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ABSTRACT

In this paper, we propose a framework for extracting knowledge
concerning environmental noise from an input audio sequence and
organizing this knowledge for use by other speech systems. To
date, most approaches dealing with environmental noise in speech
systems are based on assumptions concerning the noise, or dif-
ferences in collecting and training on a specific noise condition,
rather than exploring the nature of the noise. We are interested
in constructing a new speech framework entitled Environmental
Sniffing to detect, classify and track acoustic environmental condi-
tions. The first goal of the framework is to seek out detailed infor-
mation about the environmental characteristics instead of just de-
tecting environmental changes. The second goal is to organize this
knowledge in an effective manner to allow smart decisions to direct
other speech systems. Our current framework uses a number of
speech processing modules including the Teager Energy Operator
(TEO) and a hybrid algorithm with ��� -BIC segmentation, noise
language modeling and GMM classification in noise knowledge
estimation. We define a new information criterion that incorpo-
rates impact of noise in Environmental Sniffing performance. We
use an in-vehicle speech and noise environment as a test platform
for our evaluations and investigate the integration of Environmen-
tal Sniffing into an Automatic Speech Recognition (ASR) engine
in this environment. Noise classification experiments show that the
hybrid algorithm achieves an error rate of 25.51 % , outperforming
a baseline system by an absolute 7.08%.

1. INTRODUCTION
Significant advances in speech technology have been achieved in
applications where the environmental condition is constant. Most
recently, research focus has shifted to the real-world environments
where changing environmental conditions represent significant chal-
lenges in maintaining speech system performance.

This problem has been taken into consideration especially in
ASR applications since the recognition performance degrades sub-
stantially due to changes in the environment. One of the first
ASR tasks that have changing environmental conditions is for au-
tomatic transcription of “Broadcast News” (BN). Several research
groups have worked on this task to increase recognition perfor-
mance. These studies [1, 2] have the underlying goal of training
for acoustic conditions that are specific for each system (speech
conditions include : F0- prepared, F1- spontaneous,F2- degraded
acoustics, F3- music background, F4- noise background, F5- non-
native speakers, and FX- other speech) and directing the ASR en-
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gine to a single recognizer for each acoustic condition. The down-
side of this method is that it tries to model many different kinds of
environmental conditions with a single model, with the hope that
such a background noise model would be able to capture this huge
variability.

Later, as computational power has increased with the help of
high-speed computers, a parallel bank of recognizers has been
used in a ROVER paradigm for tasks such as Speech In Noisy En-
vironments (SPINE) where many different environmental condi-
tions exist. Different recognizers intentionally employing a range
of feature processing or adaptation methods are normal for a
ROVER based LVCSR solution. This may involve different fea-
tures during the feature extraction step, different noise compensa-
tion schemes in the enhancement step, or different model adapta-
tion schemes individually or in parallel. Finally, the hypothesis
with the highest probability at the output of the decoders is cho-
sen as the final decision of the ROVER. Although significant im-
provement has been achieved using the ROVER paradigm, it is not
optimal in terms of computational performance. It is also highly
possible that one recognizer may not have the highest probability
at all times during decoding, implying that the selected recognizer
may be the best in a global sense but not in a local sense.

To overcome the disadvantages of these methods as well as
to have acceptable error rates in ASR systems in changing envi-
ronmental conditions, we propose a new speech framework called
Environmental Sniffing. The goal will be to do smart tracking of
environmental conditions and direct the ASR engine to use the best
local solution specific to each environmental condition. For ex-
ample, instead of running parallel feature extractors in a ROVER
paradigm, the Environmental Sniffing framework will direct the
ASR engine to use only one feature extractor which gives the best
performance for a specific environmental condition. In this way,
we optimize both the computational effort and overall system per-
formance of the ASR.

On the other hand, Environmental Sniffing is also useful for
automatic transcription of noise where the accuracy is much lower
than that of transcription of speech. Considering the fact that there
are no standards for noise transcription in audio material, it is crit-
ical to automatically transcribe environmental noise with high ac-
curacy for more effective speech system training.

The organization of our paper is as follows. In Section 2,
a general system architecture for Environmental Sniffing is pre-
sented. In Section 3, we specialize the general framework for
sniffing environmental noise for in-vehicle systems. In Section 4,
evaluations of the framework integrated into an in-vehicle ASR en-
gine is presented. Section 5 discusses some further research issues
for sniffing. Conclusion is given in Section 6.
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Fig. 1. Environmental Sniffing system architecture diagram.

2. SYSTEM ARCHITECTURE

Environmental Sniffing can be integrated into any speech task hav-
ing some degree of concern about acoustic environmental condi-
tions. Environmental Sniffing extracts knowledge about the acous-
tic environmental conditions and passes this knowledge to the
speech task. A proposed general system architecture diagram is
shown in Fig. 1. Digitized speech is denoted as � ����� , captured
from an input sensor (i.e., single or multi-microphone) and acous-
tic environmental noise knowledge as � ����� which is a function of
� ����� . In a sample scenario, � ����� may be the audio data recorded
in a vehicle with a microphone array, the speech task may in-
clude model adaptation within an ASR system, and � ����� may
consist of the existing noise types with time tags and the power
spectral estimates of the environmental noise with a stationarity
measure. Here, � ����� may also contain a suggestion to use one
of several adaptation schemes (Jacobian adaptation, MLLR, PMC,
etc.) which gives the best performance for the environmental noise
knowledge estimated through Environmental Sniffing.

3. IN-VEHICLE ENVIRONMENTAL SNIFFING

Within the framework of Environmental Sniffing from Fig. 1, we
specialize our solution for an in-vehicle hands-free car navigation
environment. The motivation for selecting this environment is the
huge diversity of acoustic environmental conditions and the need
to maintain near real-time performance for route navigation di-
alogs [3].
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Fig. 2. Scatter plot of low (0-1.5 kHz) versus high (1.5-4 kHz)
frequency noise dB-energy content for noises N1 through N7.

Having collected in-vehicle acoustic data (i.e., in a Blazer SUV)
using a 17 mile route which contains samples of all driving con-
ditions expected for use in city and rural areas, we identified the
primary noise conditions of interest (noise conditions include: N1-
idle noise consisting of the engine running with no movement

and windows closed, N2- city driving without traffic and win-
dows closed, N3- city driving with traffic and windows closed,
N4- highway driving with windows closed, N5- highway driving
with windows 2 inches open, N6- highway driving with windows
half-way down, N7- windows 2 inches open in city traffic, N0-
others), which are considered as long term acoustic environmen-
tal conditions. Other acoustic conditions (idle position with air-
conditioning on, etc.) are matched to these primary classes having
the closest acoustic characteristic. Fig. 2 shows the average power
spectrum density for low (0-1.5 kHz) versus high (1.5-4 kHz) fre-
quency energy content of long term noises. The diversity of noise
energy content suggests that a single noise model would not be
capable of addressing changing noise conditions for a subsequent
speech task.

Short term acoustic environmental conditions occurring within
long term conditions include TS- turn signal noise, WB- wiper
blade noise, TN- tone noise, IM- impulsive noise. These condi-
tions are expected to be present in conjunction with one of the
long-term noises.

As shown in Fig. 3, a hybrid method of � � -BIC segmenta-
tion and GMM classification followed by a decision smoothing is
used to detect, classify and track long-term noises. � � -BIC uses
Hotelling’s � � -Statistic to pre-rank potential acoustic break points
which are evaluated using a Bayesian Information Criterion [4].
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Fig. 3. Flow diagram for Environmental Noise Sniffing.

As Fig. 3 shows, the incoming audio stream is first segmented
into acoustically homogeneous speech blocks using our � � -BIC
segmentation scheme with a low false alarm penalty (i.e. false
alarms are tolerable to ensure we capture all potential marks, both
true and false). Within each segment, GMM classification runs pe-
riodically to classify each non-overlapping � -frame-length block.
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Decision smoothing is applied to the resulting decision sequence
of each segment. This process is similar to Language Modeling,
considering the fact that some noise transitions are not possible
although they may appear at the output of the GMM classifier.
Transition probabilities are generated from training data using bi-
gram language modeling with a noise type for each 15-frame word
block. Calculated transition probabilities are shown in Fig. 4.
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Fig. 4. Noise Language Modeling.

We use Viterbi decoding to find the most likely decision se-
quence given the classification probability list of each decision re-
gion within the segment. Each noise class has an initial probabil-
ity which is proportional to the number of occurrences within the�

-best position at the classifier output along the segment. Noise
classes whose number of occurrences within the

�
-best position

is less than a threshold are pruned during decision smoothing. We
can formulate this as follows:��� � �����

�
�
�
���	�
��� � � �
� �������

(1)

where
���

: occurrence number in the ����� position of the score list,� �
: corresponding weight coefficient, and

�
: threshold.

Since our Environmental Sniffing framework is not a speech
system itself and works with other speech systems, noise knowl-
edge detection performance for each noise type ( � �

) should be
weighted by a coefficient which is determined by the importance
that noise type plays in the speech application with Environmental
Sniffing (i.e., if noise impacts the speech task performance signif-
icantly, impact coefficient I is set high). For in-vehicle ASR, these
coefficients ( � �
� � � � �	�
� � ��� ) will reflect the impact each noise type
has on WER. We can formulate this as follows:

C ����� �"!$#&%('*)��,+.-(�(/0# � !	)1�(#2�
)435
�6

�87 � �
� � � �6

�97 � �
� 5;: (2)

With this performance rate measure, the potential output score can
range from 0-100 if � �

is a classification rate, or 0-1 if � �
is a

probability.

4. EVALUATIONS
We evaluate the performance of our framework using an in-vehicle
noise database of 3 hours collected in 6 experimental runs using
the same route and the same vehicle on different days and hours.
A microphone array and 8-channel digital recorder previously used
for CU-Move in-vehicle speech data collection were employed [3].
The database does not contain speech. Fifteen noise classes are
transcribed during the data collection by a transcriber sitting in the
car. The time tags are generated instantly by the transcriber. After
data collection, some noise conditions are grouped together, re-
sulting in 8 acoustically distinguishable noise classes as listed in
Sec. 3. For each noise class, a 4-mixture GMM is trained using
2.5 hours of data. We use 12 dimensional MFCC feature vec-
tors during our evaluations. In both training and test data, long-
term and short-term noise conditions are approximately equally
balanced across time.

4.1. Long Term Noise
First, we test long-term noise classification error performance by
running the classifier periodically with a period of 15 frames with-
out segmenting the test data. Fig. 5 shows noise classification error
performance by selecting the most likely model (solid bar to left in
each pair) [avg. 34.73% error], and using the two highest probable
models (cross-hatch bar to right in each pair) [avg. 13.23% error].
Some noise types (N4-highway driving, windows closed) are sig-
nificantly affected by selecting the top two models out of 8 in the
noise space.
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Fig. 5. Classification error performance of having the correct noise
type in the first position ( :�< � bar in each set) and first two positions
( = �(> bar in each set).

In our ”Classical classification algorithm” for noise, a segment
of data is scored once. As shown in Fig. 3, our ”Hybrid Algorithm”
has periodical classifications within a segment and subsequently
smoothes the final decision sequence using the language model
and pruning.

Next, we segment the noise test data using � � -BIC with dif-
ferent false alarm penalties ( ? =

��@ � A � @ � B � @ � C � @ � D � ). During deci-
sion smoothing in the hybrid algorithm, we use the values

� 5 = ,� � 5 @ � E , � � 5 @ � A , and pruning threshold
� 5 @ � E . Fig. 6 shows

error rates for both methods. You can see that classical method is
worse than the hybrid algorithm in terms of classification perfor-
mance even if the hand label segmentation is provided.
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Fig. 6. Error performance of the classical method ( :�< � bar in each
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tation.

To calculate the overall performance using Eqn. 2, we ran
speech recognition tests using CSLR’s Large Vocabulary Continu-
ous Speech Recognizer SONIC [5] on the TI-DIGITS database af-
ter degrading the clean speech with our noise types at : @ dB SNR.
Models trained from clean speech were used for testing. WER re-
sults are shown in Table 1 as well as the impact I-measures of each
noise type.
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Degrading
noise

N01 N02 N03 N04 N05 N06 N07

WER 1.1% 2.3% 2.7% 4.1% 8.1% 8.5% 3.7%
I-measure 0.04 0.08 0.09 0.13 0.27 0.28 0.11

Table 1. Speech Recognition Tests.

� � ’s are assigned proportionally to WER’s and they sum to
one. Using Eqn. 2 with these values, we found the critical per-
formance rate to be D C � B : % for the classical classification method
and D � � D : % for the hybrid algorithm using

@ � A as the penalty pa-
rameter for � � -BIC.

4.2. Discussion on Detecting Short Term Noise
We have the following assumptions about the human auditory sys-
tem: hearing is the process of detecting energy at a particular fre-
quency and the human auditory system is assumed to be a filtering
process which partitions the entire audible frequency range into
many critical bands. These assumptions provide motivation for
use of the Teager Energy Operator (TEO) [6], to detect impulsive
noise, tone noise and periodic noise observed in the in-vehicle en-
vironment since they appear as sudden energy changes and occupy
a certain frequency band. What distinguishes these energy changes
from those appearing during speech is that they do not have an ob-
served modulation scheme like speech. Using this knowledge, we
can automatically detect short-term noises within noisy-speech.
Fig. 7 gives an idea of how TEO processing works for turn sig-
nal which occupies narrow time slots and a wide frequency band.
The last figure (Fig. 7-c) clearly shows detection locations where
turn signal noise is present.
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Fig. 7. Applying TEO processing to the environmental condition
where the turn signal is on and the long-term noise is city driving
with traffic, windows closed (N3).

5. DISCUSSION

The main goal of Environmental Sniffing is to extract knowledge
about environmental noise that exists within continuous speech.
Clearly, many studies have considered ASR in noise [7], and we
believe that environmental sniffing will offer attractive alternatives
to improve ASR performance (knowledge to improve features or
model adaptation, reduce ROVER requirements). As a first step
towards this goal, in our evaluations, we focused on extracting
knowledge about the acoustic environmental noise using a noise-
only audio database. However, while constructing the framework,
we provide sufficient flexibility to easily move towards a subse-
quent step and to allow the same framework to be used for noisy-
speech sections in audio streams as well. We are presently work-
ing on a broad class monophone recognition based framework to

extract environmental noise knowledge from an audio stream con-
sisting of both noisy-silence and noisy-speech (e.g., similar to our
speech activity detection [SAD] work previously reported [8]). Af-
ter defining a set of broad phone classes (e.g. nasals, unvoiced
fricatives, voiced fricatives, etc.), we can generate monophone model
sets where each corresponds to a noise type by degrading the clean
monophone models with noise. In addition to these models, a si-
lence model will also be included for each noise type. If we use 10
broad class monophones, we will have : @ clean monophone mod-
els, : @ x

�
noisy monophone models, : clean silence model and

�
noisy-silence models, for a total of

� � � : � x :�: models. Due to
the pruning method used in the existing framework, the increase in
search space will be less than a linear increase when we have more
noise types. It will also be straightforward to use language mod-
eling to calculate the transition probabilities from one monophone
model set to another.

Another important issue is handling new in-coming noises
within the framework, in other words, adapting Environmental
Sniffing to new environmental noise types. Since there is a garbage
noise model (N0) within the existing framework, we can keep track
of the data classified as N0 and cluster to check if there is a suf-
ficient data cluster to train a new additional noise model. We can
also use the previous classification results to check how much the
new model differs from existing ones by comparing the score dis-
tribution of the new model with existing ones.

6. CONCLUSION
In this paper, we have addressed the problem of changing acous-
tic environmental conditions in speech tasks. We proposed a new
framework entitled Environmental Sniffing to detect, classify and,
track changing acoustic environmental conditions and extract knowl-
edge about the environmental noise. After proposing a general
framework, we specialized the sniffer to an in-vehicle speech ap-
plication. Novel aspects included a number of knowledge based
processing steps such as � � -BIC segmentation, noise language
modeling, GMM classification and TEO processing. We believe
such processing will provide significant knowledge to subsequent
speech processing tasks and thereby increase robust speech perfor-
mance.
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