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ABSTRACT

This paper presents a novel method for the low bit-rate
compression of a feature vector stream with particular
application to distributed speech recognition. The scheme
operates by grouping feature vectors into non-overlapping
blocks and applying a transformation to give a more compact
matrix representation. Both Karhunen-Loeve and discrete
cosine transforms are considered. Following transformation,
higher-order columns of the matrix can be removed without
loss in recognition performance. The number of bits allocated
to the remaining elements in the matrix is determined
automatically using a measure of their relative information
content. Analysis of the amplitude distribution of the elements
indicates that non-linear quantisation is more appropriate than
linear quantisation. Comparative results, based on both spectral
distortion and speech recognition accuracy, confirm this.
Speech recognition tests using the ETSI Aurora database
demonstrate that compression to bits rates of 2400bps, 1200bps
and 800bps has very little effect on recognition accuracy. For
example at a bit rate of 1200bps, recognition accuracy is 98.0%
compared to 98.6% with no compression.

1. INTRODUCTION

In recent years the accuracy of speech recognition systems has
reached a level where useable services can be deployed. This,
coupled with the enormous growth in mobile and internet
areas, has lead to a range of speech-based services being
deployed, or planned, for both fixed and mobile users.

A recent improvement has been distributed speech recognition
(DSR) [1] where the speech codec on the terminal device is
replaced by the feature extraction component of the speech
recogniser. This removes harmful codec distortions from the
speech recogniser input. Incorporating robust speech features,
noise compensation and packet loss compensation into the
DSR system enables good recognition performance across a
range of environmental conditions.

An important issue concerning DSR is the compression of the
speech feature vectors and their resulting bit-rate. The ETSI
Aurora DSR standard [1] defines a split vector quantisation
compression scheme where pairs of coefficients are allocated
their own codebook. The resulting bit rate is 4800bps. The aim
of this work is to further reduce the bit-rate needed for
encoding speech feature vectors whilst retaining good
recognition performance on both clean and noisy speech.

The proposed scheme is described in section 2 and extends
previous work [2] by combining transform coding, non-

uniform allocation of bits and non-linear quantisation. A set of
experimental results is described in section 3 which tests the
scheme at bit rates of 2400bps, 1200bps and 800bps. Finally a
conclusion is made in section 4.

2. TRANSFORM-BASED COMPRESSION

This section describes the proposed transform-based feature
vector compression scheme as illustrated in figure 1.
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Figure 1: General feature vector compression system.

The encoder is located on the terminal device and receives N-
dimensional feature vectors from the front-end processing
component at a rate of fv per second. Currently this work uses
an ETSI Aurora-based front-end (MFCCs 0 to 12 and log
energy resulting in an N=14 dimensional feature vector at a
rate of fv=100 frames per second) although other front-ends
are equally applicable. Coding and quantisation results in a
low bit representation for transmission or storage purposes.

At the decoder the bitstream is converted back into a stream of
static feature vectors which can be augmented with temporal
information and delivered to the recogniser for classification.

2.1. Frame Blocking

The stream of N-dimensional feature vectors, xt, are grouped
together into non-overlapping blocks, Bk, each containing M
frames, as illustrated in figure 2, where
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Figure 2: Blocking of static feature vectors.
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The number of blocks generated per second, fb, is related to
the feature vector frame rate, fv, and the number of frames in
each block, M, and is calculated

fb = fv / M (2)

Preliminary tests [2] established that a suitable block width is
M=8 which results in a rate of fb=12.5 blocks per second.

2.2. Transform Coding

The overlapping nature of the feature extraction process
together with the underlying speech production mechanism
results in feature vectors exhibiting high levels of temporal
correlation. This correlation can be exploited through
transform coding to reduce the number of coefficients
necessary to represent a block of feature vectors. A number of
transforms have been proposed [3] for encoding temporal
variations of feature vectors and include the Karhunen-Loeve
transform (KLT) and the discrete cosine transform (DCT).

2.2.1. Comparison of KLT and DCT for Encoding

The KLT is the optimal transform for encoding temporal
variations of the feature vectors within a block and is derived
from a set of training data. For encoding the block of feature
vectors a separate KLT was computed for each of the N (14)
rows of the block. In practice it was found that the N
transforms were almost identical to one other. Figure 3 shows
the similarity between the basis functions of the data derived
KLT and the explicit DCT – for the first four basis functions.
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Figure 3: Basis functions of KLT (solid) and DCT (dotted).

Encoding is achieved by applying the transform to the time
component of each cepstral coefficient contained within the
block, Bk. This results in an NxM matrix, Dk, where each
element, dn,m, is calculated,
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with xj,n being the nth cepstral coefficient of the jth MFCC
vector in the block, Bk, and wj,m the jth element of the mth basis
function of the transform (KLT, DCT or other suitable
transform). The N rows of matrix Dk still correspond to the N
elements of the original feature vector while the M columns
encode their temporal movement.

2.2.2. Truncation of Matrix

Lower-order columns of the matrix represent either stationary
or low frequency temporal variations of the feature vector
stream whilst higher-order columns contain faster moving
temporal information. The particular modulation frequency
represented by each column of the matrix is determined by the
frequency of the associated basis function. For example, with
M=8 and fv=100, the modulation frequencies associated with
each basis function, and hence each column, are:

0Hz, 7.1Hz, 14.3Hz, 21.4Hz, 28.6Hz, 35.7Hz, 42.9Hz, 50.0Hz

Both perceptual and automatic speech recognition studies [4]
have shown that modulation frequencies between 1Hz and
16Hz are most useful for discrimination. This implies that
higher-order columns of the matrix can be removed which
results in a truncated NxM’ matrix where M’ specifies the
number of columns retained.

2.3. Quantisation of Coefficients

This section considers the allocation of bits to the remaining
elements of the matrix and their subsequent quantisation using
both linear and non-linear methods.

2.3.1. Allocation of Bits to Coefficients

The average number of bits, r , available to represent each
element in the matrix depends on the overall bit rate, c,
(governed by the channel), the block rate, fb, and the total
number of elements, NxM’ in the truncated matrix, where
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To maximize the information contained in the quantised
matrix, the allocation of bits to each element should be based
on a measure of their relative discriminative content. Several
studies [5] have shown that the amount of discriminative
information varies for different cepstral coefficients.
Coefficients such as energy and lower-order MFCCs contain
more discriminative information than higher-order MFCCs
and should therefore be allocated more bits. Similarly, lower-
order columns of the matrix represent stationary or slow
moving information which is more important for
reconstructing the feature vector stream than higher-order
columns. These columns should also be allocated relatively
more bits.

This indicates that a non-uniform allocation of bits to each
element will give better utilisation of their limited availability.
A useful method [6] for optimising bit allocation is based on
minimising the variance of the reconstruction error after
quantisation. Using this scheme, the bit allocation, rn,m, to each
element, dn,m, in the matrix can be computed as,
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where, 2
,mnσ , is the variance of element dn,m computed from a

set of training data and the MNr ′ term represents the total
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number of bits available for the quantising the matrix. The
resultant bit allocation will not necessarily be an integer or
even positive. Bit allocations are rounded to the nearest integer
and those with zero or negative allocation are discarded.

Bit allocations for MFCCs 0 to 12 are determined using
equation (5). However the row representing log energy is
considered separately and at present is allocated 1 bit more
than the row for encoding the zeroth cepstral coefficient. Table
1 shows bit allocation for an N=14, M=8, M’=4, c=2400 bps
system. The number of bits available to the block is 192 which
gives an average allocation (cf. eq. 4) of 3.43 bits/coefficient.

Col.0 Col.1 Col. 2 Col. 3
c0 6 4 3 2
c1 5 4 3 2
c2 5 3 3 2
c3 5 3 3 2
c4 5 4 3 2
c5 5 4 3 2
c6 5 4 3 2
c7 5 4 3 2
c8 5 3 3 3
c9 4 3 3 2
c10 4 3 3 2
c11 4 3 3 2
c12 4 3 3 2
E 7 5 4 3

Table 1: Bit allocation at 2400 bps for M’=4, N=14 matrix.

The bit allocation follows that which intuition would suggest -
more bits to lower-order MFCCs and lower-order columns

2.3.2. Non-Linear Quantisation of Coefficients

Previous work [2] used linear quantisation to encode each

element, dn,m, of the matrix as one of mnr ,2 linearly spaced
levels. Inspection of the amplitude levels for each element of
the matrix revealed a set of non-linear distributions. For
example, figure 4 shows the distribution of amplitude levels
for coefficients d1,1 and d7,1 of the matrix averaged over 500
digit strings. Imposed on the graphs are Laplacian (solid line)
and Gaussian (dotted line) approximations to the distributions.
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Figure 4: Distribution of amplitudes for element d1,1 and d7,1

Both illustrations confirm that the distribution of amplitude
values is far from uniform. The distribution of amplitudes for
element d1,1 is very close to the Laplacian distribution.
Conversely, the distribution of amplitudes for element d7,1 is
much closer to the Gaussian distribution. Similar observations
were made for other elements in the matrix.

It is therefore more appropriate to use non-linear quantisation
of the amplitudes based on the underlying probability density
function (PDF). An effective technique for determining these

non-linear quantisation levels and boundaries is the Lloyd-
Max algorithm [6]. This uses an assumption of the underlying
PDF of the amplitudes and iteratively adjusts the
levels/boundaries to minimise quantisation error.

To establish the non-linearly spaced levels and boundaries the
Lloyd-Max algorithm was applied to each element, dn,m of the
truncated matrix with the number of quantisation levels

determined from the bit allocation – i.e. mnr ,2 . This results in
a set of centroid and boundary positions for each of the NxM’
elements of the matrix. To determine whether the amplitude
distributions are better modeled by a Laplacian or Gaussian
PDF, the Lloyd-Max algorithm was applied twice; first to
establish boundary/centroid positions based on a Laplacian
PDF and secondly based on a Gaussian PDF.

As a preliminary test to compare the effect of non-linear
quantisation with linear quantisation a distortion measure was
used. It was decided to measure the distortion in the spectral
domain as this is more meaningful than the cepstral domain
where some coefficients dominate the measurement. The
amount of spectral distortion is also important when
considering speech reconstruction from MFCCs. The spectral
distortion was computed by measuring the RMS error in the
resulting log filterbank domain between a quantised and un-
quantised (original) MFCC vector. In each case the log
filterbank vector was obtained from an inverse DCT of the
zero padded MFCC vector. Table 2 shows the average spectral
distortions across 500 digit strings using an N=14, M=8 and
M’=2 configuration. Comparisons are made between linear,
non-linear Laplacian-based and non-linear Gaussian-based
quantisation at bit rates of 2400bps, 1200bps and 800bps.

Bit rate r Linear Non-linear
(Laplacian)

Non-linear
(Gaussian)

2400bps 6.9 1.995 1.995 2.030

1200bps 3.4 2.215 2.126 2.166

800bps 2.3 3.250 2.692 2.717

Table 2: Spectral distortion resulting from linear and non-
linear quantisation with M=8 and M’=2 at varying bit rates.

As the bit rate falls, the spectral distortion introduced by all
quantisers increases. However at lower bit rates the spectral
distortion introduced by the two non-linear quantisers is
significantly less than that introduced by the linear quantiser.
Modelling the distributions by the Laplacian PDF gives
slightly less spectral distortion than with the Gaussian PDF.

2.4. Decoding from Bitstream to Feature Vectors

After quantisation the resulting sequence of bits is ready for
transmission. Extra bits for channel coding may be added but
this work addresses only the issue of source coding.

Decoding is essentially the reverse of the encoding process.
The received matrix is zero padded by M-M’ columns and
inverse transformed back into a block of M static feature
vectors. These are input into the back-end of the recogniser.

3. RESULTS

The experiments to analyse the effectiveness of the proposed
compression techniques are based on the Aurora TI digits
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database which comprises 28000 digit strings for testing and
8440 for training. The speech is sampled at 8kHz and
parameterized into 14-dimensional static feature vectors,
comprising MFCCs 0 to 12 and log energy. Velocity and
acceleration components are computed from the quantised
features at the back-end of the recogniser. The digits are
modeled using 16-state, 3-mode, diagonal covariance matrix
HMMs, trained from uncompressed digits strings.

To evaluate the performance of the compression schemes in
both quiet and noisy conditions, two sets of experiments have
been used. The first set is tested under clean conditions and the
other at an SNR of 10dB. The baseline performance of the
MFCC features with no compression is 98.6% for clean
speech and 92.9% for the 10dB condition.

Tables 3, 4 and 5 show digit accuracy at bit rates of 2400bps,
1200bps and 800bps for a block size of N=14 and M=8. The
tables compare linear and non-linear quantisation and use the
allocation of bits as described in section 2.3.1. The DCT is
used for transform coding and the non-linear quantiser is
based on the Laplacian PDF. The truncated matrix width, M’,
is varied from 2 to 8 columns. Results are shown for both
clean and 10dB SNR contaminated speech. The average
number of bits per coefficient, r , is also shown.

Clean, % Noisy, %_

r Linear Non-lin. Linear Non-lin.

M’=8 1.7 92.6 98.2 75.6 92.8

M’=4 3.4 98.4 98.6 93.1 93.4

M’=2 6.9 98.3 98.3 91.1 91.2

Table 3: Compression of Aurora digits at 2400bps.

Clean, % Noisy, %_

r Linear Non-lin. Linear Non-lin.

M’=8 0.9 7.7 94.3 7.2 73.1

M’=4 1.7 39.7 97.7 8.4 86.8

M’=2 3.4 98.0 98.0 90.6 90.1

Table 4: Compression of Aurora digits at 1200bps.

Clean, % Noisy, %_

r Linear Non-lin. Linear Non-lin.

M’=8 0.6 7.7 21.4 7.2 8.1

M’=4 1.1 10.4 89.13 7.2 61.6

M’=2 2.3 80.1 97.1 50.9 84.0

Table 5: Compression of Aurora digits at 800bps.

The results demonstrate that transform-based compression
achieves good recognition performance at bit rates down to
800bps. In particular with a bit rate of 800bps only a 1.6% fall
in recognition performance is observed for clean speech.

At lower bit rates the non-linear quantisation scheme is shown
to clearly outperform the linear quantisation scheme. For
example, at a bit rate of 800bps the best performance with
non-linear quantisation is 97.1% with clean speech and 84.0%
with noisy speech. This contrasts with 80.1% and 50.9%

respectively for linear quantisation. In fact this can be
generalised to the fact that the non-linear quantisation is able
to make better use of a limited number of average bits per
coefficient, r , than linear quantisation. For example, with an
average of r =1.7 bits/coefficient (i.e. M’=8 at 2400bps and
M’=4 at 1200bps) the non-linear quantisation scheme gives
considerably better performance than the linear scheme for
both clean and noisy speech.

Best performance throughout for both linear and non-linear
quantisation is attained at 2400bps with M’=4 ( r =3.4).
Increasing the number of columns retained to M’=8 reduces
recognition accuracy as the available number of bits for
quantisation is halved (to r =1.7). This indicates that it is
better to encode fewer columns with a higher number of
quantisation levels than to encode more columns with a more
coarse quantisation. This is situation is repeated at a bit rate of
1200bps when moving from M’=2 ( r =3.4) to M’=4 ( r =1.7).
Linear quantisation performance falls drastically from 90.6%
down to 8.4% in noise and from 98.0% to 39.7% for clean
speech. Non-linear quantisation performance also reduces but
is considerably more robust, falling from 90.1% to 86.8% in
noise and from 98.0% to 97.7% for clean speech. It is
therefore important to carefully select the truncation points
carefully for a given bit rate.

4. CONCLUSIONS

This work has shown that a transform coding based approach
for compressing an MFCC-based feature vector stream is
effective at bit rates down to 800bps. This is equivalent to just
8 bits per feature vector, or 0.57 bits per mel-frequency
cepstral coefficient.

Analysis has shown that the inherent temporal correlation of
the feature vector stream can be exploited through transform
coding to reduce the number of elements needed for encoding.
A non-uniform allocation of bits to the remaining elements
provides more quantisation levels to those elements important
for classification. Analysis of the distribution of amplitude
levels of the elements in the matrix implies that non-linear
quantisation is more suitable than linear quantisation. This is
confirmed from both spectral distortion measurements and
from recognition tests over a range of bits rates and matrix
sizes for both clean and noisy speech.

Some deterioration in performance was observed when
recognising noisy speech at low bit rates. This may be in part
due to the quantisation levels being estimated from clean
speech and also due to the fluctuations which the noise adds.
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