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ABSTRACT

In this paper, we have tackled the problem of noisy
speech recognition. In particular, we have presented a
novel approach to the design of filters for processing the
modulation spectrum, that we have caled linear
equalization. We postulate that, as long as the distortion
of the spectral parameters due to noise can be modeled as
linear, an advantageous solution consists on estimating
this linear perturbation system and designing its inverse
system (the equalizer). Our experimental results show that
the proposed method is very effective for three of the five
considered noises.

1. INTRODUCTION

In real world applications, Automatic Speech
Recognition (ASR) systems often encounter situations in
which there is a mismatch between training and testing
conditions (e.g. noise, transmission channel). In such
scenarios, there is a dramatic degradation of the
recognizer accuracy.

During the past years, afamily of techniques has been
proposed for dealing with this type of problems, such as
robust parameterizations, feature vector adaptation and
model parameter compensation. In this paper, we have
focused on the first approach, i.e, extracting robust
speech features that are relatively insensitive to different
sources of noise.

For that purpose, it would be interesting that the front-
end were able to keep the linguistic information contained
in the speech signal and reject the information related to
noise. Perceptual experiments show that the intelligibility
of speech is mostly concentrated in some bands of the
modulation spectrum, while the rest do not seem to
contribute importantly. According to Kanedera et a. [1]:

In clean environments, most of the useful information
is contained in the frequency range between 1 and 16 Hz
of the modulation spectrum.

The band around 4 Hz (it would roughly correspond to
syllabic rates) is the most useful component in both, clean
and noisy conditions.

In noisy environments, the components of the
modulation spectrum below 2 Hz and above 10 Hz are
less important for speech intelligibility. In particular, the
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band below 1 Hz contains mostly information about the
environment (e.g. the effects introduced by the frequency
characteristic of the transmission channel). Therefore, the
recognition performance can be improved by suppressing
this band in the parameterization process.

Typically, that suppression can be performed by
temporal filtering of time trgjectories in the logarithmic
spectrum or cepstral domain. For example, CMN
(“Cepstral Mean Normalization”) [4] is a high-pass filter,
which eliminates the DC component of the cepstrum
parameters. The classical derivative features (delta) [5]
can be seen as afiltering of the static parameters, in which
the components around 10 Hz are enhanced. RelAtive
SpecTra technique (RASTA) [2] is a band-pass filter,
which keeps the frequencies belonging to the frequency
range between 1 and 12 Hz. In addition, other more
complex filters (Slepian filters) [3] have been proposed
for convolutional noise conditions (specificaly, telephone
environment).

In this paper we propose a novel method for designing
the modulation spectrum filters that we cal linear
equalization and we asses our method in scenarios with
several additive noises.

The paper is organized as follows. The linear
equalization approach motivation is described in section
2. Section 3 is devoted to the experimental assessment of
the proposed method and finaly, we draw some
conclusions and outline future work in Section 4.

2.LINEAR EQUALIZERS FOR MODULATION
SPECTRA FILTERING: CONCEPT AND DESIGN

2.1. The Linear Equalization Approach

Most of the previous filtering approaches aiming at
selecting or enhancing the frequency band of the
modulation spectrum responsible for the intelligibility use
linear filtering. In this context, our statement of the
problem is as follows. We assume, as implicitly others do
when using linear filters, that the distortion of the spectral
parameters due to noise can be modelled as linear. Thus,
we go one step further and try to design the inverse linear
filter we have called a modulation spectrum equalizer. A
more detailed discussion of our proposal follows.

Figure 1 schematically shows the proposed method for
computing estimates of the modulation spectra. Firstly, P
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sequences of the spectral parameters are obtained from
clean speech, being P the number of parameters
conforming the speech recognition feature vector. In
particular, we use 12 Mel-Frequency Cepstral Coefficients

(MFCC), {c§ [7, i=1..,P} —where the sub-index s
stands for (clean) speech as opposed to ns used for noisy

speech—. Findly, we calculate estimates of the spectrum
of each spectral parameter sequence, thus obtaining the so

called estimated modulation Spectra,
@) i=1..p}.
cilnl IZH()
—» Spectral Estimation ——»
Clean cS2 [n] H 52 (Q)
Speech Paramete —  gpectral Estimation | >
—»| rization
for ASR N
Pl HEP(Q)
—® Spectral Estimation [

Figure 1.- Computattion of the modulation spectra

When dedling with noisy speech, noisy MFCCs,
{cim[n] i::L...,P}, and ther  corresponding
modulation  spectra {I:I,QS(Q) i::L...,P} are dso
obtained in the same manner.
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Figure 2.- Linear Perturbation Model

If, as illustrated in Figure 2, it is assumed that noise
causes a linear distortion, {Pi(Q) i=ZL...,P} then, by

designing the inverse filter,

B . _ 1 _Hi@) . _ H
@)= b= ) iy :
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we would be able to compensate it.

From our point of view, thiswould be the best solution
as long as the distortion is linear. Though, obviously,
most of the times, the distortion is not linear and thus only
some part of it could be linearly modelled, this approach
is the best thing attainable by linear filtering.

2.2. Equalization Filters Design

For our experiments, we have wused two
parameterization procedures. 1) MFCC directly computed
from the speech signal; and 2) MFCC derived from a LP
spectrum (henceforth, LP-MFCC). It is well known that
some type of spectral smoothing (in our case a LP
spectrum) turns out to be beneficial in noisy environments
[8]. More details about both parameterization methods
will be supplied in Section 3.

Therefore, one filter per spectral parameter, type of
noise and parameterization method has been designed.
These filters should remove the contribution to
modul ation spectra due to noise. For their design, we have
used the estimated the mean spectrum of each individual
spectral parameter time series corresponding in two

situations: 1) clean speech, {ﬁ; @) i:L...,P}, and 2)

noisy speech, {I:I,Qs @) i= ZL...,P}.

Finally, the frequency response of ideal inverse filters,
{p,.;V(Q), i =1...,p} could be calculated using (1).

To be precise, the proposed method can be
implemented following two main steps:
1) Computation of estimations of the modulation spectra
for both, clean and noisy speech, i.e.,

i1 @ana i1, @) i=1...r}

For that purpose, either P MFCCsor P LP-MFCCs
must be extracted ( P =12) where the sampling frequency
of the cepstral time series we have employed is 10 ms.
Therefore, every 10 ms. we obtain P energy-density
spectrum estimates,

@ﬁ;‘(gfand f};s(gf, =178

Finally, we average these energy-density spectra
obtaining:
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2) Filter design: As dready mentioned, we have
designed one filter per parameter. Each filter has been

designed to approximate {P.i @) i=1,...,P} asfollows:
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We have used IIR filters with 4 poles and 1 zero.
Figure 3 illustrates one example of such filter
approximation.
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Figure 3 An example of filter approximation. The dashed line
represents the actual {I%ﬁ,v (Q) i:l...,P} and the solid line
the corresponding IR approximation.

3. EXPERIMENTS AND RESULTS

3.1. Databases and Baseline Systems

The database employed in our experiments is the well-
known Resource Management RM1 Database [6], which
has a vocabulary of 991 words. The training corpus
consists of 3990 sentences and the test set contains 1200
sentences, which corresponds to a compilation of the first
four official test sets. We have used a downsampled
version (at 8 KHz) of the database (originally recorded at
16 kHz in clean conditions), context-dependent acoustic
models (three-mixture cross-word triphones) and a simple
language model (aword-pair grammar).

3.2. Adding Noises

Five different types of noises (pink, white, babble,
factory and Volvo) from the NOISEX database [9] are
added to the speech signal to achieve a signa to noise
ratio of 12 dB. As we have used clean speech for
estimating the acoustic models, the noises are only added
for testing the recognition performance.

3.3. Parameterization

Here, we summarize the two aternative ways to obtain
the parametric representation of the speech signal from
which the recognition is performed:

MFCC: 12 mel-cepstral and a log-energy coefficients
are extracted every 10 ms using a hamming window of 25
ms from the speech. Each individual MFCC coefficient is
filtered using the IIR designed filters. Finaly, 12 delta
cepstra and a deltalog-energy coefficients are appended.

LP-MFCC: 10 LPC (—Linear Prediction Coefficients-)
and an energy coefficient are firstly computed from
speech a the same rate than the previous
parameterization. These parameters are transformed into

12 MFCC plus energy being the rest of the procedure the
same that for the previously described parameterization.
3.4. Confidence Measures

In order to state the statistical significance of the
experimental results we have calculated the confidence
intervals (for a confidence of 95%) using the following
formula[7], (pp. 407-408):

band -1.96 p(100- p)
2 n

where p is the word accuracy and n is the number of
examples to be recognized (10,288 words). Thus, any
recognition rate will be presented as belonging to the band

Dy~ band . band Qjith a confidence of 95%.
™ 2 H
3.5. Results

3.5.1 Filters Design

As previously mentioned, we have designed one filter
per coefficient and per noise. Nevertheless, observing the
frequency response of the equalizers, it can be concluded
that the designed filters are quite independent of the
considered type of noise.
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Figure 4.- Equalizers obtained for MFCCs #1 (thin lines),
and #12 (thick) and two types of noises, factory (solid line)
and babble (dashed line)

Figure 4 illustrates this observation for four different
MFCCs (the first and the last ones) and two types of
noises (factory and bable).

3.5.2 Recognition Scores

Table 1 summarizes all the recognition results for the
five considered type of noises. Confidence intervas
appear in brackets below each recognition score. The first
and second row show the baseline experiments with the
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considered parameterizations, MFCC and LP-MFCC,
respectively. Our first conclusion is clear: except for the
white noise, computing the MFCC from the LP spectrum
provides very significant improvements. As previously
indicated, these are well-known results.

Noise Pink Volvo | Factory | White | Babble

MFCC | 2539 | 7039 | 2924 | 1274 | 2201
(245, | (695 | (283, | (120, | (212,
263) | 71.3) | 302) | 134) | 229

LP-MFCC | 3804 | 7665 | 36.72 | 857 | 2956
(37.1, | (758, | (358, | (80, | (286
390) | 775 | 377 92 | 305)

Equaized | 3063 | 67.02 | 3394 | 1682 | 2529
MFCC | (297, | (66.1, | (330, | (160, | (24.4,
316) | 680) | 349 | 176) | 262

Equaized | 4233 | 7509 | 4122 | 1343 | 2951
LP-MFCC | (413, | (742, | (402, | (127, | (2886,
433) | 760) | 422) | 141) | 304)

Table 1.- ASR resultsfor several types of noises

The third and four rows show, for MFCC and LP-
MFCC, respectively, the results achieved by our proposal.
As it can be seen, we obtained significant improvements
for three of the five considered noises, namely, pink,
factory and white. Focusing on the LP-MFCC
parameterization, the proposed technique achieves
improvements of 11.3 %, 12.2 % and 56.7 % for pink,
factory and white noises, respectively.

Considering the achieved results and provided that our
method is designed to deal with linear perturbations, it can
be concluded that the degree of linearity of these
perturbations notably depend on the type of noise being
considered. On the one hand, pink, factory and white
perturbations exhibit some relevant linear component
(since our method turns out to be effective). On the other,
perturbations due to Volvo or babble noises should be
mainly non-linear.

4. CONCLUSIONS AND FURTHER WORK

In this paper, we have tackled the problem of noisy
speech recognition (additive noise). In particular, we have
focused on those robust techniques based on filtering of
temporal trgjectory of the spectral parameters. In this
context, we have introduced a novel approach for the
design of filters for processing the modulation spectrum,
that we have called linear equalization.

We postulate that, as long as the distortion of the
spectral parameters due to noise can be modelled as
linear, the best solution consists on estimating this linear
perturbation system and designing its inverse system (the
equalizer).

Our experimental results show how the proposed
method is very effective for three of the five evauated

noises. Therefore, it can be concluded that the degree of
linearity of the perturbation (and consegquently the
effectiveness of our method) notably depends on the type
of noise considered.

Currently, we are working on the design of a filter
bank useful for al of the noises. In paralel, we are
computing new reference results using Lin-log RASTA
(one of the most well-known filtering-based techniques).
Preliminary results indicate that RASTA performance is
quite below those achieved by equalization.
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