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ABSTRACT

Wideband audio signal will be commonly used in the near future
telecommunication applications. In quiet environments, the
speech recognition performance increases when using wideband
signal instead of narrowband signal. For practical ASR systems,
however, we are interested in whether we can benefit from wide-
band signal when recognizing noisy speech. Wideband speech
signal, with respect to the narrowband speech signal, contains
high frequency components, which usually have low intensity
and, thus, are vulnerable to noise distortions. The robustness of
the wideband feature set may be worse than that of the narrow-
band feature set, if the added high-frequency components are
distorted.

We investigate whether the addition of information from high
frequencies into the ASR feature set can improve the recognition
performance of noisy speech. The differences between low- and
high-frequency parts of the wideband speech spectrum suggest a
separate processing of these two parts. We propose an algorithm
in which the separate processing scheme permits us to reuse the
noise robust front-end originally designed for narrowband signal.
A low complexity processing is designed for high frequency
components, which usually bear less information. The high-
frequency information is added to the narrowband speech features
in a form of de-noised filter-bank energies. The energies are
appended after or before computing the cepstral features. In the
best case, we obtained 13.96% average relative improvement
when recognizing wideband noisy speech with respect to the
narrowband noisy speech performance. The proposed algorithm is
part of the recently adopted ETSI standard for the advanced front-
end for distributed speech recognition.

1. INTRODUCTION

In most of today’s ASR systems over telecom network, the
frequency range of audio signal is limited to 0-4kHz. The use of
wider frequency range (wideband signal) in telecommunication
applications is expected soon. Already now, the distributed
speech recognition (DSR) scheme offers the possibility of using
the wideband ASR features over a narrowband network. Indeed,
if considering a quiet environment, the recognition performance
of an ASR system will improve when the ASR feature set
includes also the information from frequencies above 4kHz.

The last assertion, however, is less obvious when considering
noisy speech, which is common in telecommunication. To explain
why, we use a frequency range partition as it is shown in Figure
1. We consider that the wideband (w-b) signal ranges from 0 to
8kHz. Narrowband (n-b) signal ranges from 0 to 4kHz; also, we
refer to these frequencies as low frequencies (l-f). On the other
hand, high frequencies (h-f) extend from 4 to 8kHz.

According to speech research [1], the intensity of typical l-f
speech sounds (usually voiced speech) decreases by an average
rate of 6dB/octave along the frequency axis having a small
portion of their intensity in the h-f part of spectrum. On the other
hand, the intensity of typical h-f speech sounds (usually noise-like
sounds) is low relatively to the intensity of l-f speech sounds. As
a consequence, we can observe from a w-b spectrogram in Figure
2 that the intensity of speech in the h-f part of speech spectrum is
much lower than the intensity of speech in the l-f part of
spectrum. Additionally, the occurrence of speech along the time
axis is lower in the h-f part of spectrum than in the l-f part of
spectrum.

Due to the above-mentioned properties, the h-f part of speech
spectrum is more prone to noise distortions than the l-f part. In the
presence of noise, the combination of the l-f speech information,
which is high-SNR, with the h-f speech information, which is
low-SNR, would cause that the w-b speech features become more
affected by noise than the n-b speech features. Of course, in this
case, the recognition performance decreases. Therefore, the
benefit of adding the h-f speech information into the ASR speech
representation is questionable when considering noisy speech
recognition.

In this paper, we investigate whether adding the h-f speech
information can improve the speech recognition performance in
noisy conditions. Some recent works deal with recognition of
noisy wideband speech [2], [3]. Here, we examine three ways of
including the high frequency information into the ASR speech
features. We use the advanced front-end [4], which was recently
standardized by ETSI as a feature extraction approach for DSR in
noisy environments [5]. One of the studied approaches forms part
of this standard.

2. INVESTIGATED APPROACHES

In many noise robust approaches, it is desirable to distinguish
safely between the speech and non-speech portions of signal (e.g.
for the noise spectrum estimation). Computationally efficient
approaches for speech/non-speech separation are based on
signal’s energy contour. Figure 2(b) shows such a contour for the
w-b signal from the spectrogram in Figure 2(a). We can observe
that in the w-b energy contour of the high SNR version of the
signal (dashed line; close-talking micro), both l-f and h-f speech
portions can be safely identified in the background noise. In the
case of low SNR version of the same signal energy contour (solid
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Figure 1 Partition of wideband frequency range.
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line; hands-free micro), however, the separation of the low-energy
speech parts, including both l-f and h-f speech, is very difficult.
For l-f speech sounds, a periodicity indicator may help to
distinguish between speech and noise. For h-f sounds, we
calculated the energy contour from the h-f part of signal only
(Figure 2(d)). When comparing Figures 2(b) and 2(d), we can see
that the identification of the h-f speech sounds in the case of low-
SNR signal (solid lines) can be done much better from the h-f
energy contour than from the w-b energy contour (see e.g. the
sounds selected by the vertical dashed lines). Notice that the SNR
observed in the h-f energy contour is quite good because of the
low-frequency character of the in-car noise in this file.

The differences and relations we observed between the l-f and
h-f parts of speech spectrum up to this point, which are
consequences of the nature of speech production, suggest that we
could benefit from a separate processing of the l-f and h-f
components of w-b signal. Actually, the idea of separate
processing offers some further attractive advantages: a) the noise
robust front-end designed originally for the n-b signal can be
reused for processing of the l-f part of w-b signal, and b) due to a
relatively lower information content, the processing of the h-f part
of w-b signal may be less complex than that of the l-f part.

In this paper, we investigate three ways of using the h-f
information for noisy speech recognition. In each case, speech
features are Mel filter-bank based cepstral coefficients.

2.1. Description of approaches

The first approach, which is the most straightforward one, does
not make distinction between the l-f and h-f parts of w-b signal.
The basic modification with respect to a n-b front-end is the
increase of sampling frequency, which is reflected in the
respective parts of the front-end such as number of samples of the
analysis window and its shift, FFT order, and possibly, number of
filter-bank bands.

The other two approaches process the l-f and h-f parts of w-b
signal separately. Basic concept is depicted in Figure 3. Both l-f
and h-f parts of w-b signal are obtained by filtering the input w-b
signal by a couple of quadrature mirror filters. Decimation by 2 is

applied to both filtered signals. An efficient and complex noise
reduction scheme of the n-b robust front-end (based on a 2-stage
Mel Wiener filter) is reused for the l-f part of w-b signal. Usual
Mel cepstrum processing steps (log filter-bank energy estimation
and discrete cosine transform) are applied on the de-noised l-f
signal to obtain cepstral features. The noise reduction for the h-f
part of signal is computationally much simpler because it is
applied on a small number of Mel-spaced filter-bank energies
(e.g. 2 or 3). We use a linear spectral subtraction (SS) in this case.

In the first of the two approaches treating the l-f and h-f
spectrum separately, the de-noised h-f log filter bank energies are
appended to the cepstral features obtained from the l-f processing
path. In this way, the size of speech feature vector increases by
the number of appended log filter-bank energies.

In the second approach, the de-noised h-f log filter-bank
energies are appended to the l-f log filter bank energies prior to
the cepstrum calculation. In this way, cepstral features devoted to
the both l-f and h-f representations of w-b signal are optimally
balanced and the final number of speech features is the same as in
the n-b robust front-end. Notice, however, that l-f and h-f log
filter-bank energies come from rather different processing steps –
as a consequence we found the h-f filter-bank energies are
mismatched in terms of the intensity scale with the l-f filter-bank
energies. To minimize this mismatch, we apply an adjustment to
the h-f filter-bank energies, which is based on an encoding/decod-
ing scheme. Both spectral subtraction and the encoding/decoding
scheme are described in the following sections.

2.1.1. Spectral subtraction in h-f

Linear spectral subtraction is applied on the h-f filter-bank
energies ( )kEh like

( ) ( ) ( ) ( ){ } hhhhhSS KkkEkNkEkE ≤≤⋅⋅−= 1,,ˆmax_ βα (1)

where Kh is the number of bands, α=1.5 and β=0.1 are the
overestimation and flooring factors, respectively. All Kh, α and β
were set empirically. The noise estimation )(ˆ kNh is updated by
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Figure 2 Wideband spectrogram of Italian digit sequence "sette nove quattro sei uno zero due cinque tre otto" - close-talking microphone
(a). Corresponding wideband, low-frequency and high-frequency energy contours (b)-(d) of clean (dashed) and noisy (solid) signal.
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using only the frames labeled by voice activity detector as noise.
An energy-based voice activity detector is used, where the current
frame is labeled as speech if the difference between the current
frame log energy and the long-term estimate of non-speech log
energy exceeds a defined threshold.

2.1.2. Encoding/decoding scheme in h-f

The objective of the encoding/decoding (E/D) scheme is to
preserve the integrity across the Mel filter-bank energies resulting
from both the l-f and h-f signal processing. The E/D scheme is
applied on the log version of h-f filter-bank energies

( ) ( )( ) hhh KkkEkS ≤≤= 1,ln , and it is dependent on the l-f noise

reduction. In the first step (encoding), a code is generated for each
of the h-f log filter-bank energies Sh(j) like

( ) ( ) ( ) hhauxl KjkjSkSjkCode ≤≤−= ,1,, _ , (2)

where Sl_aux(k) are Kl=Kh=3 auxiliary log filter-bank energies
from the 2-4kHz frequency range of the l-f signal before applying
the l-f noise reduction. These auxiliary energies are available as a
by-product from the original l-f noise reduction block. Such a
code "memorizes" the integrity relationship between the filter-
bank energies from both the l-f and h-f signals before performing
the l-f noise reduction.

In the second step (decoding), a “de-noised” set of h-f log
filter-bank energies Scode_h(k) is obtained by using the code
generated previously by (2) and the following equation:

( ) ( ) ( ) ( )( ) h

K

j
auxldencodehcode KkkjCodejSjwkS

h

≤≤−=∑
=

1,,
1

___ (3)

where Sden_l_aux(k) are filter-bank energies of the de-noised l-f
spectrum, and they are aligned in frequency with Sl_aux(k). wcode(j)
are frequency-dependent weights and their sum equals 1.0.

The h-f log filter-bank energies resulting from the E/D
scheme (equation (3)), can be viewed as noise reduced versions of
the original energies Sh(k), assuming that all of the filter-bank
energies involved in the calculation have the same SNR. Of
course, in real world this assumption reflects the truth only up to a
certain degree.

2.1.3. Integration of SS and E/D scheme in h-f

As discussed previously, the E/D scheme is used to minimize the
intensity mismatch between the l-f and h-f filter-bank energies.
The mismatch was introduced by the different noise reductions
used in the l-f and h-f parts of w-b signal. In practice, the h-f
energies from spectral subtraction SSS_h(k) are adjusted as follows:

( ) ( ) ( ) ( ) hSS_hcode_hh Kk,kSλkSλkS ≤≤⋅−+⋅= 11 (4)

where λ = 0.7 was determined experimentally.
Cepstral features corresponding to the w-b signal are

calculated from log filter-bank energy vectors that are formed by
appending the h-f log filter-bank energies from (4) to the de-

noised l-f log filter-bank energies. Also, the energy parameter
accompanying cepstral features is computed by using the de-
noised version of both the l-f and h-f parts of the w-b spectrum.

3. RECOGNITION EXPERIMENTS

3.1. Testing scenario

We used four SpeechDat Car (SDC) digit databases: Spanish,
Finnish, Danish and Italian, a subset of the database set [6]
distributed by ETSI for the Aurora standardization. Databases
contain both 8 and 16kHz data and they were collected in car
under different driving conditions with both close talking and
hands-free microphones. Three recognition experiments were
carried out for each language with different levels of mismatch
between training and testing conditions: well-matched (WM),
medium mismatched (MM) and highly mismatched (HM).

SDC databases contain long non-speech portions of signal at
the beginning/end of each recording. Long non-speech portions
tend to increase the number of insertions during recognition of
noisy speech. To avoid these insertions, a voice activity detector
(VAD) is usually used and the frames classified as non-speech are
dropped out from recognition (see [4]). In tests presented in this
paper, we use an “ideal” VAD for frame dropping to minimize the
influence of VAD on the performance. The HTK Viterbi
alignment was used to get the utterance boundaries in clean
version of each file. Due to the correspondence between clean and
noisy files, the clean speech utterance boundaries can be used also
for noisy files. The ideal VAD preserves 200ms of signal before
the beginning and after the end of each utterance and drops the
remaining signal.

For feature extraction, we used both the standard MFCC
front-end [7] and the advanced front-end [4]. Delta and delta-delta
features are appended to the static features. As for the back-end
configuration, the digit models have 16 states with 3 Gaussians
per state. The silence model has 3 states with 6 Gaussians per
state. Also, one-state short pause model is used and is tied with
the middle state of the silence model.

3.2. Experiments and results

We compare recognition performances obtained on 8kHz and
16kHz data. In the first set of experiments, no separation to l-f
and h-f processing was done. Simply, the sampling frequency of
the front-end was modified from 8 to 16kHz: analysis window
size changed from 200 to 400, window shift changed from 80 to
160, and FFT order changed from 256 to 512. We tested two
different numbers of filter-bank bands, 23 and 30, but the number
of static cepstral coefficients was kept the same, 12 + log energy.
The ETSI standard MFCC front-end was used in these
experiments. Table 1 shows the word accuracies we obtained for
both the 8 and 16kHz data. We can observe an average relative
improvement of 4.59% for the 16kHz signal with respect to the
8kHz signal (see the last column of Table 1) when using 23 filter-
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Figure 3 Separate processing of low-frequency and high-frequency components of wideband signal.
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bank bands. Particularly, improvements can be observed in WM
and MM conditions, however, there is a degradation in the noisy
HM test. Similar results can be observed for the 16kHz signal
when using 30 filter-bank bands.

In the following experiments, the l-f and h-f parts of w-b
signal were processed separately. Recognition performances are
shown in Table 2 – we used the advanced front-end, thus the
8kHz baseline is much higher than in the previous tests. In the
first approach, we tested the addition of the de-noised h-f log
filter-bank energies to cepstral features. The best results were
obtained by adding two h-f log energies. Therefore, the number of
static parameters increased from 13 to 15. A slight average
relative improvement of 2.25% was obtained by using this
approach for 16kHz data in comparison to the performance with
8kHz data. Small improvements can be observed for WM and
MM tests, while the average performance in HM test slightly
decreased. The results from this test coincide with the results
reported in [2] where author used a slightly modified
implementation of this approach.

In the second approach, three de-noised h-f log filter-bank
energies were added to the 23 de-noised l-f log filter-bank
energies and this way formed log filter-bank energy vector was
used to compute 12 cepstral coefficients and the log energy
parameter (i.e. 13 static parameters). The results from this test are
reported at the third line of Table 2. A significant average
improvement of 13.96% can be observed by using this approach
for w-b signal with respect to the n-b baseline (the fist line of
Table 2). The performance is significantly better than what we
obtained by appending the h-f log filter-bank energies to cepstral
features in the previous test. Actually, in this case, the added h-f
log filter-bank energies are de-correlated by the following DCT
transform (but not in the previous test). Use of correlated features
for diagonal covariance HMMs usually decreases the
performance. The latest approach outperforms the other two
techniques we evaluated and it is also used in the ETSI DSR
advanced front-end standard.

4. CONCLUSIONS

Adding the information from signal frequencies above 4kHz to a
narrowband ASR feature set improves the recognition
performance of clean speech. In this paper, we investigated
whether we can obtain similar improvement for noisy speech.

After observing significant differences between the low-fre-
quency (0-4kHz) and high-frequency (4-8kHz) portions of speech
spectrum, we proposed separate processing of these two compo-
nents of wideband signal to gain better noise robustness. This
approach led also to further benefits: we could reuse the noise
robust front-end originally designed for narrowband signal, and
we could design a low complexity algorithm for high frequencies.

The high-frequency information was added to the narrowband
speech features in a form of de-noised filter-bank energies. We
have experimentally found that appending these energies to the
narrowband filter bank energies provides a performance superior
to other investigated approaches. We obtained 13.96% average
relative improvement when recognizing wideband noisy speech
with respect to the narrowband noisy speech performance. This
indicates that a positive contribution can be achieved from the
high frequency components of wideband signal when recognizing
noisy speech.
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SP FI IT DA Average of AbsSampling
Frequency WM MM HM WM MM HM WM MM HM WM MM HM WM MM HM

Aver
of Rel

8k, baseline 92.94 83.31 51.55 92.74 80.51 40.53 92.26 73.39 51.76 87.28 67.32 39.37 91.31 76.13 45.80 --
16k, fb 23 93.76 84.00 50.23 93.69 84.54 35.02 93.59 76.71 41.29 89.19 70.18 30.81 92.56 78.86 39.34 4.59
16k, fb 30 93.95 83.29 53.68 92.78 82.63 34.52 93.13 76.67 40.24 88.63 71.35 32.74 92.12 78.49 40.30 2.63

Table 1 Word accuracy percentages for 8 kHz and 16 kHz signal using the standard MFCC FE and ideal VAD.

SP FI IT DA Average of AbsSampling
Frequency WM MM HM WM MM HM WM MM HM WM MM HM WM MM HM

Aver
of Rel

8k, baseline 96.03 92.65 88.33 95.53 85.98 87.07 96.45 89.85 87.72 92.74 82.03 80.71 95.19 87.63 85.96 --
16k, 1st approach 95.68 91.63 82.70 97.19 88.10 89.54 96.67 91.73 90.89 92.35 83.33 75.73 95.47 88.70 84.72 2.25
16k, 2nd approach 95.90 93.31 87.00 97.17 90.97 88.66 97.32 92.85 89.24 93.87 85.68 78.07 96.07 90.70 85.74 13.96

Table 2 Word accuracy percentages for 8 and 16 kHz signal when using noise-robust FE and ideal VAD.
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