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ABSTRACT

Recently, usable speech criteria [1] are proposed to extract
minimally corrupted speech for speaker identification (SID) in
co-channel speech. In this paper, we propose a new usable
speech extraction method to improve the SID performance under
the co-channel situation based on the pitch information obtained
from a robust multi-pitch tracking algorithm [2]. The idea is to
retain the speech segments that have only one pitch detected and
remove the others. The system is evaluated on co-channel
speech and results show a significant improvement across
various Target to Interferer Ratios (TIR) for speaker
identification.

1. INTRODUCTION

Co-channel speech is termed as a speech signal that is a
combination of speech utterances from two talkers, which
usually occurs when two speech signals are transmitted over a
single communication channel. Research has been carried out for
decades aiming to extract one of the speakers from co-channel
speech by enhancing target speech or suppressing interfering
speech. However, in speaker recognition tasks, as pointed out by
Yantorno [3], the intelligibility and quality of extracted speech
are not as important as in traditional co-channel speech
enhancement systems.

In a closed-set speaker identification task, what the system
needs are portions of the speech that contain speaker
characteristics, which are unique to the individual speakers,
classifiable and long enough for the systems to make the
decision. These portions of speeches, i.e. segments, are termed as
usable speech and defined as consecutive frames of speech that
are minimally corrupted by interfering speech. Due to the nature
of human voice, a speech utterance contains voiced parts,
unvoiced parts and silence; after mixing the two speech signals,
there are segments of the co-channel speech that contain only
one speaker’s voiced part or one speaker’s voiced part plus
another speaker’s unvoiced part, the latter usually having much
lower energy. Previous studies [1][3][4][5] found that voiced
segments contain much of the information for speaker
identification, several criteria are developed in order to extract
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the usable speech in co-channel mixtures and the results show
that a significant amount of co-channel speech can be considered
usable for SID. The proposed criteria include Spectral Flatness,
used to label voiced-only speech, frame-based TIR, calculated
from the prior information of co-channel speech to find the
frames where one speaker’s energy dominates, and Spectral
Autocorrelation Ratio, to decide whether a frame is well
structured (single speaker speech) or unstructured (co-channel
speech).

In this paper, we propose a new method based on robust
pitch tracking to extract usable speech for speaker identification
purposes. The multi-pitch tracking algorithm lays a good
foundation for subsequent processing. Based on pitch
information, our method extracts the usable speech segments that
consist of only one speaker’s pitch and feed them into a speaker
identification system.

Section 2 describes the system. The description of the
experiments and their results are given in Section 3. Section 4
concludes the paper.

2. SYSTEM DESCRIPTION

The proposed system consists of three stages (Figure 1). First,
the multi-pitch tracking algorithm is applied to the co-channel
speech and the pitch tracks of the two speakers are produced.
Then, a usable speech extraction method is used to remove the
segments with two pitch tracks overlapped and the segments
classified as silence or unvoiced as well; the segments that have
only single pitch are retained. Afterwards, the single-pitch
segments are assigned to two speaker sets because in co-channel
speech the speakers can randomly appear as either the stronger
or the weaker speaker. Finally the Mel Frequency Cepstral
Coefficients (MFCC) of those segments in the same set are
derived and input into a speaker recognition system [6] based on
the Guassian Mixture Model (GMM) [7].

2.1. Multi-pitch tracking

We employ and adapt a recent multi-pitch tracking algorithm
proposed by Wu et al [2]. We chose this algorithm because it is
designed to yield up to two pitch contours and is robust to
background noise.

First, the input mixtures are passed through a bank of 128
fourth-order gammatone filters in order to obtain a time-
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Figure 1. Diagram of the proposed system. First, pitch
tracks are obtained using a multi-pitch tracking algorithm.
Then usable speech segments are extracted and assigned
accordingly. Finally, speaker identity is decided using a
speaker identification technique.

frequency auditory representation. The envelopes in high-
frequency channels (center frequency greater than 800 Hz) are
calculated and normalized correlograms are computed for each
channel. The peaks in a frequency channel of the correlograms
indicate the periodicity (pitch) of the signal, but some peaks
(false peaks) are inconsistent with the pitch because pitch
changes with time and the harmonics are not resolved in high
frequency channels. Worse is that, in noisy conditions, the peaks
in corrupted channels do not agree with the pitch. In order to
cancel the effects introduced by those false peaks in pitch
estimation, first, the peaks are selected in the selected clean
channels and then a statistical model of the pitch given the
observed peaks is constructed based on the selected peaks to
improve robustness under noise.

The magnitude of the non-zero time-lag peaks indicates the
cleanness of the low frequency channels. Therefore if a channel
has a peak with a magnitude higher than 0.945 (the magnitude at
zero time-lag is 1 in normalized correlograms), it is selected. For
a high frequency channel, the peaks calculated from a bigger
window size, 30 ms, should match the peaks from the normal
window size, 16 ms, if the channels are clean. So if the time lag
difference between the corresponding peaks is smaller than 2 in
a high frequency channel, it is selected.

In a selected channel, if a second peak can be found at + 5
delay steps around the double time lag of a candidate peak, the
candidate peak is selected because the autocorrelation function
generates a corresponding peak at the double time lag of a
signal’s period. A high-frequency channel responds to multiple
harmonics so that the response envelope fluctuates at the
fundamental frequency. Therefore, the occurrence of a strong
peak at time lag 7 and its multiples in a high-frequency channel
suggest a fundamental period of 7. Thus, for the second method
of peak selection, if the value of the peak at the first non-zero
time lag is greater than 0.6, all the multiple peaks are removed.

A mixture of a Laplacian and a uniform distribution is
employed to model the distribution of time-lag difference &
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Figure 2. The triangles represent the pitch points
obtained from a co-channel speech using the algorithm in
section 2.1. The solid and dashed lines represent the truth
pitch tracks obtained from the utterances before mixing.

between the truth pitch period and the closest peaks in a selected
channel c.

p(6)=(1=q)L(6;A.) +qU(:7,.) ey
in which, ¢ is the mixture coefficient and A. is the Laplacian
distribution parameter; U(J ;7,.) is the uniform distribution with
range 7], set to the wavelength of the center frequency in a low
frequency channel and the whole pitch range in a high frequency
channel. The distribution parameters are estimated by maximum
likelihood. Thus the probability of a channel supporting a pitch
hypothesis is formulated and a statistical integration method is
used to produce the conditional probability of observing the
selected peaks in a time frame given a hypothesized pitch period.

A hidden Markov Model (HMM) is then used to decode the
most probable pitch tracks given the observations of selected
peaks. HMM states represent possible pitch states in every time
frame and the transitions represent the probabilistic pitch
dynamics, which models the pitch change in time and the jumps
between zero pitch, one pitch and two pitches. The observation
probability is the conditional probability mentioned before.

Figure 2 shows an example of pitch tracking results. The co-
channel speech is created by adding 2 female utterances as
described in Section 3. The truth pitch tracks are obtained using
Snack [8] (an open source version of ESPS/waves+). The
algorithm tracks the pitches in the co-channel speech and they fit
well to the truth tracks, even though those 2 female utterances
have very close pitches.

2.2. Usable speech extraction

Pitch tracks overlap from time to time due to the nature of co-
channel speech. For speaker identification tasks, the overlapping
segments are not usable because they tend to be unstructured in
the frequency domain and would lead to the corruption of
derived MFCC feature vectors used in speaker recognition. The
interfering speaker’s harmonics and formants, which are added
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to the mixture Power Spectrum, ruin the second frequency
analysis (Discrete Cosine Transform) in the MFCC calculation.
The speech enhancement methods such as spectral subtraction
are not effective here because human speech is non-stationary.
Thus the pitch-overlap segments are removed from the co-
channel speech. However, some segments that are considered by
the algorithm having one pitch only actually have two pitches.
These segments are not removed but the weaker speaker’s voiced
energy in this case is much lower than the stronger one, resulting
from peak selection in the multi-pitch tracking algorithm.

For the segments with only one speaker’s voiced speech, the
other speaker either is silent or produces unvoiced speech. In the
former case, the Power Spectrum is intact; in the latter case,
usually the energy of unvoiced speech is much lower than voiced
speech and the Power Spectrum is contaminated much less than
in the voiced-voiced situation. Thus we consider the one-
speaker-only segments as usable. The remaining segments are
considered unusable and removed.

2.3. Speaker Assignment

In co-channel speech, either speaker can randomly appear as the
stronger or the weaker speaker. Hence the extracted segments
need to be assigned to the corresponding speaker, which is called
inter-segment assignment. The intra-segment speaker assignment
is not needed because HMM decoding utilizes the pitch
continuity of the same speaker and a single-pitch track
corresponding to one segment should belong to one speaker.

A segment’s average pitch could be used to assign the
segments. It works well for two speakers of opposite sex, but
does not work when two speakers are of the same sex, especially
when both are females. Morgan et al [9] proposed a maximum
likelihood formulation based on the spectral information in the
current frame and past frames to assign the frames to speakers,
and found that techniques relying solely on pitch or solely on
spectral information are inadequate for solving the problem.
Thus a combination of LPC and pitch appears promising. Also in
our case the decision is made based on segments instead of
frames, and we expect speaker assignment to be more reliable
this way. In the experiments, we assume the pitch information of
individual speakers is known and speaker assignment is done
accordingly in order to test whether the extracted segments are
useful for speaker identification as done in previous studies [1].

2.4. Speaker Identification

Speaker identification is done using an existing speaker
recognition system [6]. A 16-mixture Gaussian Mixture Model
(GMM) [7] is used to model one speaker, and the feature
parameters are the first 12 Mel-Frequency Cepstral Coefficients
(MFCC) and their first-order dynamic coefficients, a total 24-
dimensional feature vector. A speaker GMM model is trained
using the EM algorithm with the features calculated from
training samples. When testing, the same features are derived
from the test speech samples and are input to every speaker’s
GMM. The speaker with the highest likelihood score represents
the identified speaker. Here, speaker identification experiments
are close-set and text-independent.

3. RESULTS

The evaluation data come from the TIMIT speech corpus as in
[1]. The speaker set consists of 38 speakers from the “DR1”
dialect region, 14 of which are females and the rest are males.
Each speaker has 10 utterance files sampled at 16 KHz with 16-
bit resolution, ranging from 1.5 s to 6.2 s in length. For each
speaker, 5 out of 10 files are used for training and the remaining
5 files are used for testing and for creating co-channel mixtures.

For each speaker deemed as the target speaker, 1 out of 5 test
files is randomly selected and mixed with randomly selected files
of every other speaker, which are deemed as interfering
utterances. For each pair the mixture speech’s overall TIR is
calculated as the ratio of target speech power over the interfering
speech power.

1 Ny 1 N,
TIR =10log,, N—TZ(s,[t])2 V,Z(Sfm)z (@)
t=1 t=1

in which s, and s, are the speech samples of target and

interfering speakers in the time domain; Ny and N, are the
number of samples. The interfering speech is scaled to create the
mixtures at TIRs of —20 dB, -10 dB, -5 dB, 0 dB, 10 dB and 20
dB. For example, 0 dB TIR means that the target speech’s power
is equal to that of the interfering speech. Therefore, for each
TIR, a total of 1406 co-channel mixture files are created for the
testing purpose.

Our first experiment evaluates how the new method works
for usable speech extractions. First, the co-channel speech is fed
into the speaker recognition system without any processing.
Because a co-channel mixture file contains both speakers and
their identities, it is likely that one speaker’s model will give a
higher score than the other so that the identification system
classifies it as either the target speaker or the interfering speaker.
This happens especially with very high or very low TIR, which
means that one speaker’s voice subsumes the other speaker. In
this experiment, the system is deemed to make a correct decision
if the co-channel speech is identified as either of the two
speakers. Then the co-channel speech is processed and usable
segments are extracted as described in the previous Sections.
The segments are assigned to two speakers. The system is
deemed to make a correct decision if either set of the usable
segments is identified correctly, mirroring the decision for non-
processing condition. The results are given in Figure 3.

Several observations can be made from the results. First,
usable segment extraction substantially improves the
performance; in the 0 dB TIR case, the error rate is almost cut in
half. Second, the improvements occur across all TIR mixture
levels. One might expect the result curves to be symmetrical
around O dB, for speaker identification is considered correct
when a speech file is identified as either of the two speakers. We
note that the curves are not symmetrical because of the scaling of
the interfering speech as described earlier.

In some situations, one is more interested in one of the
speakers (target speaker), so that the speech signal from the other
speaker is considered interfering noise. Therefore, we perform
the second experiment, which is almost the same as the first one
except that the system is deemed to make a correct decision if
the co-channel speech is identified as the target speaker, which is
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Figure 3. SID error rate before and after usable speech
extraction. SID is correct when co-channel speech is
identified as either target or interfering speaker.
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Figure 4. SID correct rate before and after usable

speech extraction. SID is correct when co-channel
speech is identified as the target speaker.

defined when the co-channel speech is created. Figure 4 gives
results of the second experiment.

Similar observations can be made from the results. First,
under co-channel situations, the usable segment extraction
improves the performance; the average improvement is about
14% in terms of SID correct rate. Second, the improvements
occur across all mixture levels.

4. CONCLUSION

In this paper, we have proposed a new usable speech extraction
method to improve the speaker identification performance in co-
channel conditions. Usable speech is extracted based on the
pitch information obtained from a robust multi-pitch tracking
algorithm. Our system produces consistently better performance.
The test files are lab-generated as done in previous studies,
which do not reflect the real world situation, such as the
presence of background noise. Our experiments show that SID
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performance degrades rapidly as additive white noise is added to
produce noisy speech below 30 dB SNR [3], which is not
uncommon in reality. The multi-pitch tracking algorithm has
been shown to perform well under various noise conditions.
Hence, we expect that our method extend to similar situations.
Though a speaker model can be trained or combined with noise,
it is not desirable as noise intrusions are unpredictable. Our
future work will explore techniques from computational
acoustical scene analysis [10] for robust speaker recognition.
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