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ABSTRACT

While a number of studies have investigated various speech
enhancement and processing schemes for in-vehicle speech
systems, little research has been performed using actual voice
data collected in noisy car environments. In this paper, we
propose a new constrained switched adaptive beamforming
algorithm (CSA-BF) for speech enhancement and recognition
in real moving car environments. The proposed algorithm
consists of a speech/noise constraint section, a speech
adaptive beamformer, and a noise adaptive beamformer. We
investigate CSA-BF performance with a comparison to classic
delay-and-sum beamforming (DASB) in realistic car
environments using a large quantity of data recorded in
various car noise environments from across the United States.
After analyzing the experimental results and considering the
range of complex noise situations in the car environment
using the CU-Move corpus, we formulate the CSA-BF
algorithm. This method is shown to decrease WER for speech
recognition by up to 31% and improve speech quality via the
SEGSNR by up to 5.5dB on the average simultaneously.

1. INTRODUCTION

The increased use of mobile telephones and voiced controlled
features in cars has created a greater demand for hands-free,
in-car installations. Many countries now restrict handheld
cellular technology while operating a vehicle. As such there is
a greater need to have reliable voice capture within
automobile environments. Microphone array processing and
beamforming is one promising area which can yield effective
performance.

The classic array beamforming method is delay-and-sum
beamforming (DASB) [1]. This method is simple and robust if
we know the direction of the speech source. However, if the
source location changes during operation, this method is less
effective due to the mismatch in delay estimation between
microphones. Another practical problem of DASB is that the
theoretical maximum noise attenuation 10log,,(M +1) IS not

easy to obtain in car noise environments with small
microphone arrays. Nordholm, et. al [2] considered a built-in
calibration procedure for data collection instrumentation in the
car environment. Compernolle [3] presented an approach using
switching adaptive filters, with no a priori knowledge about
the speech source. While this was an important contribution, it
was evaluated only in a reverberant laboratory setting, and not
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in a noisy moving car environment. Oh, et. al [4] applied a
Griffiths-Jim beamformer in a car environment with a 7-
channel microphone array. Their general recommendations
were that the generalized side-lobe canceller (GSC) was
relatively stable and robust. However, from our analysis using
real car data we collected, we found that noise signals with
high frequency energy, such as road bump noise will make the
GSC unstable. Shinde et. al. [5] presented a multichannel
method for noisy speech recognition which estimates the log
speech spectrum for a close-talking microphone based on a
multiple regression of the log spectra (MRLS) of noisy signals
captured by the distributed microphones. Visser et. al. [6],
presented a speech enhancement scheme, which combined a
spatial and temporal processing strategy to handle
reverberation, highly interfering sources and background
noise. While a number of studies have investigated various
speech enhancement and processing schemes for in-vehicle
speech systems, the vast majority are conducted under
controlled simulated conditions inside a room or with pre-
recorded car noise. Little research has been performed using
actual voice data collected in the car with associated
environmental noise conditions.

In this paper, we investigate and propose several potential
speech processing solutions for in-vehicle speech systems. The
performance of a classic DASB technique in a realistic car
environment is first considered. After analyzing experimental
results, we propose a constrained switched adaptive
beamforming (CSA-BF) method.

2. CSA-BF: CONSTRAINED SWITCHED

ADAPTIVE EBAMFORMING

The proposed CSA-BF algorithm consists of four parts: a
constraint section (CS), a speech adaptive beamformer (SA-
BF), a noise adaptive beamformer (NA-BF) and a switch. Fig.
1 shows the detailed structure of CSA-BF, where we assume a
5-microphone array. The CS is designed to identify potential
speech and noise locations. If a speech source is detected, the
switch will activate SA-BF to adjust the beam pattern and
enhance the desired speech. At the same time, NA-BF is
disabled to avoid speech leakage. If however, a noise source is
detected, the switch will activate NA-BF to adjust the beam
pattern for noise and switch off SA-BF processing to avoid the
speech beam pattern from being altered by the noise. The
combination of SA-BF and NA-BF processing results in a
framework that achieves noise cancellation for interference in
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Figure 1: Structure of the Proposed Constrained Switched Adaptive Beamforming (CSA -BF)

both time and spatial orientation. Next, we consider each
processing stage of the proposed CSA-BF scheme.

2.1. Constraint Section

Many source localization methods have been presented and
report effective performance with large microphone arrays in
conference rooms or large auditoriums. Their ability to
perform well in changing noisy car conditions has not been
documented to the same degree, but is expected to be poor.
Here, we propose three practical constraints which can be
used to separate speech and noise sources with high accuracy.
The constraints introduced here are more effective than
switching filters [3] in dealing with impulsive noise sources,
as well as locating sources in the car.

It is known that the input microphone signal can be one
or any combination of the following sources:
(1.) A desired speech signal (i.e., driver’s voice);
(ii.) An unwanted speech signal (i.e., 2™ passenger);
(iii.) Various environmental car noises (vibration, turn signal,
car passing, radio, air conditioner, etc).
Here, we view (ii) and (iii) as sources of interference.

2.1.1. Criterion 1

It is assumed that the microphone array is positioned on the
windshield near the sun visor in front of the driver who is the
assumed speaker. Therefore, the driver to microphone array
distance will be shorter than for other passengers in the
vehicle. Therefore, speech from the driver’s direction will
have on average the highest intensity of all sources present.
To measure the speech energy, we employ the nonlinear
Teager Energy Operator (TEO) [7]. Thus, our first criterion is
based on the average TEO energy as follows:

1) Ifg >E, then the current signal analysis window

signal
will be a speech candidate;
(ii.) Ifg «E , then the current signal analysis window

signal
will be a noise candidate.
Here, £ , denotes the energy of the current signal analysis
signa

window, ESPM denotes the speech energy threshold, and

E denotes the noise energy threshold, where

noise

E o =]i72 2 - x(n+ Hx(n -1} (1)

n=1
In order to track the changing environmental noise and
speech conditions, we also update the speech and noise
thresholds according to the following rules:
(i.) when the current analysis window is a speech candidate:

Egny = @X(Egiy )+ (1= )X E (2)
Eqwerh = Ppeech X E;;:ch 3)
(ii.) when the current analysis window is a noise candidate:
Ej = BX(Ep) +(1= )X E, (4)
E i = Pouise X Ene ®

with 0<aq,f <1 and Popect and D oiee 8TC the constants which

control the level of speech and noise threshold respectively.
Fig. 2 shows the average TEO energy and corresponding
thresholds for a portion of noisy speech from a speaker in the
CU-Move database.
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Figure 2: Averaged TEO. Energy versus corresponding thresholds
(a) Noisy speech waveform from car environment;
(b) TEO profile and resulting speech and noise thresholds.

2.1.2. Criterion 2

Independent of how the driver positions his head while
speaking, the direction of his speech will be significantly
different to that of another person sitting in the car. Therefore,
in order to separate front-seat driver and passenger, we need a
criterion to decide the direction of speech. We choose the
adaptive LMS filter [8] method. In our case, we insert a delay
that corresponds to the peak of the filter weight. According to
the geometric structure of the microphone array and the
arriving incident sound wave, we are able to locate the source
from this delay. Fig. 3 shows this relationship. Obviously, if
we take the axis between the center of the desired microphone
(micl) and reference microphone (mic5) as the standard axis,
the desired source should be located within some symmetric
area g gaﬂmfrom both sides of this axis. a,,, can be fixed, or

variable to obtain further noise suppression. In order to
simulate this, we delayed the desired signal by /2, for
which the corresponding delay will be a positive or negative
number as shown in Fig. 3.
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Figure 3: Relation. between speaker position and weight of LMS filter

2.1.3. Criterion 3

This final criterion is employed as a special case for road
impulse/bump noise. Bump noise has a high-energy content,
is typically impulsive in nature, and does not arrive from a
particular direction. Fortunately, impulsive bump noise has
obvious high-energy characteristics versus time, and thus the
average TEO energy response will be higher than noisy
speech and other noise types. Therefore, we can set a bump
noise threshold Epnp during our implementation to avoid

instability in the filtering process.
Finally, we note that the signal is labeled as speech if and
only if all three criteria are satisfied.

2.2, Speech Adaptive Beamformer (SA-BF)

The function of SA-BF is to form an appropriate beam pattern
to enhance the speech signal. Since adaptive filters are used to
perform the beam steering, we can change beam pattern with
a movement of the source. The degree of adaptation steering
speed is decided by the convergence behavior of the adaptive
filters. In our implementation, we select microphone 1 as the
primary microphone, and build an adaptive filter between it
and each of the other four microphones. These filters
compensate for the different transfer functions between the
speaker and the microphone array. A normalized LMS
algorithm is used to update filter coefficients only when the
current signal is detected as speech. There are two kinds of
output from the SA-BF: namely the enhanced speech g(;;) and

noise signal ¢ (), which are given as follows,
1 5
dm)=~ Y wihox,(n) (6)
i=1
e, (n) = w{,(mx,(n) — Wy, (mx,(n) N

w,(n+1)=w,(n)+

2u
X (X, (n) e, (n)x;(n) ®

for mic. channels ; =2, 3, 4, 5, where w,,(n) is a fixed filter.

2.3. Noise Adaptive Beamformer (NA-BF)

The NA-BF processor operates in a scheme like a multiple
noise canceller, in which both the reference speech signal of
the noise canceller and the speech free noise references are
provided by the output of the SA-BF. Since the filter
coefficients y,,~are updated only when the current signal is

detected as noise, they form a beam that is directed towards
the noise, thus the reason to name it a noise adaptive
beamformer (NA-BF). The output response is given as,

5
ym=d (mw},(n) - Y wi,(ne,, (n) ©)
i=2

wy(n+1)=w,,(n)+ e, (n)d(n) (10)

2u
el (n)e,,(n)
for microphone channels ;=2 3 4,5.

3. PERFORMANCE EVALUATION

3.1. CU-Move Corpus

The CU-Move [10] database include 5 parts: command and
control words, digit strings of telephone and credit card
numbers, street names and addresses, phonetically balanced
sentences, and Wizard of Oz interactive navigation
conversation. A total of 500 speakers, balanced across gender
and age, produced over 600GB of data during a six-month
collection effort across the United States. The database and
noise conditions are discussed in detail in [9]. We point out
that the noise conditions are changing with time and are quite
different in terms of SNR, stationarity and spectral structure.
In this study, we use the digits portion that includes speech
under a range of varying complex car noise environments and
contains approximately 40 words from approximately 100
speakers in Minn., MN (i.e., Release 1.1a).

3.2. Experiment Establishment

In the CSA-BF algorithm, there are a number of adaptive
filters which are parameter dependent, such as, step-size of
each adaptive filter, the speech/noise threshold, and the
definition for the desired speech range. In addition to these
parameters, the accuracy of the speech/noise decision in the
CS is also important. Thus, in order to evaluate the
performance of the DASB and CSA-BF algorithms in car
noisy environments, we designed the following two
experiments:

Exp #1: Establish algorithm setting using small speaker set;
Exp #2: Establish performance over large speaker group.

In Exp #1, we select ten speakers from the CU-Move
database that are balanced across gender and age. Each
speaker was processed using the DASB and CSA-BF
algorithms. CSA-BF is evaluated for a range of parameter
setting for these ten speakers, and the best parameter set was
selected for use in open test Exp #2. In order to compare the
result of CSA-BF with that of DASB thoroughly, we also
investigated the enhanced speech output from SA-BF. In Exp
#2, we process all available speakers in release 1.1a [9] of the
CU-Move corpus using DASB and CSA-BF algorithms. This
release consists of 153 speakers, of which 117 were from the
Minneapolis, MN area. We selected 67 of these speakers that
include 28 males and 39 females, which reflect 8 hours of
data. In processing with CSA-BF, we used the parameter
settings established for the ten speakers in Exp #1, except the
speech range definition. We choose two different speech
ranges for the speakers in Exp #2, since it is not practical to
restrict all 67 speakers to speech from the same direction.

3.3. Evaluations

For evaluation, we consider two different performance
measures using CU-Move data. One measure is the Segmental
Signal-to-Noise Ratio (SEGSNR)[12] which represents a noise
reduction criterion for voice communications. The second
performance measure is Word Error Rate (WER) reduction,
which reflects benefits for speech recognition applications.




The Sonic Recognizer [13] is used to investigate speech
recognition performance. For the processed data used in Exp
#1, the size of the set is not large enough for recognizer
evaluation, therefore, we adopted the cross-validation method
[14]. For the processed data in Exp #2, we used 49 speakers
(23 male, 26 female) as the training set, and 18 speakers (13
male, 5 female) as the test set.

34. Experiment Results

Fig. 4 shows SEGSNR results for Exp #1. Table 1 shows
average SEGSNR improvement, average WER, CORR (word
correct rate), SUB (Word Substitution Rate), DEL (Word
Deletion Rate) and INS (Word Insertion Rate) for the speakers
in Exp #1.
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Figure 4: SEGSNR Performance for Ref. 3 Microphone and
beamforming Scenarios in Exp #1

method | 1003 | DASB | SA-BF | CSA-BF
measure

Ave. (dB)

SEGSNR 10.67 10.48 10.60 13.16
WER 11.31 9.66 9.68 7.85
SUB 5.09 4.29 4.038 3.83
DEL 3.7 1.64 1.53 1.63
INS 2.51 3.76 4.13 2.41

CORR 91.22 94.09 94.58 94.58

Table 1: Average SEGSNR, WER, CORR, SUB, DEL and INS for Ref. 3
Microphone and beamforming Scenarios in Exp #1

Fig. 5& 6 illustrate average SEGSNR improvement and WER
speech recognition performance results form Exp #1 and #2
respectively. The average SEGSNR results are indicated by
the bars using the left-side vertical scale (dB), and the WER
improvement is the solid line using the right-side scale (%).
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Figure 5: SEGSNR and WER Results for Ref. 3 Microphone and
beamforming Scenarios in Exp #1 using 10 speakers
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Figure 6: SEGSNR and WER Results for Ref. 3 Microphone and
beamforming Scenarios in Exp #2 using 67 speakers
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From these results, we draw the following points:

(i.) Employing delay-and-sum beamforming (DASB) or the
proposed speech adaptive beamforming (SA-BF), increases
SEGSNR slightly, but some variability exists across speakers.
These two methods are able to improve WER for speech
recognition by more than 14% and 19% for Exp #1 & 2.

(ii.) There is a measurable increase in SEGSNR and decrease
in WER when noise cancellation processing is activated
(CSA-BF). With CSA-BF, SEGSNR improvement is 2.5dB in
Exp #1 and 5.5dB in Exp #2, and also provides WER
improvement by 30.6% in Exp #1 and 26% in Exp #2.

(iii.) If the optimal parameter settings for CSA-BF are altered
slightly, the SEGSNR improvement is not affected. However,
the WER degrades slightly because of speech leakage.

4. CONCLUSIONS

In this paper, we have proposed a novel constrained switched
adaptive beamforming (CSA-BF) for speech enhancement
and recognition in real car environments based on
experiments using a large quantity of voice data recorded in
moving car environments. We demonstrated that the proposed
CSA-BF processor can improve voice communications
quality as reflected in a +5.5dB increase in SEGSNR, and
speech recognition performace improvement by decreasing
WER by 26-30.6% using CU-Move in-vehicle speech data.
We have also shown that the CSA-BF solution outperforms a
single channel microphone (channel 3) and traditional delay-
and-sum beamforming. Finally, CSA-BF requires neither
calibration signal nor a priori knowledge of speech or noise
sources.
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