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ABSTRACT

We address speech coding architectures, suited for channels such
as packetized networks. We adopt the analysis-by-synthesis para-
digm. To achieve operability at a continuum of rates, all explicit
perceptual filtering in the codebook search is eliminated, and quan-
tization is performed with lattice quantizers.

In this particular implementation, rate-distortion performance
is improved by entropy coding of the lattice indices. The result is
a competitive coder applicable to both speech and music, where
subjective as well as objective performance scales well with the
rate of the coder.

1. INTRODUCTION

For many years, coding at low rates has been a major goal of
speech coding research. Today, we see a paradigm shift where
the carrier of speech data is shifting towards packetized networks.
This shift changes the constrains that we put on our coders. There
is a new demand for high quality coders with the ability to handle
both speech and audio at a continuum of rates, without an over-
whelmingly complexity increase with rate.

A dominant approach for speech coding is linear prediction
analysis-by-synthesis (LPAS) [1]. Here, speech is modeled as the
response of a time-varying all-pole filter, where both the excitation
signal and the filter are coded and transmitted. For long, code-
excited linear predictive (CELP) coding [2, 3] has been the pre-
vailing approach for coding of the excitation. The good perfor-
mance of the CELP concept is much due to the utilization of high-
dimensional vector quantizers (VQ), being searched in a percep-
tual domain. The drawback of the conventional CELP approach is
a high increase in complexity as rate is increased. To reach a rate
adjustable coder, the perceptual filtering and the codebook search
need to be addressed. One approach to solve the search complexity
problem is the algebraic CELP (ACELP) [4], where the codebook
is constructed from sparse algebraic codes.

Here, we propose a coding framework having the ability of
coding both speech and audio with a high subjective quality at
a wide range of rates. The proposed framework is based on lat-
tice quantizers, addressing the search complexity problem. Fur-
thermore, a new analysis-by-synthesis structure is proposed that
eliminates all explicit perceptual filtering in the codebook search.
Based on these ideas, we here present a coder where quantization
is followed by an entropy coding of the VQ indices. The result
is a variable rate coder with a performance that scales well with
average rate, i.e. good performance is achieved for a wide range
of average rates.

In Section 2 we discuss the basics of the proposed coder archi-
tecture, including the proposed synthesis structure, and in Section
3 the core coding unit, common to both the excitation coding and
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the spectrum coding, is presented. In Section 4 and in Section 5 the
excitation and the spectrum coding are discussed in more detail, re-
spectively. Finally, experiments and conclusions are presented in
Section 6 and 7, respectively.

2. CODING FRAMEWORK PRINCIPLES

We adopt the conventional source-filter concept, where the input
signal is modeled as the response of a time-varying all-pole filter.
For each input frame, s, filter parameters, a, are determined with
a standard LPC method. Subsequently, the excitation, r, and the
spectrum parameters, a, are coded, and transmitted, c.f. Fig. 1.
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Fig. 1: A basic view of the encoder.

We seek a rate adjustable coder, a coder that has the ability
of changing rate without retraining of codebooks. Further, the
coder should have an objective and subjective performance that
both scale well with rate, potentially lending itself to a layered or
embedded implementation.

In order to achieve these demands, we employ i) lattice quan-
tizers, and ii) an architecture free of all explicit perceptual filtering.
Below, we start with a short discussion on lattice quantization, and
continue with a presentation of the proposed analysis-by-synthesis
architecture.

2.1. Lattice Quantization

Lattice quantization is tractable due to the availability of fast search
algorithms. Distortion optimal quantization using lattices can be
achieved in at least two ways; companding of the source into a
uniform space [5, 6], or by an entropy coding of the indices sub-
sequent to the lattice quantization [7]. Proposals in a companded
environment for the excitation and the spectrum were given in [8]
and [9], respectively. In [11] two different usages of lattice quan-
tizers in entropy constrained vector quantization were suggested.

Here, we employ lattice quantizers with a subsequent entropy
coding of the indices. The resulting variable rate coder is rate ad-
justable, i.e. the average rate can easily be adjusted, without any
retraining of codebooks or complexity increase.
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Fig. 3: The synthesis architecture of the proposed coder.

2.2. Analysis-by-Synthesis Architecture

The proposed analysis-by-synthesis architecture, see Fig. 2, is
structured to avoid perceptual filtering in the codebook search, still
attaining minimization in a perceptual domain *. This architecture
is facilitated by a decorrelating transform, T, and a long term pre-
diction (LTP) codebook, C4, operating in a perceptual domain.
The perceptual excitation feedback, ¥;,, is illustrated by the dotted
line in Fig. 2.

The excitation is selected in a weighted domain where the er-
ror of concern, quw = ry — Tw, IS a filtered version of s — 8. The
LTP and the innovation are selected one at time in a multistage
fashion, starting with the LTP according to

¢ = argmin [Iry — vacall, (1)
cp€CH

where ~4 is the gain of the selected LTP vector ¢} € Ca. Sub-
sequently the perceptual innovation codevector, ¢y, is selected ac-
cording to

¢j = argmin || T(ry, —yach) — yrerl, )
cr€Cy

where ~y; is the gain of the selected innovation vector ¢; € Cj.
Here, we have omitted to address the gain selection issue.

Having selected the perceptual LTP and the perceptual inno-
vation as above (the coding of the perceptual innovation is further
treated in Section 4). The total perceptual excitation is constructed
as

¥, = yach + T cj, ®3)

and a synthesized signal, §, is obtained by filtering 7, with
A(z/p)]A(z), see Fig. 3.

3. QUANTIZATION AND CODING

Both the coding of the perceptual innovation and the spectrum
coding use the same principle in quantization and entropy coding.
The difference is in the model of data. A Gaussian mixture model
(GMM) governs the modeling of the spectrum vector see Section

In Fig. 2: note the lack of filters, A(z/p), in between the codebooks
and the minimization operator, min. Neither of the codebooks provide
white vectors.
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Fig. 4: An illustration of a union of 3 Z-lattices, where
{os} and {IV;} represent the standard deviation of the
source and the bit allocation, respectively.

5. The perceptual innovation signal is modeled by a single Gaus-
sian, adapted for each subframe based on the decoded spectrum,
see Section 4.

Below, we present the quantization for a d-dimensional decor-
related Gaussian source, the core unit for both the excitation and
the spectrum coding. The decorrelation of the excitation and the
spectrum vector are addressed in Section 4 and 5, respectively.

3.1. Lattice Codebook Structure

We seek a lattice that is fast searched, having good quantization
properties. We have chosen to work with a lattice built by a union
of translated Z-lattices (see Fig. 4),

L
C:AU(z+I‘1), 4

where L is the number of Z-lattices, A is the step size of the lat-
tices, z is a Z-lattice (cubic lattice), and r; is a vector offset relative
to the origin. The offset, r;, can be chosen randomly, or in a struc-
tured fashion. The latter approach is noticeably superior to the
former if the dimension is not high (less than ten). Here, we use
the structured approach [8].

By using Z-lattices, the major issues in lattice quantization, i.e.
truncation, indexing, and search, break down into scalar problems.
Moreover, the interaction among the elements of the union pro-
duces Voronoi regions which are more efficient than a hypercube.
So, simplicity in design and a reasonable performance is achieved
at the same time, making this approach attractive.

3.2. Bit Allocation

To shape the lattices, we do bit allocation among dimensions, see
Fig. 4. The allocation is based on the variances, {o;}, of the
source to be coded according to

gq
1/d°
d
(M)

where NV; is the number of reconstruction points for dimension i.
Based on the resulting bit allocation, the step-size, A, is calculated
c.f. [10].

3.3. Encoding

The encoding in the proposed scheme is performed in two steps.
First, we search each Z-lattice for the code vector which minimizes
the distortion criterion (scalar-wise for each dimension), we call
this code vector a hot candidate. The next step is to find the best
vector among the hot candidates.
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For a given source vector x, the hot candidate vector ¢; which
minimizes the Lagrangian cost function [12]

J(x, Ci, /\) = d(x, Ci) + )\l(ci), (6)

is chosen. Here, d(a, b) is a distortion measure, I(c;) is the length
of the codeword (Huffman codeword) assigned to c;, and X is a
Lagrange multiplier, providing a mechanism for rate control. By
changing A one has a trade off between performance and bit rate.
For the excitation coding we use the local SNR as the distortion
measure, while in the spectral coding we use spectral distortion
(SD) as the distortion measure.

3.4. Entropy Coding

As mentioned above, the encoding consists of two steps. As a
consequence, the indexing also includes two steps. The first is
an index, I, pointing to the Z-lattice that the code vector belongs
to (the winning hot candidate). This is a fixed length code. The
second part is the vector index, k, of the code vector in the Z-
lattice, which is subject to entropy coding.

The assumption of a decorrelated Gaussian source allows us
to design separate codes for each dimension. Consider dimension
1 of the Ith lattice. The probability of the kth reconstruction point
is calculated according to the marginal pdf of the source, f;(y),
and the given step-size, A,

ri 1 tkA+A
pis = / fi(w)dy, @)
ri,1tkA

where r; ; is the offset for lattice /, and % is the indexing in the
Z-lattice, both for dimension 7. Subsequently, the probabilities
{pi,k}kN;'l are used to generate a Huffman code for dimension i,
where N; is the number of points in dimension .

There is one more practical issue to consider for the design
of an efficient Huffman code. If the number of points, N', along
some dimension is small, then the resulting Huffman code is in-
efficient. To prevent this from happening, we group dimensions,
i1, - .., %k, together resulting in a larger alphabet, ]'[j=1 Ni;. Thus
a more efficient Huffman coding is achieved.

4. PERCEPTUAL INNOVATION CODING

The target for the perceptual innovation coder is the resulting error
after LTP coding,
€y =Ty — YACh, ®)

where r,, 4, and ¢’ are defined in Section 2.2. The coding
consists of a “decorrelating” transform T and a coding unit, as de-
scribed in Section 3. All parts, visualized in Fig. 5, are adapted on
a sub-block basis. Sub-block adaption is based on the information
given by the quantized spectrum vector, a.

Below, we discuss properties of the innovation, and the choice
of the decorrelating transform, T.

4.1. Decorrelation and Coding

In order to perform an efficient quantization (bit allocation) and
entropy coding (probability estimates) of the innovation vector we
need a “source” model. A reasonable approximation is to take the
LTP residual,

e=r—yaW 'ch, (©)]

é—» sub-block adaption
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Fig. 5: Innovation encoder/decoder structure.

as white. Here W is a matrix containing shifted versions of the im-
pulse response of the filter 1/A(z/p), given by the spectrum vec-
tor. The target for the perceptual innovation coder, e.,, is the LTP
residual filtered with 1/A(z/p), in matrix notation e,, = We.
Thus, the covariance matrix of the random vector E,, can be ex-
pressed as Cr, = 6°WWT, where §2 is the variance of the
random vector E, previously assumed white.

Given the covariance matrix Cg,, (also available at the de-
coder) we seek both a decorrelating transform, T, and the relative
scale of the components along each dimension in the new basis,
{o:}. Mapping e,, on the basis T, we achieve a new decorrelated
vector

e = iTew, (10)
y1
where ~; is a gain normalization. Now, the component variances
{o;} for the decorrelated vector, €, are given by the diagonal ele-
ments of the matrix TC g, T~ .

An obvious choice of decorrelating transform, is to perform an
eigenvalue decomposition, and assign the eigenvectors to the rows
of T (KLT). The KLT is source dependent and therefore complex.
A more attractive choice of orthonormal basis, which we have cho-
sen to work with, is the discrete cosine transform (DCT) [7]. The
DCT has shown to have almost as good quantization properties as
the KLT in terms of the decorrelation ability.

4.2. Rate Adaption

Leaving the fixed-rate paradigm, allows us to distribute bits over
time, such that perceptually important frames achieve a higher rate
[13]. The innovation coder adapts the number of reconstruction
levels of the lattice quantizer, according to properties of the input
signal. The number of levels are increased for strong sequences,
and for onsets. Further, if the gain of the LTP is not sufficiently
high, the LTP is turned off.

5. SPECTRUM CODING

The target for the spectrum coding is the LPC spectrum vector, a
(see Fig. 1), transformed into the line-spectral-frequency (LSF)
domain. As described in Section 3 the quantization requires a
source model to perform the rate allocation among the dimensions.
For the spectrum coding, this is governed by a GMM of the source
pdf,

M
Frmx(x) =Y pifi(x), (12)
i=1

where x is the LSF vector, p; are the component weights, and
fi(x) are Gaussian densities. As opposed to the innovation model,
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Fig. 6: Spectrum encoder structure. M coders, one for
each mixture, work in parallel.

the spectrum model is fixed, and is trained beforehand by e.g. the
EM-algorithm [14].

5.1. Decorrelation and Coding

The actual coding is, as illustrated in Fig. 6, performed in paral-
lel using one coder (described in Section 3) for each mixture. The
spectrum vector, x, is decorrelated by the pre-processing RY x, see
Fig 6, where R; is an orthonormal matrix containing the eigenvec-
tors of the covariance matrix, C;, for mixture 4. The correspond-
ing eigenvalues, {o; }, give the strength of each dimension, and are
used in the bit allocation described in Section 3.2.

There is one more issue to consider; the rate allocation among
mixtures. We allocate rates depending on the weight, p;, and the
covariance, C;, of the mixture, as discussed in [15].

6. EXPERIMENTS

In this section we present results from experiments on the proposed
coding system, starting with a short description of a particular in-
stance of the system for 8 kHz sampling.

We employ a frame size of 159 samples, each frame is further
subdivided into 3 subframes of 53 samples each. An LPC model
of order 12 is extracted once for each frame, using the autocor-
relation method with a 25 ms Hamming window. A standard 20
Hz bandwidth expansion is applied to each pole of the spectrum
polynomial. The spectrum coding, operating in the LSF domain,
is based on a GMM with 32 mixtures, utilizing a union of 109
Z-lattices. Excitation is determined once for each subframe, and
utilizes a 9 bit LTP codebook based on upsampling, with a max-
imum lag of 154 samples. Further, the innovation coder is based
on a union of 109 Z-lattices. Both the LTP gain (y4) and the in-
novation gain (vr) are coded using scalar quantizers at 6 bits per
subframe. Another 6 bits per frame are used for a frame gain, and
1 bit for LTP on/off selection.

In the experiments we evaluate performance as a function of
the rate. In Fig. 7a, we can see how the system scales with average
rate. Moreover, rate variability is illustrated in Fig. 7b. Only
informal listening tests have been performed. Our impression is
that the proposed system performs well both for speech and music.
We compared the proposed system operating at various rates (see
Fig. 7a) with an LD-CELP (ITU-T G.728 16 kbit/s). At rates
higher than 9-11 kbit/s the proposed system was preferred.

7. CONCLUSIONS

We propose a coding system that is adjustable in rate and of mod-
erate complexity. The scheme requires no training of codebooks,
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Fig. 7: (a) SNR in the weighted domain as a function of
average rate. (b) Rate as a function of time for an average
rate of 10.65 kbits/s.

and shows a competitive distortion performance for both speech
and audio. Subjective and objective tests point at a coder particu-
larly useful at rates in the range 6-16 kbit/s.
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