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ABSTRACT

A framework for combining support vector machines with
hidden Markov models (HMM’s) is given. A HMM is used
with a Viterbi alignment to generate a set of subsequences
of feature vectors. Each subsequence is then scored us-
ing a support vector machine sequence kernel. Experiments
are performed for both text-independent and text-prompted
speaker recognition tasks. Results show that the method can
dramatically reduce error rates over a support vector ma-
chine (SVM) only system.

1. INTRODUCTION

Hidden Markov models (HMM’s) and Gaussian mixture
models (GMM’s) have been popular methods for imple-
menting speaker verification, see [1] and [2] respectively.
In both cases, a log likelihood score between a speaker
model and a background is used for verification. For hid-
den Markov models, a speaker model is constructed by con-
catenating speaker-specific models of subwords; the back-
ground is constructed using a speaker independent ASR sys-
tem. For Gaussian mixture models, a typical strategy is
to use MAP adaptation on a background model to create
a speaker model [2]; the background model is created by
training a GMM on a large population of speakers.

Alternatives to HMM’s and GMM’s have emerged in
the research literature because of several needs. First, meth-
ods which minimize speaker model size and memory foot-
print are required in many applications (e.g., cell phones).
Discriminatively trained classifiers produce systems which
maximize the utility of trainable parameters. Second, com-
putational scalability is desirable for large server applica-
tions or large speaker identification problems; low com-
putation minimizes hardware and/or decreases transaction
time. Discriminatively trained classifiers do not require
background scoring and with certain structures can be made
computationally scalable [3, 4].

An exciting area of recent focus has been the appli-
cation of support vector machines (SVM’s) in many dif-
ferent fields. In several applications, SVM’s have excited
much fervor because of their superior performance. SVM’s

have been applied to speaker recognition in several in-
stances [5, 6, 7]. Because of discriminative training meth-
ods, SVM’s satisfy many of the alternative needs stated.

We propose a new method for combining HMM’s with
SVM’s. The idea is based upon the probabilistic framework
for scoring derived in [3]. The same computational advan-
tages are preserved by the new approach; i.e., both compu-
tational scalability (with the number of speakers) and low
computational complexity are maintained. In this paper, we
focus on the problem of speaker verification, but the meth-
ods are applicable to speaker identification also.

The outline of the paper is as follows. In Section 2,
we review support vector machines and issues for speech
processing. In Section 3, we review a sequence kernel for
speaker recognition. Section 4 proposes a new framework
for scoring with a generalized linear discriminant/HMM ar-
chitecture. Section 5 describes our new training method. In
Section 6, we show experiments comparing a SVM only
system with the new SVM/HMM system. Based upon
whether a text-prompted or text-independent scenario is se-
lected, we obtain quite different results.

2. SUPPORT VECTOR MACHINES FOR SPEECH
PROCESSING

A support vector machine is typically constructed as a two-
class classifier. The classifier is constructed from sums of a
kernel function���� ��,

���� �

��
���

����������� � �� (1)

where the�� are targets, and
��

��� ���� � �. The vectors
�� are support vectors and obtained from the training set by
an optimization process [8]. The target values are either�
or �� depending upon whether the corresponding support
vector is in class� or class�. For classification, one looks
at the sign of���� and makes a class decision based upon
whether the value is positive or negative.

The kernel���� �� is constrained to have certain proper-
ties (the Mercer condition), so that���� �� can be expressed
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as

������ � ��������� (2)

where���� is a mapping from the input space (where�
lives) to a possibly infinite dimensional space. If the explicit
form of ���� is available (which is not usually the case),
then���� can be written as
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where� is the sum in brackets in (3) with the scalar� ap-
pended. The advantage of the form (3) over (1) is that it
involves only storage and computation with the vector� as
opposed to the support vectors. If the dimension of���� is
“small” and there are a significant number of support vec-
tors, using (3) can significantly reduce storage space and
computation.

Generalizing support vector machines to a classification
task involving speech presents several difficulties. First,
speech feature vectors (e.g., cepstral coefficients) tend to
produce classification problems with complex overlapping
classification regions. This along with other factors pro-
duces many support vectors. This problem can be miti-
gated by using either the alternate form (3) (our approach)
or methods which reduce the number of support vectors,
e.g. [9]. Second, speech classification problems involve se-
quences of feature vectors rather than the typical usage of
a SVM as a single input classifier. Since the (“soft”) SVM
output���� is not a probability, this presents a challenge.
To solve this problem, one can use an ad hoc method where
the SVM output���� is used to approximate an emission
probability for a HMM [6]. Alternatively a kernel which
compares sequences of speech feature vectors directly can
be constructed [5, 7].

3. A SEQUENCE KERNEL

Following the approach in [7], we review a kernel based
upon comparingsequences of speech feature vectors. Sup-
pose we have two utterances from two speakers (possibly
the same speaker), and they are represented by sequences of
speech vectors����

��

��� and����
��

��� (e.g., each vector is the
cepstral coefficients for a frame of speech). We construct a
kernel by first training on one utterance using a generalized
linear discriminant. Then, the resulting model is scored on
the remaining utterance using the standard independence of
observations assumption.

In detail, suppose we are using a generalized linear dis-
criminant of the form������ where

���� �
�
����� ����� � � � �����

��
� (4)

�� is a mapping from�� to �, and� is the vector of dis-
criminant model parameters. One can then show that mean-
squared error training for the speaker verification problem
gives

� � 	���	��� (5)

The vector	�� is defined as

	�� �
�

��

���
���

������ (6)

and 	� is a correlation matrix derived from a large back-
ground population. Scoring on the remaining utterance
produces the Generalized Linear Discriminant Sequence
(GLDS) kernel,

����������� ����� � 	���
	���	��� (7)

where	�� is defined in an analogous manner to (6).
Two items should be noted about the kernel in (7). First,

since we are using an explicit expansion����, we can sim-
plify to a single model as in (3). Second, optimization us-
ing the kernel produces supportsequences. As a conse-
quence, we find sequences from the speaker and from the
background set of speakers (in a verification problem) that
construct the decision surface.

4. SCORING

The GLDS kernel can be combined in a straightforward
manner with a HMM. For the case of text-prompted speaker
recognition, we assume we have a left to right HMM with
the states corresponding to subwords in the utterance. For
the case of text-independent speaker recognition, we trans-
form a single GMM to a multi-state HMM where each indi-
vidual Gaussian is a state.

Now suppose we have a sequence of feature vectors,
����

��

���. If we perform a Viterbi alignment using an HMM
model, we obtain a series of states�	��. Suppose� � 	� �
�� and
� � ���		 � ��. Now define

	��
� �
�

�
��

�
	���

���	�� (8)

If the set
� is empty, we let	��
� � �. We can then con-
struct a HMM/SVM kernel (HGLDS) as follows (
	 � �):

������������ ����� �

���
	��


	 	�
�
�
	

	���	
	��
	 � (9)

Here, 	�	 is calculated by finding correlations in the sub-
sequences of feature vectors that decode into state� for
utterances from the background set. The function (9) is
also a kernel since it is the sum of GLDS kernels to ap-
plied to subsequences labeled by the states [8]. We choose

	 � �
	 ����.
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5. TRAINING

Training with the new HGLDS kernel entails some diffi-
culty. For any two utterances from two speakers, the same
sequence of subwords may not be spoken (and not neces-
sarily in the same order). One could, of course, just assign
a zero average expansion,	��
� � �, to the particular sub-
sequence and then evaluate the kernel. Alternatively, one
might expand a speaker’s set of utterances (for the purposes
of training) to include all possible concatenations of differ-
ent subsequences. This is the approach we use. This pro-
cess allows one to take an instance of the speaker saying
“4” and “7” in different utterances and combine them into
a new utterance with “4” and “7” as subsequences (if states
correspond to digits). Note that for impostors in the back-
ground, we pool all impostors together so a valid sequence
may contain subsequences from distinct speakers.

A second source of difficulty with the new kernel arises
during training. Expanding the set of utterances by allow-
ing arbitrary concatenations creates a huge data set. Thus,
to simplify optimization, we assume that the problem is sep-
arable. That is, the support sequences can be found by find-
ing supportsubsequences for each state individually.

The algorithm for training after these two assumption is
straightforward. For each state, we construct a kernel based
only upon the feature vectors that decode into that particular
state for both a particular speaker and all impostors in the
background. SVM training using the original GLDS ker-
nel is then applied producing a model of the speaker in that
state.

When scoring with the HGLDS kernel under this frame-
work, one ignores transitions and orderings of states (an-
other way to view this is that states are tied). That is, if
the test utterance is “4-7-5”, then apply a speaker model for
“4” to the subsequence of the utterance corresponding to
“4”, etc., even if this particular ordering of subwords was
never seen in training (as is typical in HMM speaker mod-
elling [1]).

6. EXPERIMENTS

We performed two distinct tasks with the HGLDS ker-
nel. One task applied HGLDS in text-prompted mode on
the YOHO database using decades and digits as subwords.
A second task involved using HGLDS with an
 mixture
GMM applied to the NIST 1998 speaker recognition evalu-
ation.

For speech processing, a frame size of�� ms was used
with �� ms overlap. Mean removal, preemphasis, and a
Hamming window were applied. LP cepstral coefficients
and the corresponding deltas were found. Energy-based
endpointing eliminated non-speech frames.

6.1. Text-Prompted Experiments

YOHO uses combination lock phrases such as “26-81-57.”
Subwords (and states) corresponding to decades (20, 30, 40,
etc.) and digits (1-9) were used. Both the GLDS kernel and
the HGLDS kernel with full covariance	� were applied to
the database. Input features vectors were 12 cepstral coeffi-
cients and 12 delta-cepstral coefficients. A vector of mono-
mials up to degree 2 was used as the expansion����. The
database was split into two distinct parts for enrollment and
verification to avoid “seen” impostors (see [10] for details).
Verification was done using�-phrase tests. This resulted in
��
 � �� � 

�� valid claims. Impostor attempts numbered
�
�� 

�. We used a tradeoff between margin and error of
� � � with SVMTorch [11].

Results for the text-prompted case are shown in the DET
plot in Figure 1. From this figure, we see that the HGLDS
kernel is clearly superior to the GLDS kernel. The equal er-
ror rate (EER) drops in this case from����� for the SVM to
��
�� for the SVM/HMM. This result compares favorably
with methods in the literature for HMM’s, where a typical
�-phrase EER is, for example,����� [1].

6.2. Text-Independent Experiments

We applied the SVM/HMM classifier system to the���

NIST one-speaker detection task. In this case, since the
task is text-independent speaker recognition, a GMM split
into Gaussian states was used for decoding. An impostor
background was constructed from the���� NIST speaker
recognition database. Four separate HGLDS kernels and
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Fig. 1. DET plot of the SVM approach (solid line) versus
the SVM/HMM approach (dashed line) on YOHO.
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Fig. 2. DET plot of the SVM approach (dotted line) versus
the SVM/GMM approach (dashed line) on NIST ’98 SRE.

backgrounds for training were constructed corresponding to
the labeling of each utterance as male or female and electret
or carbon button. In addition, four separate GMM’s were
constructed with
 mixture components. We trained the (fe-
male,electret) and (male,electret) using the (female,carbon
button) and (male,carbon button) models, respectively, as
starting points; this insured that Viterbi alignment was not
significantly affected by channel issues. For enrollment, we
chose the�-session enrollment scenario. For verification,
we concentrated on the�� second test.

A vector of monomial terms up to degree three was used
as the expansion����. For features, 12 cepstral coefficients
were used. The matrix	�	 in (9) was approximated us-
ing only diagonal elements; this significantly reduced train-
ing time. We used a tradeoff between margin and error of
� � � with SVMTorch. Both an SVM only system and a
HMM/SVM were applied to the data.

The EER for different poolings is: same-number same-
type (SNST)����, different-number same-type (DNST)
�����, and different-number different-type (DNDT)�
���
(DNDT) systems. Figure 2 shows the DET for DNDT pool-
ing. Both systems compare favorably to results in the lit-
erature [12] where typical SNST EER’s are
� and DNDT
EER’s are�
 � ���. Note that the EER’s are for a sim-
ple SVM/HMM system in this case, and we have not tested
higher degree polynomials. Also, note that the SVM/HMM
system performs only slightly better than the SVM-only
system. This circumstance may have to do with the na-
ture of the data set. Since the NIST trials have considerable
variation in content and the GMM is initialized randomly
in training, subsequences may not be independent enough

to create a separable training problem (see Section 5). One
possible way to avoid this difficulty is to initialize the GMM
model based upon, e.g., phonemes.

7. CONCLUSIONS

A new method was presented for combining HMM’s and
SVM’s for speaker verification. Results showed that dra-
matic improvements over SVM only systems could be
achieved. Future work includes exploring alternate ex-
pansions���� and improving the performance of text-
independent speaker recognition.
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