01r

For speech processing, a frame siz&®ins was used 010205 1 2 5 10 20 20
with 20 ms overlap. Mean removal, preemphasis, and a False Alarm probability (in %)

Hamming window were applied. LP cepstral coefficients o
and the corresponding deltas were found. Energy-based™ig. 1. DET plot of the SVM approach (solid line) versus
endpointing eliminated non-speech frames. the SVM/HMM approach (dashed line) on YOHO.
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to create a separable training problem (see Section 5). One
possible way to avoid this difficulty is to initialize the GMM
model based upon, e.g., phonemes.

40 r

20 t
7. CONCLUSIONS
107 A new method was presented for combining HMM'’s and
SVM'’s for speaker verification. Results showed that dra-
matic improvements over SVM only systems could be
achieved. Future work includes exploring alternate ex-
pansionsb(x) and improving the performance of text-

Miss probability (in %)
(&)}

1L : ; : . independent speaker recognition.
0.5
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