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ABSTRACT noise characteristic is stationary. However, in case of non-
In this paper, we introduce a new class of noise robust acous-stationary noise, this technique may result in the removal
tic features derived from a new measure of autocorrelation, of significant speech information and hence may result in
and explicitly exploiting the phase variation of the speech poor recognition performance. A relatively new technique
signal frame over time. This family of features, referred called RASTA processing [6], which has been shown to be
to as “Phase AutoCorrelation” (PAC) features, include PAC quite successful for noise robust speech recognition, tries
spectrum and PAC MFCC, among others. In regular auto- to remove those noise components in the power spectrum
correlation based features, the correlation between two sig-whose temporal properties are quite different from that of
nal segments (signal vectors), separated by a particular timethe speech component. Band-pass filters, with bandwidths
interval k, is calculated as a dot product of these two vec- equal to the bandwidths of the temporal characteristic of the
tors. In our proposed PAC approach, the angle between thespeech component is applied to each frequency band of the
two vectors is used as a measure of correlation. Since dotspectrum, to get rid of the noise components.
product is usually more affected by noise than the angle, it In this paper, we introduce a class of noise robust speech
is expected that PAC-features will be more robust to noise. features called Phase AutoCorrelation (PAC) derived fea-
This is indeed significantly confirmed by the experimental tures. These features are derived from a new measure of au-
results presented in this paper. The experiments were contocorrelation, we propose in this paper, called Phase Auto-
ducted on the Numbers 95 database, on which “stationary” Correlation. Regular autocorrelation coefficients, which are
(car) and “non-stationary” (factory) Noisex 92 noises were computed by performing dot product between signal vectors
added with varying SNR. In most of the cases, without any separated by a particular time interval, are extremely sensi-

specific tuning, PAC-MFCC features perform better. tive to the external noise. In phase autocorrelation, angle
between the signal vectors is used as the measure of corre-
1. INTRODUCTION lation, instead of the dot product. The angle is less sensitive

to external noise, as compared to the dot product. As a result

Traditional features used for speech recognition are typi- of this, we expect the PAC derived features to be more ro-
cally extracted from the magnitude spectrum [1, 2] of the bust to noise as compared to the traditional features, which
speech signal, estimated by Discrete Fourier Transform (DFBre derived from the regular autocorrelation.
of the autocorrelation coefficients [3, 4]. Unfortunately,these  In the next section, we first explain the draw-backs of
features are extremely sensitive to external noise added tahe traditional autocorrelation in the presence of external
the signal as the basic autocorrelation coefficients, from whichoise and then propose a new measure of autocorrelation
they are extracted, are highly sensitive to external noise. called Phase AutoCorrelation. We end that section by intro-
This generally results in poor performance of the speech ducing the PAC derived features. In Section 3, we explain
recognition systems in presence of noise. the experimental setup used to evaluate the PAC derived fea-

Several technigues have been developed so far to cop&ures under noisy conditions. In Section 4, we present and
with the sensitivity of the feature vectors to external noise. discuss the results of the experiments.
These techniques typically work at the spectral level of the
feature extraction trying to get rid of the effect of the exter-
nal noise on the spectrum. One early method called Spec- 2. PHASE AUTOCORRELATION (PAC)
tral subtraction [5] gets an estimate of noise power spec-
trum from the non-speech intervals of the signal and sub-
tracts it from the power spectra of the overall speech sig-

nal. This technique can be employed for the cases where the- 41 re extraction block in a typical speech recognition sys-
*Also with EPFL, Lausanne, Switzerland. tem divides the speech sigrh] into a sequence of frames

2.1. Autocorrelation
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given by, 2.2. Phase Autocorrelation

{s0[n], s1[n], .-, s¢[n], ..., sT—1[n]} In an attempt to reduce the sensitivity of the correlation co-
whereT is the total number of frames aag[n] is given by, efficients to the external noise present in the signal, we pro-
pose here a new measure of autocorrelation called Phase
st[n] = {s[Kt + 0], s[Kt + 1], ..., s[Kt + N — 1]}, AutoCorrelation.
N is the frame length an& the frame shift. Feature vec- The magnitude of the two vectoxs andxy givenin (2)

tors are extracted from each of these frames assuming thaf"e the same, since the set of individual vector components
the characteristic of the signal within a single frame is sta- in these two vectors are the same. [|#|| represents the
tionary. Features extracted from the frames are typically magnitude of the vectors aifg the angle between them in
some or other form of the magnitude spectrum. The mag- the NV dimensional space, then (3) can be rewritten as:
nitude spectrum is obtained by first performing the Discrete R[k] = ||x]|? cos(6k) 4)

Fourier Transform (DFT) of the frame samples and then tak- | te proposed method for correlation computation we just

ing the magnitude of the resulting coefficients for various | qa the anglé;, between the two vectors, instead of the dot
frequencies. DFT assumes each framle] to be partofa  h5qct, as the measure of correlation, resulting in a new set

periodic signak;[n] [3] difined as. of correlation coefficient®[k] defined as:

&fnl= Y sin+kN] P[k] = 6, = cos™! (R[kl> (5)
k=—o00 x|
As well known, the squared magnitude spectrum is the DFT This new measure of correlation is referred to as the ‘Phase
of the autocorrelatio[n] of the periodic sequence[n] AutoCorrelation’ (PAC), as the angle between the vectors is
over the length equal to the length of the frame. The equa- ;sed as the measure of correlation.
tion for autocorrelation is given as follows: The presence of noise in the signal will affect b))
N-1 andd;. From the above equations, the regular autocorrela-
R[k] = Z §i[n)sin+ k), k=0,1,..,N—1. (1) tion coefficientsi[k] depends both ojfx|| andd ., whereas
n=0 the PAC coefficient®[k] depend only ol ;.. Consequently,

The above operation of autocorrelation basically removes I’[k] can be expected to be less susceptible to the external
the phase differences between various sinusoidal compo-"0ise, as compared #[k].

nents in the speech signal to yidijk]. Another view to the

above equation is that[k] gives a measure of the correla- 2.3. PAC derived features

tion between the samples spaced at an intervél| efhich

. . An entire class of features, which are usually derived from
is computed as a dot product between the two vectof$ in

. . . the regular autocorrelation coefficients, can now be derived
dimensional space as given below. If, from the PAC coefficients. DFT performed on the PAC co-
xo = {5:[0], 5¢[1], ..., [N — 1]} B efficients will yield an equivalent of the regular spectrum,

xg = {8 k], -, e [N — 1], 5,[0], ..., [k — 1]} called PAC spectrum. Plots of the regular spectrum and

the PAC spectrum for a frame of phoneme ‘ih’ are given

R[k] = x2 %y 3 in Figures 1 and 2, respectively. From the PAC spectrum,

If the samples spaced at an intervalkofire highly corre- W€ can compute filter-banked PAC spectrum, PAC MFCC,

lated, xo will be closer tox;, in the N dimensional space and other features.
and hence will result in higher value of the dot product.
In the presence of an additive noise, s@y], the resul- 3. EXPERIMENTAL SETUP
tant signals™[n] = s[n] + r[n], will result in a frames} [n]
at timet. The autocorrelatio®”[k] for that frame now is ~ We have conducted several experiments to illustrate the ro-
the dot product between two vectors given by, bustness of the PAC derived features. In these experiments,
X2 = {570], 57 [1], ..., &7 [N — 1]} the speech recognltlon performance.o.f the PAC derived fea-
0 gL PR e tures are compared with that of traditional features for var-
xp = {5[k], ..., s{[N — 1], 8/[0], ..., 5[k — 1]} ious noise conditions. Specifically, PAC MFCCs are used
wheres}[n] is the periodic signal obtained from the frame in all the experiments and are compared with the regular
sp[n]. ThisR"[k] is clearly different from thek[k] and is a MFCCs as well as J-RASTA-PLP features. PAC MFCCs
function of the noise component present in the speech sig-and MFCCs were of dimension 39, including 13 static co-
nal. As a result, whatever features we extract from these au-efficients, 13 delta coefficients, and 13 delta-delta coeffi-
tocorrelation coefficients, these will be sensitive to the noise cients. Hidden Markov Model (HMM) emission probabili-
present in the signal. ties were estimated by a Multi-Layer Perceptron (MLP) [1]
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the magnitude term for the PAC coefficients should result in
improved performance in case of noisy conditions. Exper-
imental results obtained using noisy data show that this is
8 indeed the case.

Feature | Word Recognition

1 Rate, % acc.
MFCC 90.1

PAC MFCC 86.0

L L L f
o 20 40 60 80 100 120 140

Table 1. Comparison of the speech recognition perfor-
Fig. 1. Regular spectrum for a frame of phoneme ‘ih’. ~ mances for the clean speech.

Figures 3, 4, and 5 show the performance comparison of
the PAC MFCCs with the regular MFCCs for various noise
conditions and various noise levels. From these figures it
is clear that the performance of the PAC MFCCs is far su-
perior than what can be achieved with regular MFCCs in
the presence of the external noise. For all the noise con-
ditions shown, the degradation of the performances for the
PAC MFCCs are much slower than that of the MFCCs.

° * - ® B o E Moreover, we have also tried to compare the perfor-
mances of PAC MFCC features with the J-RASTA-PLP fea-
tures [6], which is a well known approach for noise robust
speech feature extraction. Figures 6, 7 show the results of
with 9 frames of contextual input and 500 hidden units. The the experiments for Factory and Lynx noises, respectively.
number of output units is 27, corresponding to the number The PAC MFCC features are performing even better than J-
of phonemes. RASTA-PLP features in extreme noise conditions, like Fac-
All the experiments reported in this paper were con- tory noise. For Lynx noise, which is a well behaved noise,
ducted on OGI Numbers95 connected digits telephone speed®ASTA processing works better. The above comparison be-
database [7], described by a lexicon of 30 words, and 27 dif- tween the PAC MFCC and J-RASTA-PLP is just to illus-
ferent phonemes. For the additive noise experiments, Fac-trate the usefulness of the PAC derived features. Otherwise,
tory and Lynx noises from Noisex92 database [8] and car the comparison is not really valid since RASTA processing
noise from a database supplied by Daimler Chrysler Inc. could also be applied to the PAC spectrum for further im-
(reported in this paper as ‘Car’) have been used. The exper-proving their robustness.
iments were performed at various noise levels, namely 0 dB
SNR, 6 dB SNR, 12 dB SNR, and 18 dB SNR.

Fig. 2. PAC spectrum for a frame of phoneme ‘ih’.

4. RESULTS AND DISCUSSION

Table 1 compares the performance of the PAC MFCC with
regular MFCC for clean speech. From the table, it is clear,
the performance of PAC MFCC for clean speech is inferior . -
to the performance of MFCC. This may be because of the ottt
fact that the magnitude term in the (4) may also have sig- -
nificant phonetic discriminatory information, and dropping
it out in the computation oP[k], as given in the (5), leads
to the degradation of the performance. But as explained in _ )
the previous sections, the magnitude term would certainly Fig. 3. Performance curves for Factory noise.
serve more as a confusing factor rather than as an useful

factor, in the presence of external noise. Hence drop out of

Word Recognition Rare, in %

L L L L L
o 2 4 6 8 10 12 14 16 18
Signal to Noise Ratio (SNR), in dB
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5. CONCLUSION

We have introduced a new category of features called Phase
AutoCorrelation derived features. These features are ex-
tracted from the phase autocorrelation coefficients which
. | are computed as the angle between two signal vectors sep-
arated in time by a particular interval. This use of angle
as a measure of correlation makes the phase autocorrelation
A U U SR R U coefficients less sensitive to noise as compared to regular
stnartonase rawo G s autocorrelation coefficients, which are computed as the dot
Fig. 4. Performance curves for Lynx noise. product of the two vectors. This fact makes the PAC derived
features significantly more robust to noise than the tradi-
tional features. The noise robustness of PAC derived fea-
tures has been illustrated through the experimental results
| we have provided on Numbers 95 and Noisex92 databases.
| As future work, the robustness of these features can be
, furtherimproved by applying robust techniques such as RASTA
] processing over the PAC spectrum. Furthermore, these PAC
] features can be used as stand alone features or as comple-

Word Recognition Rare, in %
\

4 dashed line - MFCC

L L L
o 2 a

Word Recognition Rare, in %

colidine - PAG MFCC | mentary features in addition to regular features, e.g., in the
: [ e | multistream speech recognition framework.
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