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ABSTRACT 

 
Recently, usable speech criteria [1] are proposed to extract 
minimally corrupted speech for speaker identification (SID) in 
co-channel speech. In this paper, we propose a new usable 
speech extraction method to improve the SID performance under 
the co-channel situation based on the pitch information obtained 
from a robust multi-pitch tracking algorithm [2].  The idea is to 
retain the speech segments that have only one pitch detected and 
remove the others.  The system is evaluated on co-channel 
speech and results show a significant improvement across 
various Target to Interferer Ratios (TIR) for speaker 
identification. 

 

1. INTRODUCTION 
 
Co-channel speech is termed as a speech signal that is a 
combination of speech utterances from two talkers, which 
usually occurs when two speech signals are transmitted over a 
single communication channel. Research has been carried out for 
decades aiming to extract one of the speakers from co-channel 
speech by enhancing target speech or suppressing interfering 
speech. However, in speaker recognition tasks, as pointed out by 
Yantorno [3], the intelligibility and quality of extracted speech 
are not as important as in traditional co-channel speech 
enhancement systems.  

In a closed-set speaker identification task, what the system 
needs are portions of the speech that contain speaker 
characteristics, which are unique to the individual speakers, 
classifiable and long enough for the systems to make the 
decision. These portions of speeches, i.e. segments, are termed as 
usable speech and defined as consecutive frames of speech that 
are minimally corrupted by interfering speech. Due to the nature 
of human voice, a speech utterance contains voiced parts, 
unvoiced parts and silence; after mixing the two speech signals, 
there are segments of the co-channel speech that contain only 
one speaker’s voiced part or one speaker’s voiced part plus 
another speaker’s unvoiced part, the latter usually having much 
lower energy. Previous studies [1][3][4][5] found that voiced 
segments contain much of the information for speaker 
identification, several criteria are developed in order to extract 

the usable speech in co-channel mixtures and the results show 
that a significant amount of co-channel speech can be considered 
usable for SID. The proposed criteria include Spectral Flatness, 
used to label voiced-only speech, frame-based TIR, calculated 
from the prior information of co-channel speech to find the 
frames where one speaker’s energy dominates, and Spectral 
Autocorrelation Ratio, to decide whether a frame is well 
structured (single speaker speech) or unstructured (co-channel 
speech). 

In this paper, we propose a new method based on robust 
pitch tracking to extract usable speech for speaker identification 
purposes. The multi-pitch tracking algorithm lays a good 
foundation for subsequent processing. Based on pitch 
information, our method extracts the usable speech segments that 
consist of only one speaker’s pitch and feed them into a speaker 
identification system.   

Section 2 describes the system. The description of the 
experiments and their results are given in Section 3.  Section 4 
concludes the paper. 
 

2. SYSTEM DESCRIPTION 
 
The proposed system consists of three stages (Figure 1).  First, 
the multi-pitch tracking algorithm is applied to the co-channel 
speech and the pitch tracks of the two speakers are produced.  
Then, a usable speech extraction method is used to remove the 
segments with two pitch tracks overlapped and the segments 
classified as silence or unvoiced as well; the segments that have 
only single pitch are retained. Afterwards, the single-pitch 
segments are assigned to two speaker sets because in co-channel 
speech the speakers can randomly appear as either the stronger 
or the weaker speaker. Finally the Mel Frequency Cepstral 
Coefficients (MFCC) of those segments in the same set are 
derived and input into a speaker recognition system [6] based on 
the Guassian Mixture Model (GMM) [7].  
 
2.1. Multi-pitch tracking 
 
We employ and adapt a recent multi-pitch tracking algorithm 
proposed by Wu et al [2].  We chose this algorithm because it is 
designed to yield up to two pitch contours and is robust to 
background noise.  

First, the input mixtures are passed through a bank of 128 
fourth-order gammatone filters in order to obtain a time-
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frequency auditory representation. The envelopes in high-
frequency channels (center frequency greater than 800 Hz) are 
calculated and normalized correlograms are computed for each 
channel. The peaks in a frequency channel of the correlograms 
indicate the periodicity (pitch) of the signal, but some peaks 
(false peaks) are inconsistent with the pitch because pitch 
changes with time and the harmonics are not resolved in high 
frequency channels. Worse is that, in noisy conditions, the peaks 
in corrupted channels do not agree with the pitch. In order to 
cancel the effects introduced by those false peaks in pitch 
estimation, first, the peaks are selected in the selected clean 
channels and then a statistical model of the pitch given the 
observed peaks is constructed based on the selected peaks to 
improve robustness under noise. 

The magnitude of the non-zero time-lag peaks indicates the 
cleanness of the low frequency channels. Therefore if a channel 
has a peak with a magnitude higher than 0.945 (the magnitude at 
zero time-lag is 1 in normalized correlograms), it is selected. For 
a high frequency channel, the peaks calculated from a bigger 
window size, 30 ms, should match the peaks from the normal 
window size, 16 ms, if the channels are clean.  So if the time lag 
difference between the corresponding peaks is smaller than 2 in 
a high frequency channel, it is selected.  

In a selected channel, if a second peak can be found at ± 5 
delay steps around the double time lag of a candidate peak, the 
candidate peak is selected because the autocorrelation function 
generates a corresponding peak at the double time lag of a 
signal’ s period. A high-frequency channel responds to multiple 
harmonics so that the response envelope fluctuates at the 
fundamental frequency. Therefore, the occurrence of a strong 
peak at time lag T and its multiples in a high-frequency channel 
suggest a fundamental period of T. Thus, for the second method 
of peak selection, if the value of the peak at the first non-zero 
time lag is greater than 0.6, all the multiple peaks are removed.  

A mixture of a Laplacian and a uniform distribution is 
employed to model the distribution of time-lag difference δ 

between the truth pitch period and the closest peaks in a selected 
channel c.  

( ) (1 ) ( ; ) ( ; )c c cp q L qUδ δ λ δ η= − +                                  (1) 

in which, q is the mixture coefficient and λc is the Laplacian 
distribution parameter; U(δ ;ηc) is the uniform distribution with 
range ηc set to the wavelength of the center frequency in a low 
frequency channel and the whole pitch range in a high frequency 
channel. The distribution parameters are estimated by maximum 
likelihood. Thus the probability of a channel supporting a pitch 
hypothesis is formulated and a statistical integration method is 
used to produce the conditional probability of observing the 
selected peaks in a time frame given a hypothesized pitch period. 

A hidden Markov Model (HMM) is then used to decode the 
most probable pitch tracks given the observations of selected 
peaks. HMM states represent possible pitch states in every time 
frame and the transitions represent the probabilistic pitch 
dynamics, which models the pitch change in time and the jumps 
between zero pitch, one pitch and two pitches.  The observation 
probability is the conditional probability mentioned before.   

Figure 2 shows an example of pitch tracking results.  The co-
channel speech is created by adding 2 female utterances as 
described in Section 3. The truth pitch tracks are obtained using 
Snack [8] (an open source version of ESPS/waves+).  The 
algorithm tracks the pitches in the co-channel speech and they fit 
well to the truth tracks, even though those 2 female utterances 
have very close pitches.   
 
2.2. Usable speech extraction 
 
Pitch tracks overlap from time to time due to the nature of co-
channel speech. For speaker identification tasks, the overlapping 
segments are not usable because they tend to be unstructured in 
the frequency domain and would lead to the corruption of 
derived MFCC feature vectors used in speaker recognition. The 
interfering speaker’ s harmonics and formants, which are added 

 
Figure 2.  The triangles represent the pitch points 
obtained from a co-channel speech using the algorithm in 
section 2.1. The solid and dashed lines represent the truth 
pitch tracks obtained from the utterances before mixing. 

Multi-pitch
tracking

Usable speech
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+

Figure 1.  Diagram of the proposed system. First, pitch 
tracks are obtained using a multi-pitch tracking algorithm. 
Then usable speech segments are extracted and assigned 
accordingly. Finally, speaker identity is decided using a 
speaker identification technique. 
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to the mixture Power Spectrum, ruin the second frequency 
analysis (Discrete Cosine Transform) in the MFCC calculation.  
The speech enhancement methods such as spectral subtraction 
are not effective here because human speech is non-stationary.  
Thus the pitch-overlap segments are removed from the co-
channel speech.  However, some segments that are considered by 
the algorithm having one pitch only actually have two pitches.  
These segments are not removed but the weaker speaker’ s voiced 
energy in this case is much lower than the stronger one, resulting 
from peak selection in the multi-pitch tracking algorithm. 

For the segments with only one speaker’ s voiced speech, the 
other speaker either is silent or produces unvoiced speech. In the 
former case, the Power Spectrum is intact; in the latter case, 
usually the energy of unvoiced speech is much lower than voiced 
speech and the Power Spectrum is contaminated much less than 
in the voiced-voiced situation. Thus we consider the one-
speaker-only segments as usable.  The remaining segments are 
considered unusable and removed. 
 
2.3. Speaker Assignment 
 
In co-channel speech, either speaker can randomly appear as the 
stronger or the weaker speaker.  Hence the extracted segments 
need to be assigned to the corresponding speaker, which is called 
inter-segment assignment. The intra-segment speaker assignment 
is not needed because HMM decoding utilizes the pitch 
continuity of the same speaker and a single-pitch track 
corresponding to one segment should belong to one speaker. 

A segment’ s average pitch could be used to assign the 
segments. It works well for two speakers of opposite sex, but 
does not work when two speakers are of the same sex, especially 
when both are females.  Morgan et al [9] proposed a maximum 
likelihood formulation based on the spectral information in the 
current frame and past frames to assign the frames to speakers, 
and found that techniques relying solely on pitch or solely on 
spectral information are inadequate for solving the problem.  
Thus a combination of LPC and pitch appears promising. Also in 
our case the decision is made based on segments instead of 
frames, and we expect speaker assignment to be more reliable 
this way. In the experiments, we assume the pitch information of 
individual speakers is known and speaker assignment is done 
accordingly in order to test whether the extracted segments are 
useful for speaker identification as done in previous studies [1]. 
 
2.4. Speaker Identification 
 
Speaker identification is done using an existing speaker 
recognition system [6]. A 16-mixture Gaussian Mixture Model 
(GMM) [7] is used to model one speaker, and the feature 
parameters are the first 12 Mel-Frequency Cepstral Coefficients 
(MFCC) and their first-order dynamic coefficients, a total 24-
dimensional feature vector. A speaker GMM model is trained 
using the EM algorithm with the features calculated from 
training samples.  When testing, the same features are derived 
from the test speech samples and are input to every speaker’ s 
GMM. The speaker with the highest likelihood score represents 
the identified speaker. Here, speaker identification experiments 
are close-set and text-independent. 

        

3. RESULTS 
 
The evaluation data come from the TIMIT speech corpus as in 
[1]. The speaker set consists of 38 speakers from the “DR1” 
dialect region, 14 of which are females and the rest are males.  
Each speaker has 10 utterance files sampled at 16 KHz with 16-
bit resolution, ranging from 1.5 s to 6.2 s in length.  For each 
speaker, 5 out of 10 files are used for training and the remaining 
5 files are used for testing and for creating co-channel mixtures.   

For each speaker deemed as the target speaker, 1 out of 5 test 
files is randomly selected and mixed with randomly selected files 
of every other speaker, which are deemed as interfering 
utterances. For each pair the mixture speech’ s overall TIR is 
calculated as the ratio of target speech power over the interfering 
speech power. 

2 2
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1 1

1 1
10log ( [ ]) ( [ ])
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TIR s t s tN N= =
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 =
 
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∑ ∑               (2) 

in which ts  and is  are the speech samples of target and 

interfering speakers in the time domain; NT and NI are the 
number of samples. The interfering speech is scaled to create the 
mixtures at TIRs of –20 dB,  -10 dB, -5 dB, 0 dB, 10 dB and 20 
dB. For example, 0 dB TIR means that the target speech’ s power 
is equal to that of the interfering speech.  Therefore, for each 
TIR, a total of 1406 co-channel mixture files are created for the 
testing purpose.  

Our first experiment evaluates how the new method works 
for usable speech extractions. First, the co-channel speech is fed 
into the speaker recognition system without any processing. 
Because a co-channel mixture file contains both speakers and 
their identities, it is likely that one speaker’ s model will give a 
higher score than the other so that the identification system 
classifies it as either the target speaker or the interfering speaker. 
This happens especially with very high or very low TIR, which 
means that one speaker’ s voice subsumes the other speaker. In 
this experiment, the system is deemed to make a correct decision 
if the co-channel speech is identified as either of the two 
speakers. Then the co-channel speech is processed and usable 
segments are extracted as described in the previous Sections.  
The segments are assigned to two speakers. The system is 
deemed to make a correct decision if either set of the usable 
segments is identified correctly, mirroring the decision for non-
processing condition.  The results are given in Figure 3. 

Several observations can be made from the results.  First, 
usable segment extraction substantially improves the 
performance; in the 0 dB TIR case, the error rate is almost cut in 
half. Second, the improvements occur across all TIR mixture 
levels.  One might expect the result curves to be symmetrical 
around 0 dB, for speaker identification is considered correct 
when a speech file is identified as either of the two speakers.  We 
note that the curves are not symmetrical because of the scaling of 
the interfering speech as described earlier. 

In some situations, one is more interested in one of the 
speakers (target speaker), so that the speech signal from the other 
speaker is considered interfering noise. Therefore, we perform 
the second experiment, which is almost the same as the first one 
except that the system is deemed to make a correct decision if 
the co-channel speech is identified as the target speaker, which is 
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defined when the co-channel speech is created. Figure 4 gives 
results of the second experiment.  

Similar observations can be made from the results.  First, 
under co-channel situations, the usable segment extraction 
improves the performance; the average improvement is about 
14% in terms of SID correct rate.  Second, the improvements 
occur across all mixture levels.  

 
4. CONCLUSION 

 
In this paper, we have proposed a new usable speech extraction 
method to improve the speaker identification performance in co-
channel conditions. Usable speech is extracted based on the 
pitch information obtained from a robust multi-pitch tracking 
algorithm. Our system produces consistently better performance.  
The test files are lab-generated as done in previous studies, 
which do not reflect the real world situation, such as the 
presence of background noise. Our experiments show that SID 

performance degrades rapidly as additive white noise is added to 
produce noisy speech below 30 dB SNR [3], which is not 
uncommon in reality.  The multi-pitch tracking algorithm has 
been shown to perform well under various noise conditions. 
Hence, we expect that our method extend to similar situations.  
Though a speaker model can be trained or combined with noise, 
it is not desirable as noise intrusions are unpredictable. Our 
future work will explore techniques from computational 
acoustical scene analysis [10] for robust speaker recognition.  
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Figure 3. SID error rate before and after usable speech 
extraction.  SID is correct when co-channel speech is 
identified as either target or interfering speaker. 

 
 
 
 

Figure 4. SID correct rate before and after usable 
speech extraction.  SID is correct when co-channel 
speech is identified as the target speaker. 
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