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ABSTRACT 

While a number of studies have investigated various speech 
enhancement and processing schemes for in-vehicle speech 
systems, little research has been performed using actual voice 
data collected in noisy car environments. In this paper, we 
propose a new constrained switched adaptive beamforming 
algorithm (CSA-BF) for speech enhancement and recognition 
in real moving car environments. The proposed algorithm 
consists of a speech/noise constraint section, a speech 
adaptive beamformer, and a noise adaptive beamformer. We 
investigate CSA-BF performance with a comparison to classic 
delay-and-sum beamforming (DASB) in realistic car 
environments using a large quantity of data recorded in 
various car noise environments from across the United States. 
After analyzing the experimental results and considering the 
range of complex noise situations in the car environment 
using the CU-Move corpus, we formulate the CSA-BF 
algorithm. This method is shown to decrease WER for speech 
recognition by up to 31% and improve speech quality via the 
SEGSNR by up to 5.5dB on the average simultaneously. 

1. INTRODUCTION 

The increased use of mobile telephones and voiced controlled 
features in cars has created a greater demand for hands-free, 
in-car installations. Many countries now restrict handheld 
cellular technology while operating a vehicle. As such there is 
a greater need to have reliable voice capture within 
automobile environments. Microphone array processing and 
beamforming is one promising area which can yield effective 
performance.  

The classic array beamforming method is delay-and-sum 
beamforming (DASB) [1]. This method is simple and robust if 
we know the direction of the speech source. However, if the 
source location changes during operation, this method is less 
effective due to the mismatch in delay estimation between 
microphones. Another practical problem of DASB is that the 
theoretical maximum noise attenuation )1(log10 10 +M  is not 

easy to obtain in car noise environments with small 
microphone arrays. Nordholm, et. al [2] considered a built-in 
calibration procedure for data collection instrumentation in the 
car environment. Compernolle [3] presented an approach using 
switching adaptive filters, with no a priori knowledge about 
the speech source. While this was an important contribution, it 
was evaluated only in a reverberant laboratory setting, and not 

in a noisy moving car environment. Oh, et. al [4] applied a 
Griffiths-Jim beamformer in a car environment with a 7-
channel microphone array. Their general recommendations 
were that the generalized side-lobe canceller (GSC) was 
relatively stable and robust. However, from our analysis using 
real car data we collected, we found that noise signals with 
high frequency energy, such as road bump noise will make the 
GSC unstable. Shinde et. al. [5] presented a multichannel 
method for noisy speech recognition which estimates the log 
speech spectrum for a close-talking microphone based on a 
multiple regression of the log spectra (MRLS) of noisy signals 
captured by the distributed microphones. Visser et. al. [6], 
presented a speech enhancement scheme, which combined a 
spatial and temporal processing strategy to handle 
reverberation, highly interfering sources and background 
noise. While a number of studies have investigated various 
speech enhancement and processing schemes for in-vehicle 
speech systems, the vast majority are conducted under 
controlled simulated conditions inside a room or with pre-
recorded car noise. Little research has been performed using 
actual voice data collected in the car with associated 
environmental noise conditions.  

In this paper, we investigate and propose several potential 
speech processing solutions for in-vehicle speech systems. The 
performance of a classic DASB technique in a realistic car 
environment is first considered. After analyzing experimental 
results, we propose a constrained switched adaptive 
beamforming (CSA-BF) method. 

2. CSA-BF: CONSTRAINED SWITCHED 
ADAPTIVE EBAMFORMING 

The proposed CSA-BF algorithm consists of four parts: a 
constraint section (CS), a speech adaptive beamformer (SA-
BF), a noise adaptive beamformer (NA-BF) and a switch. Fig. 
1 shows the detailed structure of CSA-BF, where we assume a 
5-microphone array. The CS is designed to identify potential 
speech and noise locations. If a speech source is detected, the 
switch will activate SA-BF to adjust the beam pattern and 
enhance the desired speech. At the same time, NA-BF is 
disabled to avoid speech leakage. If however, a noise source is 
detected, the switch will activate NA-BF to adjust the beam 
pattern for noise and switch off SA-BF processing to avoid the 
speech beam pattern from being altered by the noise. The 
combination of SA-BF and NA-BF processing results in a 
framework that achieves noise cancellation for interference in 
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both time and spatial orientation. Next, we consider each 
processing stage of the proposed CSA-BF scheme. 

2.1. Constraint Section  

Many source localization methods have been presented and 
report effective performance with large microphone arrays  in 
conference rooms or large auditoriums. Their ability to 
perform well in changing noisy car conditions has not been 
documented to the same degree, but is expected to be poor. 
Here, we propose three practical constraints which can be 
used to separate speech and noise sources with high accuracy. 
The constraints introduced here are more effective than 
switching filters [3] in dealing with impulsive noise sources, 
as well as locating sources in the car.  

It is known that the input microphone signal can be one 
or any combination of the following sources:  
(i.)  A desired speech signal (i.e., driver’s voice);  
(ii.)  An unwanted speech signal (i.e., 2nd passenger);  
(iii.) Various environmental car noises (vibration, turn signal, 
car passing, radio, air conditioner, etc). 
Here, we view (ii) and (iii) as sources of interference. 

2.1.1. Criterion 1 

It is assumed that the microphone array is positioned on the 
windshield near the sun visor in front of the driver who is the 
assumed speaker. Therefore, the driver to microphone array 
distance will be shorter than for other passengers in the 
vehicle. Therefore, speech from the driver’s direction will 
have on average the highest intensity of all sources present. 
To measure the speech energy, we employ the nonlinear 
Teager Energy Operator (TEO) [7]. Thus, our first criterion is 
based on the average TEO energy as follows:  
(i.) If

speechsignal EE > , then the current signal analysis window 

will be a speech  candidate; 
(ii.) If

noisesignal EE < , then the current signal analysis window 

will be a noise candidate. 
Here, 

signalE  denotes the energy of the current signal analysis 

window, 
speechE denotes the speech energy threshold, and 

noiseE  denotes the noise energy threshold, where 
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      In order to track the changing environmental noise and 
speech conditions, we also update the speech and noise 
thresholds according to the following rules: 
(i.)  when the current analysis window is a speech candidate: 

)3(

)2()1()(
new

speechspeechspeech

signal
old
speech

new
speech

EE

EEE

×=

×−+×=

ρ

αα  

(ii.)  when the current analysis window is a noise candidate: 
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with 1,0 << βα  and 
speechρ and

noiseρ are the constants which 

control the level of speech and noise threshold respectively. 
Fig. 2 shows the average TEO energy and corresponding 
thresholds for a portion of noisy speech from a speaker in the 
CU-Move database. 
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Figure 2: Averaged TEO. Energy versus corresponding thresholds 

(a) Noisy speech waveform from car environment;  
(b)     TEO profile and resulting speech and noise thresholds. 

2.1.2. Criterion 2 

Independent of how the driver positions his head while 
speaking, the direction of his speech will be significantly 
different to that of another person sitting in the car. Therefore, 
in order to separate front-seat driver and passenger, we need a 
criterion to decide the direction of speech. We choose the 
adaptive LMS filter [8] method. In our case, we insert a delay 
that corresponds to the peak of the filter weight. According to 
the geometric structure of the microphone array and the 
arriving incident sound wave, we are able to locate the source 
from this delay. Fig. 3 shows this relationship. Obviously, if 
we take the axis between the center of the desired microphone 
(mic1) and reference microphone (mic5) as the standard axis, 
the desired source should be located within some symmetric 
area

thresαα ≤ from both sides of this axis. 
thresα can be fixed, or 

variable to obtain further noise suppression. In order to 
simulate this, we delayed the desired signal by 2/L , for 
which the corresponding delay will be a positive or negative 
number as shown in Fig. 3.  

Figure 1:  Structure of the Proposed Constrained Switched Adaptive Beamforming (CSA -BF) 
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Figure 3: Relation. between  speaker position and weight of LMS filter 

2.1.3. Criterion 3 

This final criterion is employed as a special case for road 
impulse/bump noise. Bump noise has a high-energy content, 
is typically impulsive in nature, and does not arrive from a 
particular direction. Fortunately, impulsive bump noise has 
obvious high-energy characteristics versus time, and thus the 
average TEO energy response will be higher than noisy 
speech and other noise types. Therefore, we can set a bump 
noise threshold 

bumpE during our implementation to avoid 

instability in the filtering process.  
Finally, we note that the signal is labeled as speech if and 

only if all three criteria are satisfied. 

2.2. Speech Adaptive Beamformer (SA-BF) 

The function of SA-BF is to form an appropriate beam pattern 
to enhance the speech signal. Since adaptive filters are used to 
perform the beam steering, we can change beam pattern with 
a movement of the source. The degree of adaptation steering 
speed is decided by the convergence behavior of the adaptive 
filters. In our implementation, we select microphone 1 as the 
primary microphone, and build an adaptive filter between it 
and each of the other four microphones. These filters 
compensate for the different transfer functions between the 
speaker and the microphone array. A normalized LMS 
algorithm is used to update filter coefficients only when the 
current signal is detected as speech. There are two kinds of 
output from the SA-BF: namely the enhanced speech )(nd and 

noise signal )(1 ne i
, which are given as follows, 
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for mic. channels 5,4,3,2=i , where )(11 nw is a fixed filter. 

2.3. Noise Adaptive Beamformer (NA-BF) 

The NA-BF processor operates in a scheme like a multiple 
noise canceller, in which both the reference speech signal of 
the noise canceller and the speech free noise references are 
provided by the output of the SA-BF. Since the filter 
coefficients 

iw2
are updated only when the current signal is 

detected as noise, they form a beam that is directed towards 
the noise, thus the reason to name it a noise adaptive 
beamformer (NA-BF). The output response is given as, 
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3. PERFORMANCE EVALUATION 

3.1. CU-Move Corpus 

The CU-Move [10] database include 5 parts: command and 
control words, digit strings of telephone and credit card 
numbers, street names and addresses, phonetically balanced 
sentences, and Wizard of Oz interactive navigation 
conversation. A total of 500 speakers, balanced across gender 
and age, produced over 600GB of data during a six-month 
collection effort across the United States. The database and 
noise conditions are discussed in detail in [9]. We point out 
that the noise conditions are changing with time and are quite 
different in terms of SNR, stationarity and spectral structure. 
In this study, we use the digits portion that includes speech 
under a range of varying complex car noise environments and 
contains approximately 40 words from approximately 100 
speakers in Minn.,  MN (i.e., Release 1.1a). 

3.2. Experiment Establishment 

In the CSA-BF algorithm, there are a number of adaptive 
filters which are parameter dependent, such as, step-size of 
each adaptive filter, the speech/noise threshold, and the 
definition for the desired speech range. In addition to these 
parameters, the accuracy of the speech/noise decision in the 
CS is also important. Thus, in order to evaluate the 
performance of the DASB and CSA-BF algorithms in car 
noisy environments, we designed the following two 
experiments: 
Exp #1: Establish algorithm setting using small speaker set; 
Exp #2: Establish performance over large speaker group. 

In Exp #1, we select ten speakers from the CU-Move 
database that are balanced across gender and age. Each 
speaker was processed using the DASB and CSA-BF 
algorithms. CSA-BF is evaluated for a range of parameter 
setting for these ten speakers, and the best parameter set was 
selected for use in open test Exp #2. In order to compare the 
result of CSA-BF with that of DASB thoroughly, we also 
investigated the enhanced speech output from SA-BF. In Exp 
#2, we process all available speakers in release 1.1a [9] of the 
CU-Move corpus using DASB and CSA-BF algorithms. This 
release consists of 153 speakers, of which 117 were from the 
Minneapolis, MN area. We selected 67 of these speakers that 
include 28 males and 39 females, which reflect 8 hours of 
data. In processing with CSA-BF, we used the parameter 
settings established for the ten speakers in Exp #1, except the 
speech range definition. We choose two different speech 
ranges for the speakers in Exp #2, since it is not practical to 
restrict all 67 speakers to speech from the same direction. 

3.3. Evaluations 

For evaluation, we consider two different performance 
measures using CU-Move data. One measure is the Segmental 
Signal-to-Noise Ratio (SEGSNR)[12] which represents a noise 
reduction criterion for voice communications. The second 
performance measure is Word Error Rate (WER) reduction, 
which reflects benefits for speech recognition applications. 
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The Sonic Recognizer [13] is used to investigate speech 
recognition performance. For the processed data used in Exp 
#1, the size of the set is not large enough for recognizer 
evaluation, therefore, we adopted the cross-validation method 
[14]. For the processed data in Exp #2, we used 49 speakers 
(23 male, 26 female) as the training set, and 18 speakers (13 
male, 5 female) as the test set. 

3.4. Experiment Results 

Fig. 4 shows SEGSNR results for Exp #1. Table 1 shows 
average SEGSNR improvement, average WER, CORR (word 
correct rate), SUB (Word Substitution Rate), DEL (Word 
Deletion Rate) and INS (Word Insertion Rate) for the speakers 
in Exp #1.  
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Figure 4:   SEGSNR Performance for Ref. 3 Microphone and 
beamforming Scenarios in Exp #1 

           method 
measure chan3 DASB SA-BF CSA-BF 

Ave. (dB) 
SEGSNR 10.67 10.48 10.60 13.16 

WER 11.31 9.66 9.68 7.85 
SUB 5.09 4.29 4.038 3.83 
DEL 3.7 1.64 1.53 1.63 
INS 2.51 3.76 4.13 2.41 

CORR 91.22 94.09 94.58 94.58 
 

Table 1: Average SEGSNR, WER, CORR, SUB, DEL and INS for Ref. 3 
Microphone and beamforming Scenarios in Exp #1 

Fig. 5& 6 illustrate average SEGSNR improvement and WER 
speech recognition performance results form Exp #1 and #2 
respectively. The average SEGSNR results are indicated by 
the bars using the left-side vertical scale (dB), and the WER 
improvement is the solid line using the right-side scale (%). 
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Figure 5:   SEGSNR and WER Results for Ref. 3 Microphone and 
beamforming Scenarios in Exp #1 using 10 speakers 
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 Figure 6:   SEGSNR and WER Results for Ref. 3 Microphone and 
beamforming Scenarios in Exp #2 using 67 speakers  

From these results, we draw the following points: 
(i.) Employing delay-and-sum beamforming (DASB) or the 
proposed speech adaptive beamforming (SA-BF), increases 
SEGSNR slightly, but some variability exists across speakers. 
These two methods are able to improve WER for speech 
recognition by more than 14% and 19% for Exp #1 & 2.  
(ii.) There is a measurable increase in SEGSNR and decrease 
in WER when noise cancellation processing is activated 
(CSA-BF). With CSA-BF, SEGSNR improvement is 2.5dB in 
Exp #1 and 5.5dB in Exp #2, and also provides WER 
improvement by 30.6% in Exp #1 and 26% in Exp #2. 
(iii.) If the optimal parameter settings for CSA-BF are altered 
slightly, the SEGSNR improvement is not affected. However, 
the WER degrades slightly because of speech leakage. 

4. CONCLUSIONS  

In this paper, we have proposed a novel constrained switched 
adaptive beamforming (CSA-BF) for speech enhancement 
and recognition in real car environments based on 
experiments using a large quantity of voice data recorded in 
moving car environments. We demonstrated that the proposed 
CSA-BF processor can improve voice communications 
quality as reflected in a +5.5dB increase in SEGSNR, and 
speech recognition performace improvement by decreasing 
WER by 26-30.6% using CU-Move in-vehicle speech data. 
We have also shown that the CSA-BF solution outperforms a 
single channel microphone (channel 3) and traditional delay-
and-sum beamforming. Finally, CSA-BF requires neither 
calibration signal nor a priori knowledge of speech or noise 
sources. 
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