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In this paper, we have tackled the problem of noisy 
speech recognition. In particular, we have presented a 
novel approach to the design of filters for processing the 
modulation spectrum, that we have called linear 
equalization. We postulate that, as long as the distortion 
of the spectral parameters due to noise can be modeled as 
linear, an advantageous solution consists on estimating 
this linear perturbation system and designing its inverse 
system (the equalizer). Our experimental results show that 
the proposed method is very effective for three of the five 
considered noises. 
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In real world applications, Automatic Speech 
Recognition (ASR) systems often encounter situations in 
which there is a mismatch between training and testing 
conditions (e.g. noise, transmission channel). In such 
scenarios, there is a dramatic degradation of the 
recognizer accuracy. 

During the past years, a family of techniques has been 
proposed for dealing with this type of problems, such as 
robust parameterizations, feature vector adaptation and 
model parameter compensation. In this paper, we have 
focused on the first approach, i.e., extracting robust 
speech features that are relatively insensitive to different 
sources of noise. 

For that purpose, it would be interesting that the front-
end were able to keep the linguistic information contained 
in the speech signal and reject the information related to 
noise. Perceptual experiments show that the intelligibility 
of speech is mostly concentrated in some bands of the 
modulation spectrum, while the rest do not seem to 
contribute importantly. According to Kanedera et al. [1]: 
· In clean environments, most of the useful information 
is contained in the frequency range between 1 and 16 Hz 
of the modulation spectrum. 
· The band around 4 Hz (it would roughly correspond to 
syllabic rates) is the most useful component in both, clean 
and noisy conditions. 
· In noisy environments, the components of the 
modulation spectrum below 2 Hz and above 10 Hz are 
less important for speech intelligibility. In particular, the 

band below 1 Hz contains mostly information about the 
environment (e.g. the effects introduced by the frequency 
characteristic of the transmission channel). Therefore, the 
recognition performance can be improved by suppressing 
this band in the parameterization process. 

Typically, that suppression can be performed by 
temporal filtering of time trajectories in the logarithmic 
spectrum or cepstral domain. For example, CMN 
(“Cepstral Mean Normalization”) [4] is a high-pass filter, 
which eliminates the DC component of the cepstrum 
parameters. The classical derivative features (delta) [5] 
can be seen as a filtering of the static parameters, in which 
the components around 10 Hz are enhanced. RelAtive 
SpecTral technique (RASTA) [2] is a band-pass filter, 
which keeps the frequencies belonging to the frequency 
range between 1 and 12 Hz. In addition, other more 
complex filters (Slepian filters) [3] have been proposed 
for convolutional noise conditions (specifically, telephone 
environment). 

In this paper we propose a novel method for designing 
the modulation spectrum filters that we call linear 
equalization and we asses our method in scenarios with 
several additive noises. 

The paper is organized as follows. The linear 
equalization approach motivation is described in section 
2. Section 3 is devoted to the experimental assessment of 
the proposed method and finally, we draw some 
conclusions and outline future work in Section 4. 
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Most of the previous filtering approaches aiming at 

selecting or enhancing the frequency band of the 
modulation spectrum responsible for the intelligibility use 
linear filtering. In this context, our statement of the 
problem is as follows. We assume, as implicitly others do 
when using linear filters, that the distortion of the spectral 
parameters due to noise can be modelled as linear. Thus, 
we go one step further and try to design the inverse linear 
filter we have called a modulation spectrum equalizer. A 
more detailed discussion of our proposal follows. 

Figure 1 schematically shows the proposed method for 
computing estimates of the modulation spectra. Firstly, P 
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sequences of the spectral parameters are obtained from 
clean speech, being P the number of parameters 
conforming the speech recognition feature vector. In 
particular, we use 12 Mel-Frequency Cepstral Coefficients 

(MFCC), [ ]{ }������ ,,1, �=  –where the sub-index s 

stands for (clean) speech as opposed to ns used for noisy 
speech–. Finally, we calculate estimates of the spectrum 
of each spectral parameter sequence, thus obtaining the so 
called estimated modulation spectra, 

( ){ }��� �
� ,...,1,ˆ =Ω .  

 

 
Figure 1.- Computattion of the modulation spectra 

 
When dealing with noisy speech, noisy MFCCs, 

[ ]{ }������� ,,1, �= , and their corresponding 

modulation spectra ( ){ }��� �
�� ,...,1,ˆ =Ω  are also 

obtained in the same manner. 
 

 
Figure 2.- Linear Perturbation Model 

If, as illustrated in Figure 2, it is assumed that noise 

causes a linear distortion, ( ){ }���� ,...,1, =Ω  then, by 

designing the inverse filter, 
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we would be able to compensate it. 

From our point of view, this would be the best solution 
as long as the distortion is linear. Though, obviously, 
most of the times, the distortion is not linear and thus only 
some part of it could be linearly modelled, this approach 
is the best thing attainable by linear filtering. 
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For our experiments, we have used two 

parameterization procedures. 1) MFCC directly computed 
from the speech signal; and 2) MFCC derived from a LP 
spectrum (henceforth, LP-MFCC). It is well known that 
some type of spectral smoothing (in our case a LP 
spectrum) turns out to be beneficial in noisy environments 
[8]. More details about both parameterization methods 
will be supplied in Section 3. 

Therefore, one filter per spectral parameter, type of 
noise and parameterization method has been designed. 
These filters should remove the contribution to 
modulation spectra due to noise. For their design, we have 
used the estimated the mean spectrum of each individual 
spectral parameter time series corresponding in two 

situations: 1) clean speech, ( ){ }��� �
� ,...,1,ˆ =Ω , and 2) 

noisy speech, ( ){ }��� �
�� ,...,1,ˆ =Ω . 

Finally, the frequency response of ideal inverse filters, 

( ){ }������� ,...,1, =Ω  could be calculated using (1). 

To be precise, the proposed method can be 
implemented following two main steps: 
1) Computation of estimations of the modulation spectra 
for both, clean and noisy speech, i.e., 

( ) ( ){ }�����	� �
��

�
� ,...,1,ˆˆ =ΩΩ . 

For that purpose, either �  MFCCs or �  LP-MFCCs 
must be extracted ( 12=� ) where the sampling frequency 
of the cepstral time series we have employed is 10 ms. 
Therefore, every 10 ms. we obtain P energy-density 
spectrum estimates,  

( ) ( )












=ΩΩ �����	� �
��

�
� ,...,1,ˆˆ 22

. 

Finally, we average these energy-density spectra 
obtaining: 
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2) Filter design: As already mentioned, we have 
designed one filter per parameter. Each filter has been 

designed to approximate ( ){ }����
��� ,...,1, =Ω  as follows: 
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We have used IIR filters with 4 poles and 1 zero. 
Figure 3 illustrates one example of such filter 
approximation. 

 
 

Paramete
rization 
for ASR 

Spectral Estimation 

Spectral Estimation 

Spectral Estimation 

[ ]���
1

[ ]���
2  

[ ]�� ��  

( )Ω1ˆ
��  

( )Ω2ˆ
��  

( )Ω�
��̂  

Clean 
Speech 

( )Ω�
��

Linear 
Pertubation 

Model
( ) ( ) ( )ΩΩ=Ω ��

�
�
�� ���

( )Ω��

( )Ω�
��

Linear 
Pertubation 

Model
( ) ( ) ( )ΩΩ=Ω ��

�
�
�� ���

( )Ω��

II - 142

➡ ➡



Figure 3 An example of filter approximation. The dashed line 

represents the actual ( ){ }����
��� ,...,1,ˆ =Ω  and the solid line 

the corresponding IIR approximation. 
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The database employed in our experiments is the well-

known Resource Management RM1 Database [6], which 
has a vocabulary of 991 words. The training corpus 
consists of 3990 sentences and the test set contains 1200 
sentences, which corresponds to a compilation of the first 
four official test sets. We have used a downsampled 
version (at 8 KHz) of the database (originally recorded at 
16 kHz in clean conditions), context-dependent acoustic 
models (three-mixture cross-word triphones) and a simple 
language model (a word-pair grammar).  
)	�	��,,��(��$�'�'�

Five different types of noises (pink, white, babble, 
factory and Volvo) from the NOISEX database [9] are 
added to the speech signal to achieve a signal to noise 
ratio of 12 dB. As we have used clean speech for 
estimating the acoustic models, the noises are only added 
for testing the recognition performance. 
)	)	������.�#���"�#�$��

Here, we summarize the two alternative ways to obtain 
the parametric representation of the speech signal from 
which the recognition is performed: 

MFCC: 12 mel-cepstral and a log-energy coefficients 
are extracted every 10 ms using a hamming window of 25 
ms from the speech. Each individual MFCC coefficient is 
filtered using the IIR designed filters. Finally, 12 delta-
cepstra and a delta log-energy coefficients are appended. 

LP-MFCC: 10 LPC (–Linear Prediction Coefficients–) 
and an energy coefficient are firstly computed from 
speech at the same rate than the previous 
parameterization. These parameters are transformed into 

12 MFCC plus energy being the rest of the procedure the 
same that for the previously described parameterization. 
)	/	���$�0�,��&�����' ��'�

In order to state the statistical significance of the 
experimental results we have calculated the confidence 
intervals (for a confidence of 95%) using the following 
formula [7], (pp. 407-408): 

 
�

�� ��	 )100(
96.1

2

−=  

where p is the word accuracy and n is the number of 
examples to be recognized (10,288 words). Thus, any 
recognition rate will be presented as belonging to the band 
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As previously mentioned, we have designed one filter 

per coefficient and per noise. Nevertheless, observing the 
frequency response of the equalizers, it can be concluded 
that the designed filters are quite independent of the 
considered type of noise.  

Figure 4.- Equalizers obtained for MFCCs #1 (thin lines), 
and #12 (thick) and two types of noises, factory (solid line) 
and babble (dashed line) 

Figure 4 illustrates this observation for four different 
MFCCs (the first and the last ones) and two types of 
noises (factory and bable). 
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Table 1 summarizes all the recognition results for the 

five considered type of noises. Confidence intervals 
appear in brackets below each recognition score. The first 
and second row show the baseline experiments with the 
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considered parameterizations, MFCC and LP-MFCC, 
respectively. Our first conclusion is clear: except for the 
white noise, computing the MFCC from the LP spectrum 
provides very significant improvements. As previously 
indicated, these are well-known results. 

 
Noise Pink Volvo Factory White Babble 
MFCC 25.39 

(24.5, 
26.3) 

70.39 
(69.5, 
71.3) 

29.24 
(28.3, 
30.2) 

12.74 
(12.0, 
13.4) 

22.01 
(21.2, 
22.9) 

LP-MFCC 38.04 
(37.1, 
39.0) 

76.65 
(75.8, 
77.5) 

36.72 
(35.8, 
37.7) 

8.57 
(8.0, 
9.2) 

29.56 
(28.6, 
30.5) 

Equalized 
MFCC 

30.63 
(29.7, 
31.6) 

67.02 
(66.1, 
68.0) 

33.94 
(33.0, 
34.9) 

16.82 
(16.0, 
17.6) 

25.29 
(24.4, 
26.2) 

Equalized 
LP-MFCC  

42.33 
(41.3, 
43.3) 

75.09 
(74.2, 
76.0) 

41.22 
(40.2, 
42.2) 

13.43 
(12.7, 
14.1) 

29.51 
(28.6, 
30.4) 

 

Table 1.- ASR results for several types of noises 

The third and four rows show, for MFCC and LP-
MFCC, respectively, the results achieved by our proposal. 
As it can be seen, we obtained significant improvements 
for three of the five considered noises, namely, pink, 
factory and white. Focusing on the LP-MFCC 
parameterization, the proposed technique achieves 
improvements of 11.3 %, 12.2 % and 56.7 % for pink, 
factory and white noises, respectively. 

Considering the achieved results and provided that our 
method is designed to deal with linear perturbations, it can 
be concluded that the degree of linearity of these 
perturbations notably depend on the type of noise being 
considered. On the one hand, pink, factory and white 
perturbations exhibit some relevant linear component 
(since our method turns out to be effective). On the other, 
perturbations due to Volvo or babble noises should be 
mainly non-linear. 
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In this paper, we have tackled the problem of noisy 
speech recognition (additive noise). In particular, we have 
focused on those robust techniques based on filtering of 
temporal trajectory of the spectral parameters. In this 
context, we have introduced a novel approach for the 
design of filters for processing the modulation spectrum, 
that we have called linear equalization. 

We postulate that, as long as the distortion of the 
spectral parameters due to noise can be modelled as 
linear, the best solution consists on estimating this linear 
perturbation system and designing its inverse system (the 
equalizer). 

Our experimental results show how the proposed 
method is very effective for three of the five evaluated 

noises. Therefore, it can be concluded that the degree of 
linearity of the perturbation (and consequently the 
effectiveness of our method) notably depends on the type 
of noise considered. 

Currently, we are working on the design of a filter 
bank useful for all of the noises. In parallel, we are 
computing new reference results using Lin-log RASTA 
(one of the most well-known filtering-based techniques). 
Preliminary results indicate that RASTA performance is 
quite below those achieved by equalization. 
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