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ABSTRACT 
 
In this paper, we present a mismatch-aware stochastic matching 
(MASM) algorithm to alleviate the performance degradation 
under mismatched training and testing conditions. MASM first 
computes a reliability measure of applying a set of pre-trained 
speech models to a mismatch test utterance along the time axis 
or among different feature vector components. It then estimates 
and compensates the mismatch using the reliability measure to 
guide the speech segmentation. Experiments on a serious 
mismatched condition with training on PSTN-speech database 
and testing on mobile GSM-speech database showed that 
MASM outperformed the stochastic match (SM) method, 
especially, for short utterances. 
 
 

1. INTRODUCTION 
 
In a real-world application, the mismatch between training and 
testing conditions often results in significant degradation on the 
performance of an automatic speech recognition (ASR) system. 
This mismatch may be due to the variations in speaker’s 
characteristics, speaking style, transducer response, channel 
effect, background noise, and so on. To reduce the mismatch, 
some form of compensation may result in an improvement on 
the recognition performance. A comprehensive review of 
various compensation techniques can be found in [1]. 

Usually, those compensation schemes use a set of pre-trained 
speech models to firstly recognize the test utterance using the 
mismatch-distorted features, and to then estimate and 
compensate the mismatch between the models and the test 
utterance. For examples, the signal bias removal (SBR) [2] and 
stochastic matching (SM) [3] methods use a pre-trained vector 
quantization (VQ) codebook and the whole set of hidden 
Markov models (HMM), respectively, to recognize the test 
utterance in order to estimate and compensate the mismatch. 

A drawback of those methods lies in the case that the pre-
trained models may not cover the space of the test utterances 
when the mismatch is serious, and hence give lousy recognition 
results in the very beginning to trap the compensation methods 
in a poor local optimum. This is especially true when the test 
utterance is short. 

However, the mismatch distortion may affect the original 
utterance unequally along the time axis and among different 
feature vector components. For example, the first- and second-

order time derivations of the MFCC (i.e., ∆-MFCC and ∆2-
MFCC) are shown to be less sensitive to channel and noise 
interferences [4]. The missing feature theory [5] suggests that we 
could detect and classify the recognition features into reliable 
and unreliable subsets in order to get rid of unreliable parts. 

Based on these ideas, we attempt, in this study, to improve the 
conventional mismatch-compensation approach by measuring 
the reliability of applying a pre-trained speech model to 
recognize the test utterance. Then the reliability measure is 
utilized to guide the speech segmentation for estimating and 
compensating the mismatch. The key concepts are stated in the 
following: 

 Assume the mismatch distortion affects the test utterance 
unequally along the time axis and among different feature 
vector components. 

 Define a divergence measure to evaluate the reliability of 
applying a pre-trained model to recognize the test utterance 
along the time axis and for different feature vector 
components. The divergence measure is further transformed 
by a smoothed zero-one sigmoid function. 

 Use the reliability measure to guide the segmentation of the 
test utterance by the pre-trained speech models for 
estimating and compensating the mismatch. 

The remainder of this paper is organized as follows. In 
Section 2, the SM algorithm is reviewed and a divergence-based 
reliability measure is defined. In Section 3, the proposed 
mismatch-aware stochastic matching (MASM) method is 
presented in detail. Experimental results showing the efficacy of 
the proposed method are discussed in Section 4. Finally we 
summarize our findings in Section 5.  
 
 

2. THE SM ALGORITHM 
 
2.1. The SM framework and performance issues 
 
The goal of speech recognition is to find a most likely 
underlying sequence of events { }1 2, , ..., LS S S=S  embedded 

in the sequence of distorted observations { }1 2, , ..., Ty y y=Y , 

given a set of pre-trained models { }
iX xλ=Λ , where 

ixλ is the 

model of the i-th class. When we consider the compensation in 
feature space, we may assume that the distortion is invertible. 
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The estimate of the original features { }1 2
ˆ , , ..., Tx x x=X  can 

hence be obtained by the transform of the corrupted feature Y  
via an inverse mismatch distortion function ( )F •v , i.e., 
 

( )ˆ ,F= vX Y                                   (1) 
 
where v is the parameter vector of the inverse function. The 

estimated feature X̂  is expected to match better with the pre-
trained model XΛ . 

The SM [3] algorithm can be employed to estimate the 
parameter v . This approach is formulated by maximizing the 

joint likelihood of Y and S  given the model XΛ using the 
Expectation-Maximization (EM) [6] method, i.e.,  
 

,
ˆ arg max ( | , , )XP=

v S
v Y v S Λ                 (2) 

 
This joint maximization over the variables v and S  may be 
done iteratively by keeping v fixed and maximizing over S  
and then keeping S  fixed and maximizing over v [3]. 

However, the performance of SM may be seriously affected 
by the accuracy of the initial condition. When the mismatch 
between Y and XΛ is large, the initial estimate of S  may be 
totally incorrect to let the iteration be trapped in a local optimum. 
This motivates our study in this paper to develop a divergence-
based reliability measure to provide SM a better initial condition. 
 
2.2. Divergence-based reliability measure 
 
The symmetric divergence (or called Jeffrey’s distance) [6] is 
used to measure the probabilistic distance between the feature 
distribution of a test utterance and the distribution of a speech 
model of a recognizer. The divergence of a distribution p with 
respect to another distribution q is defined as [7] 
 

           [ ] ( )
( || ) ( ) ( ) log

( )

p x
D p q p x q x dx

q x
= −

 
 
 ∫            (3) 

 
The divergence is greater than or equal to zero, and equals zero 
when the two distributions are identical. In the case of 
multivariate Gaussian distribution, the divergence between two 
distributions, ( , )

p p
p = u Σ and ( , )

q q
q = u Σ , becomes [7] 

 

( )1 1

1 1

( ) ( )1
( || )

2 ( 2 )

T

q p p q q p

p q q p

D p q
tr

− −

− −

− + −
=

+ + − ⋅

  
 
  

u u Σ Σ u u

Σ Σ Σ Σ Ι
   (4) 

 
To convert the divergence measure into a reliability measure 

of applying the speech model to various mismatch conditions, 
we embed the divergence measure into a smoothed zero-one 
function, e.g., the sigmoid function. The reliability measure is 
then defined as follows: 

                        ( ) 2

1 exp( ))
R D

Dα
=

+
,                              (5) 

 
where α  is a scaling parameter of the sigmoid function. Thus, 
we expect to measure the reliability of applying a speech model 
under various mismatch environments by Equation 5 in term of 
input speech features and the pre-trained speech models.  

If the speech recognizer utilizes only diagonal covariance 
matrices, scalar forms of Equation 4 and 5 can be used to 
calculate the reliability measures for different feature vector 
components, i.e.,  

( )

2 1 1
( ) ( )

1
( || )

2
( 2)

2
   

1 exp( ))

d d

d d

d d

d d

q p

p q

d d d

q p

p q

d d

d

u u

D p q

R D
D

σ σ

σ σ

σ σ

α

− +

=

+ + −

=
+

 
 
 
 
 
  

,  (6) 

 
for 1, ,d M= , where M  is the dimension of the feature 

vector and , , ,
i i i ip p p qu u σ σ are, respectively, the means and 

variances of the d-th feature vector component. Moreover, the 
reliability can also be measured along the time axis, i.e., we 
could compute , ,( )t d t dR D , where t is the time index. 
 
 

3. THE PROPOSED MASM ALGORITHM 
 
The proposed MASM algorithm is an iterative scheme which 
consists of three major steps that can be applied multiple times 
for further improvement. First, it measures the probabilistic 
distance between the distribution of the features of a test 
utterance and the pre-trained speech models. The divergence 
measure is then converted into the reliability measure. Second, 
the reliability measure is used to guide the recognizer by 
emphasizing the reliable feature vector components to obtain a 
better segmentation of the input utterance. Finally the SM 
method is adopted to estimate and compensate the mismatch 
using the segmentation and the pre-trained speech models. The 
detail algorithm iterative in the variable ( )l is summarized 
below: 

 
The MASM Algorithm 

Step 1: Calculate divergence and reliability measures 

1) Perform the recognition procedure using ( )ˆ lX  and the 
pre-trained speech model XΛ to find a segmentation of 
the input utterance. Here, l  is the iteration index. 

2) Construct a set of feature distributions 

1 2

( ) { , , ..., }K

l p p p=p  for recognized speech units 
along the time axis or for different feature vector 
components. 
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3) Compute the divergence measures ( )

,

l

t dD  between the 
feature distributions of the recognized speech units and 
the distributions of their corresponding pre-trained 

speech models 1 2

( ) { , , ..., }K

l q q q=q . 
4) Convert the divergence measure into the reliability 

measure ( )( ) ( )

, ,

l l

t d t dR D . 

 
Step 2: Reliability measure-guided segmentation 

1) Using the reliability measure to guide the speech 
segmentation using the following likelihood function, 
Equation 7. It is worth noting that by using Equation 7, 
the effect of unreliable parts of input speech features 
could be alleviated. 

 

{ }( ) ( )

0 1
1

( ) ( )

, , , , , ,

, ( )
1 1

,

ˆ , , | ( ) ( | )

( | , )
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t t

t

T
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X t t
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t d t d S n d S n d

S n l
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R
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−
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= =

=

⋅

+ −
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∏

∑ ∏

X v S Λ

                  (7) 

 

2) Find the ( 1)-l th+  speech segmentation ( 1)ˆ l+S  by 
 

{ }( 1) ( ) ( )ˆ arg max , , |l l l

XL+ =
S

S X v S Λ                     (8) 

 
Step 3: SM mismatch estimation and compensation 

1) Use ( 1)ˆ l+S  and XΛ to estimate the mismatch ( 1)ˆ l+v  

between ( )ˆ lX  and XΛ . 

2) Use ( 1)ˆ l+v  to find the estimate ( 1)ˆ l+X  of the original 
features. 

 
 

4. EXPERIMENTS 
 
4.1. The databases 

 
To examine the proposed method, two databases were used. 

One is the MAT4500 telephone speech database which was 
collected from the landline PSTN telephones by the Mandarin 
across Taiwan (MAT) project [8]. The speech signals were 
received with a Dialogic D/21H card and digitally recorded with 
a SoundBlaster card. A sampling rate of 8 kHz was used. The 
database was divided into 9 subsets, i.e., subset 1 to 9. Among 
them, nine-tenth of the database subsets 4 to 9 (referred to as 
MAT4500-Training) was used for training the speech models; 
the remaining one-tenth of the database subsets (referred to as 
MAT4500-Test) was used for testing. There are in total 
4,323/480 speakers, 86,544/9,767 utterances, 715,466/56,626 
syllables for training/testing, respectively. 

Another database is a mobile-phone database (referred to as 
ATC_Mobile). It was collected by the Advanced Technology 
Center (ATC) of Computer and Communications Labs. (CCL), 
Industrial Technology Research Institute (ITRI), Taiwan, 

through wireless GSM mobile phones. The speech signals were 
received and digitally recorded using only a Dialogic D/41-ESC 
card. The sampling rate is 8 kHz. There are 186 speakers; each 
produced about 30 utterances, resulted in total 5,850 utterances, 
35,290 syllables, about 8.4 hours recording. 

In this study, MAT4500-Training was used for training the 
speech models, MAT4500-Test and ATC_Mobile were used to 
evaluate various compensation methods in both matched (i.e., 
MAT4500-Training vs. MAT4500-Test) and mismatched (i.e., 
MAT4500-Training vs. ATC_Mobile) situations. It is worth 
noting that the mismatch between MAT4500 and ATC_Mobile 
is serious because the recording transducer (Dialogic vs. 
SoundBlaster cards), channel (PSTN vs. GSM) and telephone 
sets (telephone vs. mobile phone) are all different. 
 
4.2. The baseline, SBR and SM schemes 
 
Since we are interested in the training-test mismatch 
compensation problem due to transducer, phone set or channel 
mismatch, a series of free-syllable decoding experiments were 
evaluated. In all experiments, continuous density HMM with 
left-to-right topologies and Gamma duration models were used. 
The recognizer was gender-dependent with 100 right-context-
dependent (RCD) initials and 40 context independent (CI) finals 
for each gender. The numbers of states and mixtures were 
empirically set to 3 and 5 states, each with maximum 32 
mixtures, for initial and final HMMs, respectively. In addition, 
one single-state silence model with 64 mixtures was used. A 38-
dimensional feature vector including 12 MFCC, 12 ∆-MFCC, 12 
∆2-MFCC, 1 ∆-log-energy and 1 ∆2-log-energy was used. 

To compensate the channel distortion, the SBR and SM 
methods were utilized. For SBR, two gender-dependent 32-
codeword codebooks were trained from MAT4500-Training. For 
SM, feature-space bias estimate utilizing the whole HMMs and 
one-stage search was used. Moreover, for both SBR and SM, the 
mismatch-compensation procedures were also incorporated in 
the training phase in order to generate more compact HMMs. 

The results of the baseline, SBR and SM schemes under 
matched and mismatched cases are shown in Table 1. From 
Table 1, SBR greatly improved the performances from 51.9% to 
61.5% and from 26.2% to 40.0% for the matched and 
mismatched situations, respectively. The SM method, which 
used the temporal information of the whole utterance and the 
detail HMMs, improved the performance more significantly to 
62.1% and 44.3% for matched and mismatched situations, 
respectively. 
 
4.3. The MASM scheme 
 
First, to show that mismatch could unequally distorted different 
input feature vector components, 12 static MFCCs were 
removed from the original 38-diemnsional feature vectors. When 
only the left 26-dimensional dynamic feature vectors were used, 
the performance of the systems (referred to as DELTA in Table 
1) was found to be higher than the baseline scheme in the 
matched condition (51.9% vs. 54.2%) and was close to SBR 
system in the mismatched condition (36.9% vs. 40.0%). These 
results showed that static MFCCs were seriously distorted by the 
mismatch distortion and hurt the recognition performance, while 
the ∆-MFCC and ∆2-MFCC were not. In theory, if the mismatch 
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distortion is a constant function, the means of the dynamic 
features should be completely unaffected [4]. 

According to the DELTA results, the dynamic features have 
the potential to give SM better initial speech segmentation to 
avoid being trapped in a local optimum. A heuristic method to 
improve the SM method is therefore suggested. In the 1st SM 
iteration, the segmentation procedure was modified to use only 
the dynamic features. After the 1st iteration, all 38 features were 
used. It is worth noting that this modification is similar to 
change the initial condition of SM by artificially setting the 
reliability measure to zero for 12 static MFCCs and to one for all 
other 26 dynamic features. The results in Figure 1 (referred to as 
SM_DELTA_1 and SM_DELTA_3) show that this heuristic 
method maintains the performance under the matched situation 
while improve the performance (from 44.3% to 45.9% and 
47.2% while using 1 and 3 bias terms, respectively) in the 
mismatched condition. 

The performance of the proposed MASM method was then 
evaluated. In Step 1, three distributions for initial, final and 
silence were computed for every different feature vector 
components. The results listed in Table 1 (referred to as 
MASM_1 and MASM_3), showed that MASM further increased 
the performance to 46.2% and 48.1%, while using 1 and 3 bias 
terms, respectively, in the mismatched condition. 

Finally, the relationship between system performance and 
utterance length under mismatched condition was analyzed. As 
shown in Figure 1, the shorter the utterance was, the more 
improvement the proposed method achieved. So, the proposed 
methods could reliably compensate short utterances under 
serious mismatch condition. In summary, the results in Table 1 
and Figure 1 confirmed the efficiency of the proposed method. 
 
 

5. CONCLUSIONS 
 

We have proposed an MASM algorithm based on a reliability 
measure to compensate the mismatch between the training and 
testing conditions. Experiments on a serious mismatched 
condition with training on PSTN-speech database and testing on 
GSM-speech database, have verified that: 

 different feature vector components are unequally affected 
by the mismatch; 

 SM may perform better than SBR under the mismatched 
condition; 

 MASM could further improve the performance of SM, 
especially, for those short utterances under the mismatched 
condition. 

One area of further research is to study the reliability measure 
under various situations, especially, to extend to measure the 
reliability under noisy condition. 
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Table 1: Experimental results of various methods under matched 
and mismatched situations. 

 Match MisMatch # of Biases 
MASM_3 - 48.1% 3 
SM_DELTA_3 - 47.2% 3 
MASM_1 - 46.2% 1 
SM_DELTA_1 62.1% 45.9% 1 
SM 62.1% 44.3% 1 
SBR 61.5% 40.0% 1 
DELTA 54.2% 36.9% - 
BASELINE 51.9% 26.2% - 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Figure 1: Analysis of the ATC_Mobile recognition results. 
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