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ABSTRACT

This paper presents a novel method for the low bit-rate
compression of a festure vector stream with particular
application to distributed speech recognition. The scheme
operates by grouping feature vectors into non-overlapping
blocks and applying a transformation to give a more compact
matrix representation. Both Karhunen-Loeve and discrete
cosine transforms are considered. Following transformation,
higher-order columns of the matrix can be removed without
loss in recognition performance. The number of bits allocated
to the remaining elements in the matrix is determined
automatically using a measure of their relative information
content. Analysis of the amplitude distribution of the elements
indicates that non-linear quantisation is more appropriate than
linear quantisation. Comparative results, based on both spectral
distortion and speech recognition accuracy, confirm this.
Speech recognition tests using the ETSI Aurora database
demonstrate that compression to bits rates of 2400bps, 1200bps
and 800bps has very little effect on recognition accuracy. For
example at a bit rate of 1200bps, recognition accuracy is 98.0%
compared to 98.6% with no compression.

1. INTRODUCTION

In recent years the accuracy of speech recognition systems has
reached a level where useable services can be deployed. This,
coupled with the enormous growth in mobile and internet
areas, has lead to a range of speech-based services being
deployed, or planned, for both fixed and mobile users.

A recent improvement has been distributed speech recognition
(DSR) [1] where the speech codec on the terminal device is
replaced by the feature extraction component of the speech
recogniser. This removes harmful codec distortions from the
speech recogniser input. Incorporating robust speech features,
noise compensation and packet loss compensation into the
DSR system enables good recognition performance across a
range of environmental conditions.

An important issue concerning DSR is the compression of the
speech feature vectors and their resulting bit-rate. The ETSI
Aurora DSR standard [1] defines a split vector quantisation
compression scheme where pairs of coefficients are allocated
their own codebook. The resulting bit rate is 4800bps. The am
of this work is to further reduce the bit-rate needed for
encoding speech feature vectors whilst retaining good
recognition performance on both clean and noisy speech.

The proposed scheme is described in section 2 and extends
previous work [2] by combining transform coding, non-
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uniform allocation of bits and non-linear quantisation. A set of
experimental results is described in section 3 which tests the
scheme at bit rates of 2400bps, 1200bps and 800bps. Finadly a
conclusion ismadein section 4.

2. TRANSFORM-BASED COMPRESSION

This section describes the proposed transform-based feature
vector compression scheme asillustrated in figure 1.
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Figure 1: General feature vector compression system.

The encoder is located on the terminal device and receives N-
dimensiona feature vectors from the front-end processing
component at a rate of f, per second. Currently this work uses
an ETS| Aurora-based front-end (MFCCs 0 to 12 and log
energy resulting in an N=14 dimensional feature vector at a
rate of f,=100 frames per second) athough other front-ends
are equally applicable. Coding and quantisation results in a
low bit representation for transmission or storage purposes.

At the decoder the bitstream is converted back into a stream of
static feature vectors which can be augmented with temporal
information and delivered to the recogniser for classification.

21.  FrameBlocking

The stream of N-dimensional feature vectors, x;, are grouped
together into non-overlapping blocks, By, each containing M
frames, asillustrated in figure 2, where

Bk = {X(k—l)M e X | 1)
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Figure 2: Blocking of static feature vectors.
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The number of blocks generated per second, f,, is related to
the feature vector frame rate, f,, and the number of frames in
each block, M, and is calcul ated

fo=f,/ M @

Preliminary tests [2] established that a suitable block width is
M=8 which resultsin arate of f,=12.5 blocks per second.

22.  Transform Coding

The overlapping nature of the feature extraction process
together with the underlying speech production mechanism
results in feature vectors exhibiting high levels of temporal
correlation. This correlation can be exploited through
transform coding to reduce the number of coefficients
necessary to represent a block of feature vectors. A number of
transforms have been proposed [3] for encoding temporal
variations of feature vectors and include the Karhunen-Loeve
transform (KLT) and the discrete cosine transform (DCT).

221. Comparison of KLT and DCT for Encoding

The KLT is the optima transform for encoding temporal
variations of the feature vectors within a block and is derived
from a set of training data. For encoding the block of feature
vectors a separate KLT was computed for each of the N (14)
rows of the block. In practice it was found that the N
transforms were almost identical to one other. Figure 3 shows
the similarity between the basis functions of the data derived
KLT and theexplicit DCT —for thefirst four basis functions.
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Figure 3: Basis functions of KLT (solid) and DCT (dotted).

Encoding is achieved by applying the transform to the time
component of each cepstral coefficient contained within the
block, By. This results in an NxM matrix, Dy, where each
element, d, ,, is calculated,

M-1
dom= 2 XjnWjm O0<m=M-1, 0<n=N-1 3
j=0

with %, being the n™ cepstral coefficient of the " MFCC
vector in the block, By, and w; ,, the j"™ element of the m" basis
function of the transform (KLT, DCT or other suitable
transform). The N rows of matrix Dy till correspond to the N
elements of the origina feature vector while the M columns
encode their temporal movement.
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2.2.2. Truncation of Matrix

Lower-order columns of the matrix represent either stationary
or low frequency tempora variations of the feature vector
stream whilst higher-order columns contain faster moving
temporal information. The particular modulation frequency
represented by each column of the matrix is determined by the
frequency of the associated basis function. For example, with
M=8 and f,=100, the modulation freguencies associated with
each basis function, and hence each column, are:

OHz, 7.1Hz, 14.3Hz, 21.4Hz, 28.6Hz, 35.7Hz, 42.9Hz, 50.0Hz

Both perceptual and automatic speech recognition studies [4]
have shown that modulation frequencies between 1Hz and
16Hz are most useful for discrimination. This implies that
higher-order columns of the matrix can be removed which
results in a truncated NxM' matrix where M’ specifies the
number of columns retained.

2.3. Quantisation of Coefficients

This section considers the alocation of bits to the remaining
elements of the matrix and their subsequent quantisation using
both linear and non-linear methods.

2.3.1. Allocation of Bitsto Coefficients

The average number of bits, 1, available to represent each
edement in the matrix depends on the overal bit rate, c,
(governed by the channel), the block rate, f,, and the total
number of elements, NxM’ in the truncated matrix, where

Cc

Fr=———
foXNxM

4
To maximize the information contained in the quantised
matrix, the allocation of bits to each element should be based
on a measure of their relative discriminative content. Several
studies [5] have shown that the amount of discriminative
information varies for different cepstra coefficients.
Coefficients such as energy and lower-order MFCCs contain
more discriminative information than higher-order MFCCs
and should therefore be allocated more bits. Similarly, lower-
order columns of the matrix represent stationary or slow
moving information which is more important for
reconstructing the feature vector stream than higher-order
columns. These columns should aso be allocated relatively
more bits.

This indicates that a non-uniform allocation of bits to each
element will give better utilisation of their limited availability.
A useful method [6] for optimising bit allocation is based on
minimising the variance of the reconstruction error after
quantisation. Using this scheme, the bit allocation, r,,,, to each
element, d, , in the matrix can be computed as,

2
Onm
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n=0m=0

where, cr,fym, is the variance of element d, ,, computed from a
set of training data and the TNM” term represents the total




number of bits available for the quantising the matrix. The
resultant bit allocation will not necessarily be an integer or
even positive. Bit allocations are rounded to the nearest integer
and those with zero or negative all ocation are discarded.

Bit alocations for MFCCs 0 to 12 are determined using
equation (5). However the row representing log energy is
considered separately and at present is allocated 1 bit more
than the row for encoding the zeroth cepstral coefficient. Table
1 shows bit allocation for an N=14, M=8, M’'=4, c=2400 bps
system. The number of bits available to the block is 192 which
gives an average allocation (cf. eq. 4) of 3.43 bits/coefficient.
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Table 1: Bit allocation at 2400 bpsfor M’=4, N=14 matrix.

The bit alocation follows that which intuition would suggest -
more bits to lower-order MFCCs and lower-order columns

2.3.2. Non-Linear Quantisation of Coefficients
Previous work [2] used linear quantisation to encode each

dement, d,,, of the matrix as one of 2™™ linearly spaced
levels. Inspection of the amplitude levels for each element of
the matrix revealed a set of non-linear distributions. For
example, figure 4 shows the distribution of amplitude levels
for coefficients dy; and d;; of the matrix averaged over 500
digit strings. Imposed on the graphs are Laplacian (solid line)
and Gaussian (dotted line) approximations to the distributions.
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Figure 4: Distribution of amplitudesfor element d; ; and d;;

Both illustrations confirm that the distribution of amplitude
values is far from uniform. The distribution of amplitudes for
eement d;; is very close to the Laplacian distribution.
Conversdly, the distribution of amplitudes for element d;; is
much closer to the Gaussian distribution. Similar observations
were made for other elementsin the matrix.

It is therefore more appropriate to use non-linear quantisation
of the amplitudes based on the underlying probability density
function (PDF). An effective technique for determining these
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non-linear quantisation levels and boundaries is the Lloyd-
Max algorithm [6]. This uses an assumption of the underlying
PDF of the amplitudes and iteratively adjusts the
levels/lboundaries to minimise quantisation error.

To establish the non-linearly spaced levels and boundaries the
Lloyd-Max algorithm was applied to each e ement, dy, of the
truncated matrix with the number of quantisation levels

determined from the bit allocation —i.e. 2™™ . This resultsin
a set of centroid and boundary positions for each of the NxM’
elements of the matrix. To determine whether the amplitude
distributions are better modeled by a Laplacian or Gaussian
PDF, the Lloyd-Max agorithm was applied twice; first to
establish boundary/centroid positions based on a Laplacian
PDF and secondly based on a Gaussian PDF.

As a prdiminary test to compare the effect of non-linear
guantisation with linear quantisation a distortion measure was
used. It was decided to measure the distortion in the spectral
domain as this is more meaningful than the cepstral domain
where some coefficients dominate the measurement. The
amount of spectra distortion is also important when
considering speech reconstruction from MFCCs. The spectral
distortion was computed by measuring the RMS error in the
resulting log filterbank domain between a quantised and un-
quantised (origina) MFCC vector. In each case the log
filterbank vector was obtained from an inverse DCT of the
zero padded MFCC vector. Table 2 shows the average spectra
distortions across 500 digit strings using an N=14, M=8 and
M’=2 configuration. Comparisons are made between linear,
non-linear Laplacian-based and non-linear Gaussian-based
guantisation at bit rates of 2400bps, 1200bps and 800bps.

Bit rate r Linear Non-linear Non-linear
(Laplacian)  (Gaussian)
2400bps 6.9 1.995 1.995 2.030
1200bps 34 2215 2.126 2.166
800bps 2.3 3.250 2.692 2717

Table 2: Spectral distortion resulting from linear and non-
linear quantisation with M=8 and M’ =2 at varying bit rates.

As the hit rate falls, the spectral distortion introduced by al
guantisers increases. However at lower bit rates the spectra
distortion introduced by the two non-linear quantisers is
significantly less than that introduced by the linear quantiser.
Modedlling the distributions by the Laplacian PDF gives
dightly less spectral distortion than with the Gaussian PDF.

24. Decoding from Bitstream to Feature Vectors

After quantisation the resulting sequence of bits is ready for
transmission. Extra bits for channel coding may be added but
thiswork addresses only theissue of source coding.

Decoding is essentialy the reverse of the encoding process.
The received matrix is zero padded by M-M’ columns and
inverse transformed back into a block of M static feature
vectors. These areinput into the back-end of the recogniser.

3. RESULTS

The experiments to analyse the effectiveness of the proposed
compression techniques are based on the Aurora Tl digits



database which comprises 28000 digit strings for testing and
8440 for training. The speech is sampled a 8kHz and
parameterized into 14-dimensional static festure vectors,
comprising MFCCs 0 to 12 and log energy. Veocity and
acceleration components are computed from the quantised
features at the back-end of the recogniser. The digits are
modeled using 16-state, 3-mode, diagonal covariance matrix
HMMs, trained from uncompressed digits strings.

To evaluate the performance of the compression schemes in
both quiet and noisy conditions, two sets of experiments have
been used. Thefirst set is tested under clean conditions and the
other a an SNR of 10dB. The basdine performance of the
MFCC features with no compression is 98.6% for clean
speech and 92.9% for the 10dB condition.

Tables 3, 4 and 5 show digit accuracy at bit rates of 2400bps,
1200bps and 800bps for a block size of N=14 and M=8. The
tables compare linear and non-linear quantisation and use the
alocation of bits as described in section 2.3.1. The DCT is
used for transform coding and the non-linear quantiser is
based on the Laplacian PDF. The truncated matrix width, M’,
is varied from 2 to 8 columns. Results are shown for both
clean and 10dB SNR contaminated speech. The average
number of bits per coefficient, T, isalso shown.

_ Clean, % Noisy, %

r Linear | Non-lin. | Linear | Non-lin.
M=8 | 1.7 92.6 98.2 75.6 92.8
M=4 |34 | 984 98.6 93.1 934
M'=2 | 6.9 98.3 98.3 91.1 91.2

Table 3: Compression of Auroradigits at 2400bps.

_ Clean, % Noisy, %

r Linear | Non-lin. | Linear | Non-lin.
M'=8 | 0.9 7.7 94.3 7.2 73.1
M'=4 | 17 39.7 97.7 8.4 86.8
M'=2 | 34 98.0 98.0 90.6 90.1

Table 4: Compression of Auroradigits a 1200bps.

_ Clean, % Noisy, %

r Linear | Non-lin. | Linear | Non-lin.
M'=8 | 0.6 7.7 214 7.2 8.1
M=4 | 11 104 89.13 7.2 61.6
M=2 | 23 80.1 97.1 50.9 84.0

Table5: Compression of Auroradigits at 800bps.

The results demonstrate that transform-based compression
achieves good recognition performance at bit rates down to
800bps. In particular with abit rate of 800bps only a 1.6% fall
in recognition performanceis observed for clean speech.

At lower bit rates the non-linear quantisation scheme is shown
to clearly outperform the linear quantisation scheme. For
example, a a bit rate of 800bps the best performance with
non-linear quantisation is 97.1% with clean speech and 84.0%
with noisy speech. This contrasts with 80.1% and 50.9%
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respectively for linear quantisation. In fact this can be
generaised to the fact that the non-linear quantisation is able
to make better use of a limited number of average bits per
coefficient, 1, than linear quantisation. For example, with an
average of 1 =1.7 bits/coefficient (i.e. M'=8 at 2400bps and
M’'=4 at 1200bps) the non-linear quantisation scheme gives
considerably better performance than the linear scheme for
both clean and noisy speech.

Best performance throughout for both linear and non-linear
guantisation is attained a 2400bps with M'=4 (r =3.4).
Increasing the number of columns retained to M’=8 reduces
recognition accuracy as the available number of bits for
quantisation is halved (to r=1.7). This indicates that it is
better to encode fewer columns with a higher number of
quantisation levels than to encode more columns with a more
coarse quantisation. Thisis situation is repeated at a bit rate of
1200bps when moving from M'=2 (Tt =3.4) to M'=4 (T =1.7).
Linear quantisation performance falls drasticaly from 90.6%
down to 8.4% in noise and from 98.0% to 39.7% for clean
speech. Non-linear quantisation performance aso reduces but
is considerably more robust, falling from 90.1% to 86.8% in
noise and from 98.0% to 97.7% for clean speech. It is
therefore important to carefully sdect the truncation points
carefully for agiven bit rate.

4. CONCLUSIONS

This work has shown that a transform coding based approach
for compressing an MFCC-based festure vector stream is
effective at bit rates down to 800bps. Thisis equivalent to just
8 bits per feature vector, or 0.57 bits per me-frequency
cepstral coefficient.

Analysis has shown that the inherent temporal correlation of
the feature vector stream can be exploited through transform
coding to reduce the number of elements needed for encoding.
A non-uniform alocation of bits to the remaining elements
provides more quantisation levels to those eements important
for classification. Analysis of the distribution of amplitude
levels of the eements in the matrix implies that non-linear
quantisation is more suitable than linear quantisation. This is
confirmed from both spectral distortion measurements and
from recognition tests over a range of bits rates and matrix
sizesfor both clean and noisy speech.

Some deterioration in performance was observed when
recognising noisy speech at low bit rates. This may be in part
due to the quantisation levels being estimated from clean
speech and a'so due to the fluctuations which the noise adds.
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