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ABSTRACT

Within the Aurora2 experimental framework, the aim of this study
is to determine what the relative contributions of spectral shape
and energy features are to the mismatch observed between clean
training and noisy test data. In addition to measurements on the
baseline Aurora2 system, recognition performance was also evalu-
ated after the application of time domain noise reduction (TDNR)
and histogram normalisation (HN) in the cepstral domain. The re-
sults indicate that, for the Aurora2 digit recognition task, TDNR,
HN, as well as a combination of the two techniques achieve higher
recognition rates by reducing the mismatch in the energy part of
acoustic feature space. The corresponding mismatch reduction in
the spectral shape features yields hardly any gain in recognition
performance.

1. INTRODUCTION

The performance of automatic speech recognition (ASR) systems
deteriorates substantially if there is a mismatch between the statis-
tical distributions of the acoustic features derived from the train-
ing data and the corresponding distributions of the test data. Such
a mismatch may have different causes, e.g. variations between
speakers, differences between the acoustic properties of the train-
ing and test environment, differences in channel properties, etc.
and will occur in any situation where the short term spectral prop-
erties of the test data - and consequently any features derived from
the test data - differ from the corresponding short term spectral
properties of the training data.

In this study the focus is on the statistical mismatch that oc-
curs when models derived from clean training data are used to per-
form recognition in noisy acoustic environments. The presence of
background noise in the test data usually results in a substantial
difference between the statistical distributions of the training and
test data. The impact of the background noise on the statistics of
the test data may differ according to the type of background noise
as well as the implementation details of the acoustic feature ex-
traction process. The ultimate aim of robust ASR techniques is to
ensure that training and test distributions are as similar as possi-
ble, no matter how the mismatch came about. In this investigation
we used two methods to reduce training/test mismatch, i.e. time
domain noise reduction based on Wiener filtering (TDNR) [2] and
histogram normalization (HN) in the cepstral domain [3, 4, 5, 6].

TDNR is applied to the speech data itself and reduces train-
ing/test mismatch by processing noisy signals in such a way that

The experiments on the Aurora2 database were carried out within the
framework of the SMADA project [1].

they become more similar to clean signals. HN, on the other hand,
compensates for the effects of the noise directly in the acoustic
feature domain. HN involves a non-linear transformation of the
acoustic feature vectors derived from the test data such that their
statistical properties match those of the training data.

These two techniques to reduce training/test mismatch were
used to investigate the relative importance of spectral shape and
energy mismatch in the Aurora2 digit recognition task. Most ASR
systems use acoustic feature vectors which describe acoustic data
both in terms of the overall energy and the shape of the spectral
envelope at frame level. These two types of features carry differ-
ent information about the signal and it could therefore be expected
that, under mismatched conditions, recognition performance might
show a different sensitivity to mismatch in the energy features, on
the one hand, and mismatch in the spectral shape parameters, on
the other. In this study, we analysed the gain in recognition accu-
racy achieved by TDNR and HN in terms of mismatch reduction
in the energy and spectral shape parameters. We used the log of
the total energy in each frame (logE) as an energy feature and 12
mel-scaled cepstral coefficients (MFCCs) to describe the shape of
the spectral envelope.

TDNR and HN are described in the next section. Section 3
gives an overview of the experimental design and set-up. A sum-
mary of the results is given in Section 4, followed by a discussion
and conclusions in Sections 5 and 6.

2. MISMATCH REDUCTION TECHNIQUES

2.1. Time-domain noise reduction (TDNR)

The first mismatch reduction technique that was used in this study
is the time-domain noise reduction scheme described in [2]. As
a first processing step, offset compensation is applied to each ut-
terance. A Voice Activity Detection (VAD) module subsequently
classifies each frame as speech or non-speech, based on an estima-
tion of its SNR. The SNR estimate corresponds to the difference
between the log-energy spectrum of the current frame and the es-
timated log-energy spectrum of the noise in the signal. If the VAD
module classifies a frame as non-speech, it is used to update the es-
timate of the noise spectrum. The updated noise spectrum is then
used to obtain an estimate of the signal without noise by means of
spectral subtraction. The resulting estimates of the noisy and “de-
noised” spectra are used to calculate the SNR in each frequency
band of the signal. These SNR estimates are subsequently used to
derive the transfer function of a Wiener filter. This filter is applied
to the noisy signal to obtain a first-pass estimate of the “clean” sig-
nal. The filter estimation process is repeated using the estimated
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noise spectrum and the first-pass estimate of the “clean” signal to
obtain a more accurate, second-pass estimate of the Wiener filter.
Finally, the “clean” signal is obtained by convolving the original
noisy signal with the second-pass Wiener filter in the time domain.

2.2. Histogram normalisation (HN)

As was explained in Section 1, the acoustic mismatch between
clean training and noisy test conditions essentially manifests itself
as a mismatch between the statistical distributions of the training
and test data. The aim of HN is to transform the test data such
that the match between its overall distribution and that of the train-
ing data is improved. When HN is applied to the acoustic features
used in speech recognition, it is often assumed that the process
which causes the mismatch has an independent effect on the dif-
ferent acoustic vector components. Under this assumption each
feature space dimension may be normalised independently.

The first step in performing HN is to compute the distribu-
tion of the training (pk(x)) and test (pk(y)) data for each feature
dimension k. A cumulative distribution density is subsequently
derived from both pk(x) (Pk(x) =

R x

−∞ pk(x′)dx′) and pk(y)

(Pk(y) =
R y

−∞ pk(y′)dy′). Finally, a warping function, Wk,
should be derived such that:

Pk(x) = Wk[Pk(y)] (1)

In our implementation, we used 128-bin histograms to approx-
imate pk(x) and pk(y). pk(x) was calculated using all the training
data while pk(y) was derived per utterance. In addition, a 3rd or-
der spline function was used to approximate Wk. The minimum
and maximum values of xk observed in pk(x) were used to limit
the range of the estimation. Values in the test data that were below
the minimum or above the maximum were mapped to min(xk)
and max(xk), respectively.

3. EXPERIMENTAL SET-UP

3.1. Speech data and recogniser

The speech data that was used in this study is a subset of the Au-
rora2 database, i.e. the clean condition training material and the
three test sets. The Aurora2 database was derived from a subset
of the TI-Digits database [7]. In addition to the original, clean
TI-Digits data, it also contains noisy data. The noisy data was
created by adding different types of noise to the clean data at dif-
ferent SNRs. The standard Aurora2 experiments include two sets
of training data, i.e. clean condition and multi-condition training.
The multi-condition training material contains clean data as well
as noisy data. In this study, we only report on the results obtained
for the clean condition training, because it provides a more chal-
lenging noise reduction problem than the multi-condition experi-
ments. Three test sets were defined for the Aurora2 task, i.e. sets
A, B, and C. All three test sets are made up of a mixture of clean
and noisy data. Sets A and B have the same channel properties as
the training data but differ from each other in the types of noise
they contain. In addition to the artificially added noise, the chan-
nel properties of the data in test set C also differs from that of the
training data.

We used the reference recognition system that was developed
for Aurora2 [7] in all the experiments described in this paper. The
system is based on hidden Markov word models and implemented
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Fig. 1. Schematic overview of the feature extraction and mismatch
reduction modules.

in HTK [8]. Each model has 16 states with 3 continuous density
Gaussian mixtures per state. Model topology only allows left-to-
right transitions without skipping states. In addition to the 11 digit
models (one, two, three, four, five, six, seven, eight, nine, zero, oh),
two silence models were trained: one corresponding to silences at
the beginning and the end of the utterances (3 states, 6 Gaussians
per state) and one corresponding to silences between words (single
state tied to the middle state of the 3-state silence model).

3.2. Acoustic pre-processing

Figure 1 gives an overview of the acoustic pre-processing proce-
dure that was used to derive the spectral shape (c1 . . . c12) and en-
ergy (logE) feature. The shaded blocks in the figure correspond to
the mismatch reduction techniques described in Section 2. Block
A represents TDNR and block B HN.

A pre-emphasis factor of 0.98 and a 25ms Hamming window
shifted with 10ms steps were used to prepare the data for spectral
analysis. After a 256-point FFT, 16 mel-scaled log-energy values
were calculated for each frame. The filters in the mel bank were
triangularly shaped, half overlapping and uniformly distributed on
a mel-frequency scale between 122 and 2146 mel, corresponding
to 80-4000 Hz on a linear frequency scale. 12 MFCCs were de-
rived from the mel bank outputs using a Discrete Cosine Trans-
form. The log of the total energy (logE) was also calculated for
each frame. In the experiments where TDNR was applied, logE
was calculated from the “cleaned” signals.

In order to remove the effect of channel variation from the
data we performed cepstral mean subtraction (at utterance level).
Moreover, because we wanted HN to be independent of the range
of the feature values, the MFCCs and logE values were normalised
to have unit variance (at utterance level) according to the normal-
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isation scheme described in [9]. After mean and variance normal-
isation, the first and second order time derivatives of the resulting
features were also computed (using a regression length of 9 in both
instances) and included in the acoustic feature vectors. In the ex-
periments where the features were transformed using HN, the first
and second order time derivatives were derived after applying HN.

3.3. Mismatch reduction experiments

Three mismatch reduction experiments were carried out. In the
first experiment (Experiment A), only block A in Figure 1 was in-
cluded in the acoustic pre-processing, i.e. the training and test data
(including the clean signals) were subjected to the time domain
noise reduction scheme described in Section 2.1 before feature ex-
traction. In the second experiment (Experiment B), only block B
was included in the acoustic pre-processing, i.e. HN was applied
to the MFCCs and logE after feature extraction. In the third exper-
iment (Experiment C) both blocks A and B were active, i.e. TDNR
was applied before and HN after feature extraction.

In each of the experiments, the mismatch reduction schemes
were implemented in the following order: 1) not at all (baseline)
2) only for the spectral shape features (MFCCs) 3) only for the
energy feature (logE) 4) for both the spectral shape and the energy
features. Training/test symmetry was observed in all experiments,
i.e. the transformations that were applied to the test data were also
applied to the training data.

4. RESULTS

The results in this section are defined in terms of recognition ac-
curacy, i.e. N−S−D−I

N × 100%, where N is the total number
of words in the test set, S denotes the total number of substitu-
tion errors, D the total number of deletion errors and I the total
number of insertion errors. The values shown in the tables below
were calculated according to the Aurora2 protocol, i.e. the mean
recognition accuracy for each test set was obtained by taking the
average of the recognition rates measured in 0, 5, 10, 15, and 20 dB
SNR. The values in the columns labelled Average were calculated
as 0.4 × SetA + 0.4 × setB + 0.2 × setC.

4.1. Experiment A: TDNR

Table 1. Recognition accuracy after the application of TDNR.

Transformed features Set A Set B Set C Average
baseline 72.10 72.41 74.02 72.61
MFCCs 72.52 72.93 73.77 72.93

logE 82.34 81.98 79.31 81.59
both 83.32 82.52 79.28 82.19

The results for Experiment A are summarised in Table 1. The
values in the table show that, calculating only the MFCCs from the
data after applying TDNR, yields a marginal increase in recogni-
tion accuracy. The results also show that reducing the mismatch
in logE accounts for most of the total gain in recognition rate, i.e.
when only logE is calculated from the “cleaned up” data (i.e. after
the application of TDNR), the recognition rates are only slightly

inferior to those obtained when both the MFCCs and logE are cal-
culated from the “cleaned up” data.

4.2. Experiment B: HN

Table 2 gives an overview of the results obtained in Experiment B.
According to the values in Table 2, the recognition performance
obtained when HN is applied only to the MFCCs does not differ
much from the baseline. However, applying HN on logE yields a
marked increase in recognition rate. When both the MFCCs and
logE are transformed, the largest part of the total gain can be at-
tributed to the transformation applied to logE. This trend in the re-
sults was also observed in experiment A. However, the results for

Table 2. Recognition accuracy after the application of HN.

Transformed features Set A Set B Set C Average
baseline 72.10 72.41 74.02 72.61
MFCCs 72.03 72.51 74.08 72.63

logE 80.11 81.80 81.65 81.09
both 80.80 82.68 82.25 81.84

test sets A and C in the last two rows of Table 2 differ substantially
from those that were measured in Experiment A: in Table 2 the
mean recognition accuracy for test set A is almost 3% lower and
the mean recognition accuracy for test set C is almost 3% higher
than in Table 1. An analysis of the individual test sets revealed
that this difference can be ascribed to the fact that the results for
TDNR in the babble, car and exhibition hall noise in test set A is
much better than the corresponding HN results. On the other hand,
the HN results for test set C (especially in suburban train noise)
are superior to their TDNR counterparts. These observations seem
to suggest that there is an interaction between the noise type, the
channel properties of the training and test data and the mismatch
reduction techniques that were used in these experiments.

4.3. Experiment C: TDNR & HN

The recognition accuracies that were measured in Experiment C
are summarised in Table 3. These results show that it is still pos-
sible to achieve a substantial improvement in recognition perfor-
mance if HN is applied in combination with TDNR. Transforming
only the MFCCs yields a small gain in recognition performance.
As was observed in the previous experiments, reducing the mis-
match in logE results in the biggest gain in recognition accuracy.
However, the best results are obtained when both the MFCCs and
logE are transformed.

Table 3. Recognition accuracy after the application of both TDNR
and HN.

Transformed features Set A Set B Set C Average
(TDNR) baseline 83.32 82.52 79.28 82.19

MFCCs 83.63 82.87 80.13 82.63
logE 84.02 83.82 82.74 83.68
both 84.46 84.26 83.33 84.16
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5. DISCUSSION

As was mentioned in Section 1, acoustic mismatch between train-
ing and test data leads to mismatch in both the energy and the spec-
tral shape components of acoustic feature space. The results that
were presented in the previous section show that, for the Aurora2
digit recognition task, both TDNR and HN improve recognition
rate by reducing the mismatch in energy features rather than their
cepstral counterparts: in both experiments A and B more than 90%
of the total gain in recognition performance could be attributed to
a reduction of the mismatch in logE. The effect is less prominent
but still clearly visible in the results of Experiment C.

Given the difference in performance for TDNR and HN on test
sets A and C, the fact that a combination of the two methods - as
was applied in Experiment C - gives the best overall results does
not really come as a surprise. The results suggest that, after the
application of TDNR, there is still a residual mismatch between
the distributions of the training and test features. This mismatch
is observed most clearly in the distribution of the logE features
and can be compensated for by applying HN in combination with
TDNR.

In [10] the authors reported a large gain in recognition rate for
the Aurora2 task if spectral subtraction was applied in combina-
tion with HN in the cepstral domain. They attributed this result
to the ability of HN to compensate for the linear channel distor-
tion and the residual non-linear distortions remaining after spectral
noise reduction. In contrast, the results reported in [5] show al-
most no improvement when HN is applied in the cepstral domain.
However, in that study, the authors also applied cepstral mean and
variance normalisation, while channel normalisation was not per-
formed prior to HN in [10]. The results reported in the current
study show that, if HN is applied only to cepstra (after mean sub-
traction and variance normalisation), there is almost no change in
the recognition accuracy of the baseline system. A substantial in-
crease in recognition rate is only observed when HN is applied to
logE. These results, together with the results reported in [5] sug-
gest that, after cepstral mean subtraction and variance normalisa-
tion, a non-linear transformation of cepstral coefficients does not
improve recognition performance, whereas a non-linear transfor-
mation of logE does lead to higher recognition accuracies. These
observations indicate that the gain reported in [10] may probably
be attributed to channel compensation (in the cepstral domain) and
that the non-linear distortions remaining after spectral noise reduc-
tion are probably limited to the energy features.

6. CONCLUSIONS

The results of this study show that, for the Aurora2 digit recogni-
tion task, TDNR, HN, as well as a combination of the two tech-
niques achieve higher recognition rates by reducing the mismatch
in the energy part of acoustic feature space. The corresponding
mismatch reduction in the spectral shape features yields hardly any
gain in recognition performance. The results also show that it is
possible to achieve almost the same improvement in recognition
accuracy by applying a relatively simple HN transformation in the
acoustic feature domain than by applying noise reduction to the
signals in the time domain. Moreover, it has also been shown that,
after the application of TDNR, the application of HN on MFCCs
yields very little additional gain in recognition rate. This observa-
tion seems to suggest that, if there is still a non-linear mismatch
between the distributions of the training and test features after the

application of TDNR, it is most probably limited to the distribu-
tions of the logE features.

These observations may be a result of the fact that the mis-
match reduction techniques that were used in this study are better
at reducing mismatch in energy features (logE) than in spectral
shape features (MFCCs). We are currently investigating various
ways to quantify the degree and type of mismatch between differ-
ent data sets in terms of their energy and spectral shape features in
order to verify this supposition.

The fact that reduced mismatch in logE leads to such large
improvements in recognition performance may also be an artefact
of the experimental set-up that has been chosen for Aurora2. Be-
cause of the low complexity of the task, the logE feature may have
a larger impact on recognition performance than the MFCCs. This
may not be the case for a more complex task such as continuous
speech recognition (CSR). In the near future we will repeat these
experiments on continuous speech in order to determine to what
extent the observations that were made for the Aurora2 task gen-
eralise to CSR.

7. REFERENCES

[1] L. Boves, D. Jouvet, J. Sienel, R. de Mori, F. Bechet, L. Fis-
sore, and P. Laface, “ASR for automatic directory assistance:
the SMADA project,” in Proceedings of ASR 2000, Paris,
France, 2000, pp. 249–254.

[2] B. Noe, J. Sienel, D. Jouvet, L. Mauuary, L. Boves,
J. de Veth, and F. de Wet, “Noise reduction for noise ro-
bust feature extraction for distributed speech recognition,” in
Proceedings of Eurospeech 2001, Aalborg, Denmark, 2001,
pp. 433–436.

[3] S. Dharanipragada and M. Padmanabhan, “A nonlinear un-
supervised adaptation technique for speech recognition,” in
Proceedings of ICSLP 2000, Beijing, China, 2000, pp. 556–
559.

[4] F. Hilger and H. Ney, “Quantile based histogram equalisa-
tion,” in Proceedings of Eurospeech 2001, Aalborg, Den-
mark, 2001.

[5] S. Molau, M. Pitz, and H. Ney, “Histogram normalisation in
the acoustic feature space,” in Proceedings of ASRU 2001,
Madonna di Campiglio, Trento, Italy, 2001.

[6] J.C. Segura, M.C. Benitez, A. de la Torre, S. Dupont, and
A. Rubio, “VTS residual noise compensation,” in Proceed-
ings of ICASSP 2002, Orlando, USA, 2002.

[7] H. G. Hirsch and D. Pearce, “The Aurora experimental
framework for the performance evaluation of speech recog-
nition systems under noisy conditions,” in Proceedings of
ASR 2000, Paris, France, 2000, pp. 181–188.

[8] S. Young, J. Jansen, J. Odell, D. Ollason, and P. Woodland,
The HTK Book (for HTK Version 2.1), Cambridge University,
Cambridge, UK, 1997.

[9] A. Viikki and K. Laurila, “Cepstral domain segmental fea-
ture vector normalization for noise robust speech recogni-
tion,” Speech Communication, vol. 25, pp. 133–147, 1998.

[10] J.C. Segura, C. Benitez, A. de la Torre, and A. Rubio, “Fea-
ture extraction combining spectral noise reduction and cep-
stral histogram equalisation for robust ASR,” in Proceedings
of ICSLP 2002, Denver, USA, 2002.

II - 108

➡ ➠


