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ABSTRACT

Theaim of speaker adaptationtechniquesis to enhancethe
speaker-independentacousticmodelsto bringtheirrecogni-
tion accuracy ascloseaspossibleto theoneobtainedwith
speaker-dependentmodels.Recently, a techniquebasedon
hierarchicalstructureand the maximuma posterioricrite-
rion wasproposed(SMAP).In thispaper, like in SMAP, we
assumethat the acousticmodelsparametersareorganized
in a tree containingall the Gaussiandistributions. Each
nodein that treerepresentsa clusterof Gaussiandistribu-
tions sharinga commonaffine transformationrepresenting
themismatchbetweentrainingandtestconditions.To esti-
matethisaffinetransformation,weproposeanew technique
basedonmergingGaussiansandthestandardMAP adapta-
tion. This new techniqueis very fast and allows a good
unsupervisedadaptationfor bothmeansandvarianceseven
with small amountadaptationdata. This adaptationstrat-
egy hasshown a significantperformanceimprovementin a
large vocabulary speechrecognitiontask, aloneandcom-
binedwith theMLLR adaptation.

1. INTRODUCTION

Thespeaker-dependentHMM-basedrecognizershavelower
WordErrorRates(WER)thanspeaker-independentones.In
fact,modelinginter-speakervariability is usuallyperformed
by training acousticmodelswith an as large as possible
populationof speakers [1]. Nevertheless,in the speaker-
dependentcase,the large amountof requiredtraining data
for eachtest speaker reducesthe utility andportability of
suchsystems.

Speakeradaptationtechniquestry to obtainnearspeaker-
dependentperformancewith relativelysmallamountsof test-
speakerspecificdata[1, 2, 3, 4, 5, 6]. Themaindifficulty in
speakeradaptationtechniquesis to adapta largenumberof
parameterswith only a smallamountof data.In this frame-
work, two approachesare commonlyused,the maximum
likelihoodlinear regression(MLLR) [4] andthemaximum

a posteriori(MAP) [7]. On onehand,the MLLR adapta-
tion givessignificantimprovementwith a relatively small
amountof adaptationdata,but therecognitionperformance
doesnot improvemuchwhentheamountof dataincreases.
This is becausethetransformationis tooglobal(thenumber
of freeparametersis too small).

On theotherhandtheMAP adaptationapproachallows
accurateestimationfor the acoustic-unitmodelsfor which
adaptationdatais available[7]. However, asunseenunits
arestill unchanged,MAP leadsto too much local adapta-
tion. HencetheMAP approachcan’t beeffectivewith rela-
tive smallamountof adaptationdataespeciallyin unsuper-
visedmode.

In orderto reducethis problem,ShinodaandLee pro-
poseda structuralmaximuma posteriori(SMAP) approach
[8], in which a hierarchicalstructure(tree) in the param-
eterspaceis assumed.The parameterstransformationfor
eachnodein the tree is estimatedby using the MAP ap-
proachin which the a priori parametersare given by the
parentnode.Theresultingtransformationparameter, corre-
spondingto eachHMM parameter, is a combinationof the
transformationparametersat all higherlevels. Theweights
in thiscombinationdependontheamountof adaptationdata
at eachnodeandon afixedparameter.

In this paper, like in SMAP, we assumethat themodels
parametersareorganizedin treecontainingall theGaussian
distributions. Eachnodein that treerepresentsa clusterof
Gaussians.All the Gaussiandistributionsof a given clus-
ter/nodesharea simplecommonaffine transformation(di-
agonalmatrix plus offset) compensatingthe mismatchbe-
tweentraining andtestconditions. To estimatethis affine
transformation,weproposeanew techniquebasedonaGaus-
sian distributions merging and the standardMAP adapta-
tion. This new techniqueis very fast and allows a good
adaptationfor both meansand varianceseven with small
amountof adaptationdatain unsupervisedmode. At each
node, the transformationis obtainedby combining three
kinds of information: the adaptationdata, the parameters
transformationattheparentnodeandtheparentnodeadapted
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parameters.
Section2 presentsthe whole adaptationprocesspro-

posedin this work: the adaptationprocessin a givennode
in thetree,thecombinationof themismatchinformationat
different tree layers,the merging procedure,the treecon-
structionandacomparisonbetweentheproposedtechnique
andSMAP. Section3 shows resultsfor several recognition
experimentsin a largevocabulary taskframework. Thelast
section(4) is dedicatedto someconclusions,commentsand
perspectivesconcerningour new acousticmodeladaptation
technique.

2. ADAPTATION PROCESS

In this work, we addresstheproblemof parametersadapta-
tion in continuous-densityHMM (CDHMM) basedspeech
recognizers.Herewefocusontheadaptationof theCDHMM
Gaussiandistributions.Thefirst stepin theadaptationpro-
cessis to build a classificationtree structurerepresenting
the set of Gaussiandistributions. Each node in the tree
representsa subsetof Gaussiansand the root noderepre-
sentsthe whole set. Let � denoteone node in the clas-
sification tree, and �����	��

�����������	������������� be the
subsetof Gaussiandistributionsassociatedto the node � :

����� ��!#"$�����&%'���)( . In thefollowing paragraphs,we de-
scribethe adaptationprocessfor a node � , and show the
strategy for combininginformationatdifferentlayers.

2.1. Adaptation Process in a node

The goal of this work is to estimatefor eachnode � an
affinetransformation*+� (diagonalmatrixplusoffset) shared
by all Gaussiandistributionsin the subset��� . This affine
transformationis thenappliedto only the distributionsbe-
longing to ��� . Let ,-�.��/+0)��/21
����������/234� denotea given
setof * observationvectorsfor parametersadaptation.Let5
 � �6�7��! 5" � ��� 5% � �
( be the Gaussianobtainedby adapt-
ing theGaussian
 � �8�9��!:" � �;�<% � �
( usingthestandard
MAP adaptation:

5" � �=� > ���@?�A����B"$���C � ��?DA � �
5%'���=� E � ��?DA � �F!G% � �H?D" � �B"+I:J� � (C � �@?�A � � K

5"$��� 5" I:J� �
where,

> � �L� M
I
N � � I

C ���L� M
I
N ��� I / I

E ���L� M
I
N ��� I / I / I:JI �

and N � � I is theaposterioriprobabilityof theGaussian
 � �
at time O , conditionedon all acousticobservations/ I:P 0<QRQRQ 3 .
This probability is obtainedby usingthespeechrecognizer
basedon theoriginal acousticmodels.TheparameterA��@�
is usuallychosento beconstant.

Let
5��� bethesubsetof MAP adaptedGaussiansin the

node� : 5�����S� 5

���;�������T������������� . Let 
��U���V!:"W�X�<%@�Y(
and
5
 � �-��! 5" � � 5% � ( be the two Gaussiansobtainedby

merging into one all Gaussiansin � � and
5� � respectiv-

elly (seesection2.2).Theaffine transformation* � is then
estimatedastheonewhich matchestheGaussian
 � to the
Gaussian

5
 � . EachGaussian
 � �Z�T��!#" � ���&% � �)( is then
adaptedasfollows,

"$[� � � 5%]\^� %`_H\^� !:"$��� K "W�Y(W?
5"W� (1)

% [� � � 5%@�
% _ 0� %'��� (2)

Where " [� � and % [� � are the adaptedparametersof " � �
and % � � respectively.

This adaptationprocedurecanbeperformediteratively.
We have shown experimentallythat the likelihoodof adap-
tationdataincreasesat eachiteration.

2.2. Merging Process

The merging processis basedon the merging of pairs of
Gaussiandistributionsuntil weobtainasingleGaussian.In
this work themerging of two Gaussiansusestheminimum
losslikelihoodcriterion.Let �a�b��
 0 �c
 1 �������d�c

ef� denotea
setof Gaussiansto bemergedinto onerepresentingtheset� . Firstly, we choosetwo Gaussians

gh�i��!:"$g��&%'gG( and
Bjk� ��!:"fj
�<%�jl( in � . Let E g and E j denotetheir associated
counts.TheGaussian
Z�m�V!:"n�&%@( obtainedby merging 

g
and 
Bj is givenby theclassicformula:

" � E g:"$gf? E j�"fj
E g ? E j

% � E g % g ? E j % j ?porqGs�oGtorq:uWo j !#" g K " j (�!:" g K " j ( I:J
E g ? E j

Thecount E associatedwith thenew Gaussian
 is thesum
of the two counts E g and E j associatedwith the two Gaus-
sians

g and 
Bj . Thetwo Gaussians

g and 
Bj in � arethen
replacedby theGaussian
 . We repeatthis merging proce-
dureuntil we obtainoneGaussianrepresentingthe set � .
The initial count E � � associatedto a Gaussian
 � � is the
sumover all observationvectorsof the a posterioriproba-
bilities: E � �U� v I N � � I .
2.3. Adaptation Using Hierarchical Priors

In section2.1. we have treatedthe problemof estimating
an affine transformation* � associatedto the node � . The
estimationof * � wasbasedonly ontheGaussiansbelonging
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to this nodeand their associatedobservation vectors. To
estimatethetranformation* � by usingall Gaussiansin the
CDHMM andtheir associatedobservation vectorswe use
theadaptationwith hierarchicalpriors.

Let wx!y�z( denotetheparentnodeof � . Let 
�� and 
B{)| �d}
be the two Gaussiansobtainedby merging into oneall the
Gaussiansin ��� and �h{)| ��} respectively (theoriginalGaus-
siansin thenode� andwx!y�z( ). In themanner, let

5
 � and
5
B{)| �d}

denotethe Gaussiansobtainedby merging into oneall the
Gaussiansin

5� � and
5�h{)| �d} respectively (theMAP adapted

Gaussiansin thenode � andwx!G�F( ) (seesection2.1).
On onehandwe merge the Gaussians
 � and 
B{)| ��} to

obtainoneGaussian
 {)| ��}� �~��!#" {B| �d}� �&% {)| ��}� ( , andon the
other hand we merge the Gaussians

5
 � and
5
B{B| �d} to ob-

tain oneGaussian
5
 {)| �d}� ����! 5" {)| ��}� � 5% {)| �d}� ( . In this merg-

ing processthe count associatedto the Gaussiansin the
parentnode w�!y�F( is a fixed parameter, and the count as-
sociatedto the Gaussiansin the node � is the sumof the
countsassociatedto all Gaussiansin thatnode( v � E �����v � v I N ��� I ). The affine transformation*+� is thenesti-

matedasthe onewhich matchesthe Gaussian
 {)| ��}� to the
Gaussian

5
 {)| ��}� . EachGaussian

��������!:"$�����<%'���)( is
thenadaptedasfollows,

" [��� � ! 5% {)| ��}� ( \^ !G% {)| �d}� ( _�\^ !:" � � K "
{B| �d}� (W? 5" {)| �d}�

%'[��� � ! 5% {)| ��}� (d!r% {B| �d}� ( _ 0 % � �
Where" [� � and % [� � aretheadaptedparametersof " � �

and % � � respectively. Theseadaptationformula are then
usedinsteadof equations� and � . In thismannertheresult-
ing transformationparameter, correspondingto eachpara-
mater, is a combinationof mismatchinformationat all lev-
els. In this combinationthe weight for eachlevel changes
autonomouslyaccordingto theamountof adaptationdata.

2.4. Construction of the tree structure

Theuseof thetreestructurehasbeenlargely studiedin the
contextual acousticunitsestimationframework [9]. In this
work wehaveusedabinarytree.Weassumedthatall Gaus-
siansin astateof theCDHMM belongto thesameclassand
the tree leaves representthe CDHMM states. Eachnode
in the tree is a collection of stateswhich are collections
of Gaussians.For classification,eachstateis represented
by oneGaussianobtainedby merging all Gaussiansin that
state. Hence,we constructa stateclassificationtreeusing
thelosslikelihoodminimisationcriterionfor clustering.We
usedtheupto downstrategy asclassificationtreealgorithm.
Our classificationtreealgorithmis not optimal because,at
eachnodewith � states,we don’t explore the � e _ 0 two-
clustersplits possible. Instead,we usean iterative proce-
durelike k-meansclusteringwith two centers.

2.5. Comparison with SMAP

The commonfeaturesbetweenthe proposedtechniquein
this work andtheSMAP methodarefirst, theuseof a tree
structureto classify the distributions and second,the as-
sumptionof a simpletransformationin a givennode. The
main differencebetweenthe two techniquesis that in the
proposedtechniquethe standardMAP approachis usedin
HMM parametersspacein a givennodewhereasin SMAP
theMAP paradigmis usedin transformationspaceusingthe
parentnodetransformationasan a priori. Anotherdiffer-
enceis thatourapproachusestwo fixedcombinationweight
parameters,onebetweendifferent layersandthe other for
standardMAP in a given node,whereasSMAP usesonly
one combinationweight parameterbetweendifferent lay-
ers. We have not yet implementthe SMAP technique,but
experimentalcomparisonbetweenthe two approacheswill
beinteresting.

3. EXPERIMENTAL RESULTS

In thissection,wepresenttheresultsof severalspeechrecog-
nition experiments.Theseexperimentswereconductedus-
ing SPEERAL[12], a largevocabulary speechrecognition
system,developedat the LIA. The lexicon size is about
20kwordswith 3.6%out-of-vocabularywords.Thissystem
usesa trigramlanguagemodel.Thebaselinesystemis gen-
der dependentwith 3-stateleft-to-right context-dependent
unit acousticmodels. Eachstateis a mixture of 64 Gaus-
sians. The speechsignalis parameterizedusing39 coeffi-
cients:12-melwarpedcepstralcoefficientsplusenergy and
their first andsecondorderderivativeparameters.Thecep-
stral meanremoval and the normalizationof the variance
havebeenperformedsentenceby sentence.

To estimatetheacousticmodelswehaveuseda training
dataextractedfrom Bref [10], with 120 male and female
speakers.Theseacousticmodelsarethenadaptedby using
the MAP algorithmwith the datafrom 54 malesto create
speaker-independentmalemodels,andwith the datafrom
66 femalesto createspeaker-independentfemalemodels.
Thesegender-dependentacousticmodelsareusedasinitial
modelsfor adaptation.A diagonalmatrix covariancewas
usedfor eachmixture Gaussiancomponent.The testdata
comesfrom ARC B1 of AUPELF, with 20speakersand299
sentences[11].

In theseexperiments,we usedtwo binarytreeswith six
layers: onefor the maleacousticmodelsandthe otherfor
the femaleacousticmodels. Theseclassificationtreesare
built oncebeforetheadaptationprocess.In theexperiments,
bothmeanvectorsandcovarianceswereadapted.All adap-
tation procedureswere performedspeaker per speaker in
unsupervisedmode.

We will call theproposedtechniqueStructuralAdapta-
tionusingMAP andGaussiansMergingtechniques:SMAPGM.
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In Table1 wecanseethattheSMAPGMtechniquegivesan
averagerelativegainabout16%with respectto thebaseline
system. It shouldbe notedthat part of the improvements
of MLLR andSMAPGMcanbecumulated.In fact,by per-
formingSMAPGMafterMLLR therelativecumulatedgain
is about18%with respectto thebaselinesystemandby per-
formingMLLR afterSMAPGMtherelativecumulatedgain
is about19.5%.In theseexperiments,wehavenotedthatthe
effectof theproposedmethodis moresignificantfor speak-
erswith higherworderrorrates.

Word Error (%)
Adaptationtechniques Male Female Avg

Base 21.2 21.0 21.1
SMAPGM 18.0 17.7 17.8

SMAPGM+MLLR 16.6 17.4 17.0
MLLR+SMAPGM 17.1 17.5 17.3

Table 1:Word Error Rate(%) for gender-dependentspeech recog-
niserwith differentspeaker adaptationtechniques.SMAPGMdes-
ignatestheproposedtechnique:structural adaptationusingMAP
andGaussiansMerging technique

We have performedthesameexperimentswith a better
lexicon andlanguagemodel. The baselineword error rate
becomes19%. After SMAPGM adaptation,the word er-
ror ratewas16.6%(a relative gainof 13% with respectto
the baselinesystem,insteadof 16% with the first system).
WhenSMAPGM is performedafterMLLR, theword error
ratecomesdown to 15.9%(a relative gainof 16%with re-
spectof baselinesystem,insteadof 19.5%with thefirst sys-
tem).Therelativegainobtainedby usingSMAPGM seems
to be larger for thebaselinesystemwith higherword error
rate.

4. CONCLUSION

Wehavepresentedanew unsupervisedacousticmodeladap-
tationtechniquebasedonMAP adaptationandmergingGaus-
siandistributions.Its effectivenesswasconfirmedby exper-
imentsin a largevocabulary speechrecognitiontask:a rel-
ative gain of 16% with regard to the baselinesystemwas
obtained. The conjunctionof the proposedmethodwith
MLLR leadsto a relativegainof 19.5%.

Several problemsremainto be investigated.First, the
depthof the classificationtreeusedfor adaptation,which
can be estimateddependingon the amountof adaptation
data(depthwasfixed in the experimentspresentedin this
paper).Second,the combinationweightsusedto combine
mismatchinformationbetweena givennodeandits parent.
Third, thefixedcombinationparameterusedfor MAP adap-
tation in a givennode.At last,makinga treestructurethat
well representstheembeddedstructurein theacousticspace
shouldbefurtherstudied.In a next work, we will evaluate

andcomparetheproposedmethodwith theSMAP adapta-
tion technique.
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