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ABSTRACT

The aim of spealer adaptatiortechniquess to enhancehe
spealer-independenacoustianodelsto bring theirrecogni-
tion accurag ascloseaspossibleto the one obtainedwith
spealker-dependeninodels.Recently a techniquebasedon
hierarchicalstructureand the maximuma posterioricrite-
rion wasproposedSMAP). In this paperlikein SMAP, we
assumehat the acousticmodelsparametersre organized
in a tree containingall the Gaussiandistributions. Each
nodein thattreerepresents clusterof Gaussiardistribu-
tions sharinga commonaffine transformatiorrepresenting
the mismatchbetweertrainingandtestconditions.To esti-
matethis affine transformationye proposeanew technique
basednmeging Gaussiansndthe standardMAP adapta-
tion. This new techniqueis very fastand allows a good
unsupervise@daptatiorfor bothmeansandvariancesven
with small amountadaptationdata. This adaptationstrat-
egy hasshawvn a significantperformanceémprovementn a
large vocalulary speechrecognitiontask, aloneand com-
binedwith theMLLR adaptation.

1. INTRODUCTION

Thespealer-dependentiMM-basedrecognizerhiavelower
Word Error RatefWER) thanspealer-independenbnes.In
fact,modelinginter-spealervariability is usuallyperformed
by training acousticmodelswith an as large as possible
populationof spealers[1]. Neverthelessjn the spealer-
dependentase the large amountof requiredtraining data
for eachtest spealer reduceshe utility and portability of
suchsystems.

Spealeradaptatiotechniquesry to obtainnearspealer-
dependenperformancavith relatively smallamountf test-
spealer specificdata[l, 2, 3, 4, 5, 6]. Themaindifficulty in
spealer adaptatiortechniquess to adapta large numberof
parametersvith only a smallamountof data.In this frame-
work, two approachesre commonlyused,the maximum
likelihoodlinearregressiofMLLR) [4] andthe maximum
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a posteriori(MAP) [7]. Ononehand,the MLLR adapta-
tion givessignificantimprovementwith a relatively small
amountof adaptatiordata,but therecognitionperformance
doesnotimprove muchwhenthe amountof dataincreases.
Thisis because¢hetransformations too global (thenumber
of free parameterss too small).

Ontheotherhandthe MAP adaptatiorapproactallows
accurateestimationfor the acoustic-unitmodelsfor which
adaptationdatais available[7]. However, asunseerunits
arestill unchangedMAP leadsto too muchlocal adapta-
tion. Hencethe MAP approacttant be effective with rela-
tive smallamountof adaptatiordataespeciallyin unsuper
visedmode.

In orderto reducethis problem,Shinodaand Lee pro-
poseda structuralmaximuma posteriori(SMAP) approach
[8], in which a hierarchicalstructure(tree) in the param-
eter spaceis assumed.The parametersgransformatiorfor
eachnodein the treeis estimatedby usingthe MAP ap-
proachin which the a priori parametersare given by the
parentnode.Theresultingtransformatiorparametercorre-
spondingto eachHMM parameteris a combinationof the
transformatiorparameterat all higherlevels. Theweights
in thiscombinatiordependntheamountf adaptatiordata
ateachnodeandon afixedparameter

In this paper like in SMAP, we assuméhatthe models
parametergreorganizedn treecontainingall the Gaussian
distributions. Eachnodein thattreerepresents clusterof
Gaussians All the Gaussiardistributionsof a given clus-
ter/nodesharea simple commonaffine transformation(di-
agonalmatrix plus offse) compensatinghe mismatchbe-
tweentraining andtest conditions. To estimatethis affine
transformationye proposeanew techniquéasednaGaus-
sian distributions memging and the standardMAP adapta-
tion. This new techniqueis very fastand allows a good
adaptationfor both meansand varianceseven with small
amountof adaptatiordatain unsuperviseanode. At each
node, the transformationis obtainedby combiningthree
kinds of information: the adaptationdata, the parameters
transformatiorattheparentnodeandthepareninodeadapted
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parameters.

Section2 presentghe whole adaptationprocesspro-
posedin this work: the adaptatiorprocessn a givennode
in thetree,the combinationof the mismatchinformationat
differenttree layers,the memging procedure the tree con-
structionanda comparisorbetweerthe proposedechnique
andSMAP. Section3 shaws resultsfor several recognition
experimentsn alargevocahulary taskframework. Thelast
section(4) is dedicatedo someconclusionscommentsand
perspectiesconcerningour new acoustianodeladaptation
technique.

2. ADAPTATION PROCESS

In this work, we addresghe problemof parameteradapta-
tion in continuous-densitiMM (CDHMM) basedspeech
recognizersHerewefocusontheadaptatiorof the CDHMM
Gaussiartistributions. Thefirst stepin the adaptatiorpro-
cessis to build a classificationtree structurerepresenting
the set of Gaussiandistributions. Eachnodein the tree
represent® subsetof Gaussiansand the root noderepre-
sentsthe whole set. Let v denoteone nodein the clas-
sificationtree,and G, = {gm,,m, = 1...M,} bethe
subsetof Gaussiardistributions associatedo the nodev:
9m, = N(ptm, , Em,). In thefollowing paragraphsye de-
scribethe adaptationprocessfor a noder, and shawv the
stratgy for combininginformationat differentlayers.

2.1. Adaptation Processin a node

The goal of this work is to estimatefor eachnode v an
affinetransformatior?), (diagonamatrixplusoffse) shared
by all Gaussiardistributionsin the subsetz,. This affine
transformatioris thenappliedto only the distributionsbe-
longingto G,,. Let X = {z;,2o,...,2zr} denoteagiven
setof T' obsenationvectorsfor parameteradaptationLet
Gm, = N(jim,,Xm,) bethe Gaussiarobtainedby adapt-
ing the Gaussiary,,, = N (m, , Xm, ) Usingthe standard
MAP adaptation:

- _ Om, t Tm, Hm,
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and~,,,+ is theaposterioriprobabilityof the Gaussiary,,,,
attime ¢, conditionedon all acousticobsenationsz;—;...7.
This probabilityis obtainedby usingthe speectrecognizer
basedon the original acousticmodels. The parameterr,,,,,
is usuallychoserto be constant.

Let G, bethesubsebf MAP adaptedSaussianin the
nodev: G, = {Gm,,m, = 1...M,}. Letg, = N(u,,%,)
and g, = N(ji,,%,) bethe two Gaussianbtainedby
meming into one all Gaussiansn G, and G, respecti-
elly (seesection2.2).Theaffine transformatiorr,, is then
estimatedasthe onewhich matcheghe Gaussiary, to the
Gaussiarj,. EachGaussiaty,,, = N(tm,,Xm,) isthen
adaptedhsfollows,

~1 1
Yi¥,? (:umu - Nu) + [ 1)
'S, (2)

By, =
S, =
Wherey,, and3,, arethe adaptedparametersf p,,,
andX,,, respectiely.
This adaptatiorprocedurecanbe performediteratively.
We have shovn experimentallythatthe lik elihoodof adap-

tationdataincreasest eachiteration.

2.2. Merging Process

The memging processis basedon the memging of pairs of
Gaussiardistributionsuntil we obtaina singleGaussianin
this work the meiging of two Gaussiansisesthe minimum
losslikelihoodcriterion.LetG = {g1, g2, - - -, gn } denotea
setof Gaussianso be memedinto onerepresentinghe set
G. Firstly, we choosetwo Gaussiang; = N(u;,Y;) and
9; = N(uj,%;) in G. Letc; andc; denotetheir associated
counts.TheGaussiary = N (u, X) obtainedby memging g;
andg; is givenby theclassicformula:

_ Gl TGk
¢+ ¢
s ¢iBi + ¢85 + 53 (i — ) (i — )"

Ci + ¢j

The countc associateavith the newv Gaussiary is the sum
of the two countsc; andc; associateavith the two Gaus-
siansg; andg;. Thetwo Gaussiang; andg; in G arethen
replacedby the Gaussiary. We repeatthis memjing proce-
dureuntil we obtainone Gaussianrepresentinghe setG.

Theinitial counte,,, associatedo a Gaussiary,,, is the
sumover all obsenation vectorsof the a posterioriproba-
bilities: ¢, = Y, Ym,¢-

2.3. Adaptation Using Hierarchical Priors

In section2.1. we have treatedthe problemof estimating
an affine transformatiorl, associatedo the nodev. The
estimatiorof T,, wasbasednly onthe Gaussianbelonging
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to this node and their associatedbsenation vectors. To
estimatethetranformationT), by usingall Gaussianin the
CDHMM andtheir associatedbsenation vectorswe use
theadaptatiorwith hierarchicabpriors.

Let p(v) denotethe parentnodeof v. Let g, andg, ()
be the two Gaussian®btainedby meiging into oneall the
Gaussianin G, andG (. respectrely (theoriginal Gaus-
siansin thenoder andp(v)). In themannerlet g, andg, .
denotethe Gaussian®btainedby memging into oneall the
Gaussianin G, andG,y, respectiely (the MAP adapted
Gaussiann thenoder andp(v)) (seesection2.1).

On one handwe memge the Gaussiang;,, and g,(,) to
obtainone Gaussiarg2”) = N(u2", 2", andon the
other handwe memge the Gaussiangj, and g,,) to ob-
tain one Gaussiarg2”) = N(i£™, £2M)). In this merg-
ing processthe count associatedo the Gaussiangn the
parentnode p(v) is a fixed parameterand the count as-
sociatedto the Gaussiansn the nodewv is the sum of the
countsassociatedo all Gaussiang thatnode(} ", ¢, =
Y om 2ot Ymut)- Theaffine transformationT), is then esti-
matedasthe onewhich matcheshe Gaussiang®”) to the
Gaussiang?™). EachGaussiangm, = N(tm,,Sm,) is
thenadaptedasfollows,

(S22 (2272 (o, — ) + )
() (=) S

Pm, =
S, =
Wherey,, ands,, aretheadaptecparametersf pi,,,
andX,,, respectrely. Theseadaptatiorformula arethen
usedinsteadof equationd and2. In thismannettheresult-
ing transformatiorparametercorrespondingo eachpara-
mater is a combinationof mismatchinformationat all lev-
els. In this combinationthe weight for eachlevel changes
autonomoushaccordingto theamountof adaptatiordata.

2.4. Construction of thetreestructure

Theuseof thetreestructurehasbeenlargely studiedin the
contectual acousticunits estimationframework [9]. In this
work we have usedabinarytree.We assumedhatall Gaus-
siansin astateof the CDHMM belongto thesameclassand
the tree leaves representhe CDHMM states. Eachnode
in the tree is a collection of stateswhich are collections
of Gaussians.For classification,eachstateis represented
by oneGaussiarobtainedby memging all Gaussiané that
state. Hence,we constructa stateclassificationtree using
thelosslik elihoodminimisationcriterionfor clustering.We
usedtheupto downstratey asclassificatiortreealgorithm.
Our classificationtree algorithmis not optimal becauseat
eachnodewith n states,we don't explore the 27! two-
clustersplits possible. Instead,we usean iterative proce-
durelike k-meansclusteringwith two centers.

2.5. Comparison with SMAP

The commonfeaturesbetweenthe proposediechniquein
this work andthe SMAP methodarefirst, the useof atree
structureto classify the distributions and second,the as-
sumptionof a simpletransformationn a givennode. The
main differencebetweenthe two techniquess thatin the
proposedechniquethe standardMAP approachs usedin
HMM parameterspacen a givennodewhereasn SMAP
the MAP paradignis usedn transformatiorspaceusingthe
parentnodetransformationasan a priori. Another differ-
encesthatourapproachusegwo fixedcombinationveight
parameterspne betweendifferentlayersandthe otherfor
standardVAP in a given node,whereasSMAP usesonly
one combinationweight parametetbetweendifferent lay-
ers. We have not yet implementthe SMAP technique put
experimentalcomparisorbetweenthe two approachesvill

beinteresting.

3. EXPERIMENTAL RESULTS

In thissectionwe presentheresultsof severalspeechiecog-
nition experiments.Theseexperimentsvereconductedis-
ing SPEERAL[12], alarge vocalulary speechrecognition
system,developedat the LIA. The lexicon size is about
20k wordswith 3.6%out-of-vocakularywords. This system
usesatrigramlanguagemodel. The baselinesystemis gen-
der dependentvith 3-stateleft-to-right context-dependent
unit acousticmodels. Eachstateis a mixture of 64 Gaus-
sians. The speechsignalis parameterizedising 39 coefi-
cients:12-melwarpedcepstrakoeficientsplusenegy and
their first andsecondorderderivative parametersThe cep-
stral meanremoval and the normalizationof the variance
have beenperformedsentencdy sentence.

To estimateheacoustionodelswe have usedatraining
dataextractedfrom Bref [10], with 120 male and female
spealers. Theseacoustiomodelsarethenadaptedy using
the MAP algorithmwith the datafrom 54 malesto create
spealker-independentnale models,and with the datafrom
66 femalesto createspealerindependentemale models.
Thesegenderdependenacoustieonodelsareusedasinitial
modelsfor adaptation.A diagonalmatrix covariancewas
usedfor eachmixture Gaussiarcomponent.The testdata
comedrom ARC B1 of AUPELF, with 20 spealersand299
sentencefll].

In theseexperimentswe usedtwo binarytreeswith six
layers: onefor the maleacousticmodelsandthe otherfor
the femaleacousticmodels. Theseclassificationtreesare
built oncebeforetheadaptatiomprocessin theexperiments,
bothmeanvectorsandcovariancesvereadaptedAll adap-
tation proceduresvere performedspealer per spealer in
unsupervisednode.

We will call the proposedechniqueStructuralAdapta-

tion usingMAP andGaussianMergingtechniquesSMAPGM.
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In Tablel we canseethatthe SMAPGM techniquegivesan andcomparethe proposednethodwith the SMAP adapta-
averagerelative gainabout16%with respecto thebaseline  tion technique.

system. It shouldbe notedthat part of the improvements

of MLLR andSMAPGM canbe cumulatedIn fact,by per
forming SMAPGM afterMLLR therelative cumulatedyain

is about18%with respecto thebaselinesystemandby per [1]
formingMLLR afterSMAPGMtherelative cumulatedyain
isaboutl9.5%.In theseexperimentsyve have notedthatthe
effectof the proposednethodis moresignificantfor speak-
erswith higherword errorrates.

Word Error (%) 2]
Adaptationtechniques| Male | Female| Avg
Base 21.2 21.0 | 211
SMAPGM 18.0 17.7 17.8 [3]
SMAPGM+MLLR 16.6 17.4 17.0
MLLR+SMAPGM 17.1 17.5 17.3

Table 1:Word Error Rate(%) for genderdependenspeeb reca- 4]
niserwith differentspealer adaptationtechniques. SMAPGMdes-
ignatesthe proposededcnique: structuial adaptationusingMAP
and Gaussiandvierging technique

We have performedthe sameexperimentswith a better 5]
lexicon andlanguagemodel. The baselineword error rate
becomesl9%. After SMAPGM adaptationthe word er-
ror ratewas 16.6% (a relative gain of 13% with respecto [6]
the baselinesystem,insteadof 16% with the first system).
WhenSMAPGM is performedafter MLLR, theword error
ratecomesdown to 15.9%(a relative gain of 16% with re-
spectof baselinesystemjnsteadof 19.5%uwith thefirst sys- [7]
tem). Therelative gainobtainedoy usingSMAPGM seems
to belargerfor the baselinesystemwith higherword error
rate.

(8]
4. CONCLUSION

We have presentednew unsupervisedcoustianodeladap- (9]
tationtechniquebasecdbn MAP adaptatiomndmerging Gaus-
siandistributions. Its effectivenessvasconfirmedby exper
imentsin alarge vocahulary speechrecognitiontask: arel-
ative gain of 16% with regardto the baselinesystemwas [10]
obtained. The conjunctionof the proposedmethodwith
MLLR leadsto arelative gainof 19.5%.

Several problemsremainto be investigated. First, the [11]
depthof the classificationtree usedfor adaptationwhich
can be estimateddependingon the amountof adaptation
data(depthwasfixed in the experimentspresentedn this
paper). Second the combinationweightsusedto combine 12]
mismatchinformationbetweera givennodeandits parent.
Third, thefixedcombinatiornparameteusedfor MAP adap-
tationin a givennode. At last, makinga treestructurethat
well representtheembeddedtructuran theacousticspace
shouldbe further studied.In a next work, we will evaluate
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