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ABSTRACT

Recently, we witness several works of considering the uncertainty
of feature compensation module for robust speech recognition. In
most of these studies, the modelling and the exploiting of the un-
certainty are seldom treated in a unified way. In this paper, we
present a new framework, which casts the problem of consider-
ing the uncertainty of feature compensation module as the one of
designing a new discriminant function, thus the uncertainty param-
eters of the feature compensation module and other parameters of
the discriminant function can be estimated jointly under a consis-
tent criterion of minimum classification error (MCE). It is hoped
that such MCE-trained discriminant function can improve the per-
formance of a maximum discriminant function based speech recog-
nition system. The preliminary experimental results on Aurora2
multi-condition tasks have confirmed the above conjecture.

1. INTRODUCTION

Current automatic speech recognition (ASR) systems are always
compelled to be used in an unexpected noisy environment which
is quite different from the environment where the training speech
were collected. In order to alleviate the performance degradation
caused by such mismatch, usually either a feature compensation
module is embedded as part of the front-end processing which
aims at transforming the feature vector of noisy speech to that of
pseudo clean speech, or a model compensation procedure is used
to derive a more accurate model to model the noisy speech. In both
cases, an exact knowledge of the mismatch mechanism is often
unavailable, thus the compensation results can not be fully trusted.
Based on this reasoning, three research directions were pursued to
consider the uncertainty during recognition.

The first direction is to use the so-called robust decision rules,
such as the MINIMAX classification rule [12] and the Bayesian
Predictive Classification (BPC) rule (e.g., [8, 9]), to take into ac-
count the uncertainty of the Hidden Markov Model (HMM) pa-
rameters in the model space during recognition. The second di-
rection is the so-called Bayesian predictive density based model
compensation method, where each Gaussian mixture component
in a continuous density HMM (CDHMM) based ASR system is
replaced with its predictive density by considering the uncertainty
of HMM parameters directly (e.g. [9]) or some transformation
parameters indirectly (e.g., [15, 2]). The third direction is to con-
sider the uncertainty in feature space during recognition. Some
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recent examples include works in [13, 14, 5, 1, 11, 4]. In these
approaches, the estimation of the uncertainty model for feature
compensation is treated separately from the design of the other
components in the speech recognizer. Furthermore, the design cri-
teria used in the above approaches are not directly linked with the
objective of the minimum classification error (MCE).

In [16], we have developed an environment compensated MCE
training approach for the joint design of the feature compensation
module and the recognizer itself. The parameters for both feature
compensation and the CDHMMs of recognizer are updated simul-
taneously or alternatively to minimize the empirical classification
error defined on the training set with a specific form of the discrim-
inant function. By combing the ideas in [5, 4] and the one in [16],
in this paper, we propose to cast the problem of considering the
uncertainty of feature compensation module as the one of design-
ing a new discriminant function. Consequently, the uncertainty
parameters of the feature compensation module and other param-
eters of the discriminant function can be estimated jointly under a
consistent MCE criterion. It is hoped that such MCE-trained dis-
criminant function can improve the performance of a maximum
discriminant function based speech recognition system.

The rest of paper is organized as follows. In Section 2, we
describe the discriminant function in which the parameters of fea-
ture compensation are treated as random with a prior distribution
and embedded into the discriminant function. In Section 3, we
present the update formulae of the parameters which are derived
by minimizing the MCE objective function. In Section 4, we re-
port the illustrative results on Aurora2 database to demonstrate the
effectiveness of the proposed approach. Finally, we summarize the
paper in Section 5.

2. A DISCRIMINANT FUNCTION ACCOUNTING FOR
UNCERTAINTY IN FEATURE COMPENSATION

2.1. General Formulation

Generally speaking, the feature compensation can be regarded as a
process of feature transformation FΘ(·) with parameter Θ, which
estimates the pseudo clean speech feature vector x̂ = FΘ(y) from
the noisy speech feature vector y. In our approach, we will con-
sider the uncertainty of the transformation parameters Θ by treat-
ing them as if they were random. Their prior uncertainty is mod-
elled by a joint a priori probability density function (pdf) p(Θ|ϕΘ),
with Θ ∈ ΩΘ, where ΩΘ denotes admissible region of possible Θ,
and ϕΘ is the set of unknown parameters of the prior pdf. We also
assume that each CDHMM Λ = {aij , csm, µsm, Σsm, i, j, s =
1...L, m = 1...M} of the recognizer is fixed but unknown. It con-
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sists of L states with transition probability aij from state i to state
j. Each state has M Gaussian components with D-dimensional
mean vectors µsm(= [µsmd]Dd=1) and diagonal covariance matri-
ces Σsm(= diag[σ2

smd]Dd=1). csm denotes the weight of m-th
Gaussian component in the s-th state.

Given a noisy speech utterance with a feature vector sequence
Y = (y1, y2, · · · , yT ), we define the following discriminant func-
tion of Y for word sequence W to take into account the uncertainty
of the above transformation parameters Θ:

g̃(Y ; Λ, ϕΘ, W ) � log p(X̂|Λ, W ) = log
∑

S

p(X̂, S|Λ, W )

= log
∑

S

A∗
S

T∏
t=1

p(x̂t|st, Λ, ϕΘ, W ), (1)

where S denotes a possible state sequence,

p(x̂t|st, Λ, ϕΘ, W ) =

∫
ΩΘ

p(x̂t|st, Λ, Θ, W )p(Θ|ϕΘ)dΘ (2)

is the marginal state observation pdf of x̂t, and A∗
S =

∏T
t=1 ast−1st .

The recognizer will choose the word sequence Ŵ as the recogni-
tion result that produces the maximum value of the above discrim-
inant function.

2.2. A Special Case

In our previous work [16], we adopted a specific stochastic vector
mapping function for the feature compensation from the SPLICE
algorithm developed by Microsoft researchers [3]. Consequently,
the feature vector of pseudo clean speech is estimated as follows:

x̂ � FΘ(y) = y +

K∑
k=1

p(k|y)bk , (3)

where

p(k|y) =
p(k)p(y|k)∑K
j=1 p(j)p(y|j) , (4)

and Θ = {bk}K
k=1 is the set of mapping function parameters (also

referred to as correction vectors) associated with the K Gaussian
components p(y|k)’s. The noisy speech feature vector y is as-
sumed to have a Gaussian mixture pdf p(y) =

∑K
k=1 p(k)p(y|k).

In order to make the integration in Eq.(2) tractable, hereinafter
we further simplify the above transformation to be

x̂ � FΘ(y) = y + bk , (5)

where k = arg maxK
j=1 p(j|y). Moreover, each correction vector

bk is assumed to follow a normal pdf N (bk; rk, Ξk) with mean
vector rk(= [rkd]Dd=1) and diagonal covariance matrices Ξk(=
diag[τ2

kd]Dd=1). With these assumptions, a specific discriminant
function can be derived as

g̃(Y ; Λ, ϕΘ, W ) = log
∑

S

A∗
S

T∏
t=1

M∑
m=1

cstm · (6)

N (yt; µstm − rkt , Σstm + Ξkt) ,

where kt denotes the index of correction vector chosen at time t,
and ϕΘ = {rk, Ξk}.

3. MODELLING UNCERTAINTY IN STOCHASTIC
VECTOR MAPPING WITH MINIMUM
CLASSIFICATION ERROR TRAINING

As mentioned above, in our proposed approach, both the CDHMM
parameters and the hyperparameters of the feature compensation
parameters are unknown. In order to find their optimal values in
terms of achieving the minimum empirical classification error on
training set Y = {Yi}I

i=1, the objective function should be defined
as follows,

�(Λ, ϕΘ) =
1

I

I∑
i=1

l(Yi; Λ, ϕΘ) , (7)

with l(Y ; Λ, ϕΘ) being the loss function for the training utterance
Y defined as:

l(Y ; Λ, ϕΘ) =
1

1 + exp(−αd(Y ; Λ, ϕΘ) + β)
, (8)

where α and β are two control parameters. In the above equation,
d(·) is a misclassification measure defined as

d(Y ; Λ, ϕΘ) = −g̃(Y ; Λ, ϕΘ, Wc) + G̃(Y ; Λ, ϕΘ) , (9)

with

G̃(Y ; Λ, ϕΘ) =
1

η
log{ 1

N

N∑
n=1

exp[η · g̃(Y ; Λ, ϕΘ, Wn)]},

where η is a positive control parameter, Wc and {Wn} are the
correct word sequence and the N-best competing word sequences
of the training utterance Y , respectively.

3.1. Updating Parameters Using Sequential Gradient Descent
Algorithm

Given the objective function in Eq.(7), the following sequential
gradient descent algorithm is usually used to update the parame-
ters iteratively. Let’s use Γ to denote generically the parameters
to be estimated, {Λ, ϕΘ}. Given Y , we first randomize the order-
ing of {Yi} and then we present the training samples sequentially.
Upon the presentation of the j-th training sample, Γ is updated as
follows:

Γj+1 = Γj − εj
∂l(Yj ; Γ)

∂Γ
|Γ=Γj , (10)

where “j” represents the cumulative number of training samples
presented so far, εj is the learning rate, and

∂l(Y ; Γ)

∂Γ
= αl(1 − l)

{
− ∂g̃(Y ; Γ, Wc)

∂Γ
(11)

+

N∑
n=1

[ exp(η · g̃(Y ; Γ, Wn))∑N
i=1 exp(η · g̃(Y ; Γ, Wi))

∂g̃(Y ; Γ, Wn)

∂Γ

]}
.

One pass of the training samples is called an epoch. After the
completion of each epoch, we need to randomize the ordering of
{Yi} again.

Besides this sequential gradient descent algorithm, a batch-
mode approximate second-order optimization algorithm, namely
Quickprop [6, 17], may also be used to minimize the above objec-
tive function. No matter which approach is used, the partial deriva-
tive of the discriminant function with respect to the parameters to
be estimated, ∂g̃/∂Γ, need be calculated utterance by utterance.
In the following, we present the formulae related to these partial
derivatives.
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3.2. Partial Derivatives of The Discriminant Function

In order to maintain the constraints for both the CDHMM param-
eters and the hyperparameters of the a priori density of the cor-
rection vectors, the following parameter transformation, which is
similar to that described in [10], are applied to the relevant param-
eters during updating (For simplicity, we only list the formulae
related to µsm, Σsm, rk and Ξk ):

µ̃smd =
µsmd

σsmd
, (12)

σ̃smd = log σsmd , (13)

r̃kd =
rkd

τkd
, (14)

τ̃kd = log τkd . (15)

Therefore, given a training utterance Y = {y1, y2, ..., yT }, the
current value of the partial derivatives of discriminant function
with respect to the above parameters are as follows:

∂g̃

∂µ̃smd
=

T∑
t=1

ζ̃t(s, m)

(
ytd + rktd − µsmd√

σ2
smd + τ2

ktd

)
, (16)

∂g̃

∂σ̃smd
=

T∑
t=1

ζ̃t(s, m)

[
(ytd + rktd − µsmd)2

σ2
smd + τ2

ktd

− 1

]
·

σ2
smd

σ2
smd + τ2

ktd

, (17)

∂g̃

∂r̃kd
= −

T∑
t=1

∑
s,m

ζ̃t(s, m)

(
ytd + rktd − µsmd√

σ2
smd + τ2

ktd

)
·

δ(kt − k) , (18)

∂g̃

∂τ̃kd
=

T∑
t=1

∑
s,m

ζ̃t(s, m)

[
(ytd + rktd − µsmd)2

σ2
smd + τ2

ktd

− 1

]
·

τ2
ktd

σ2
smd + τ2

ktd

· δ(kt − k) , (19)

where ζ̃t(s, m) denotes the occupation probability of Gaussian
component m in state s at time t calculated with the newly de-
fined marginal density in Eq.(2), and δ(·) denotes the Kronecker
delta function.

Using the above equations, the transformed parameters can be
updated iteratively. After each update of the transformed param-
eters, the original parameters will be obtained by applying the in-
verse transform of Eq.(12-15). For example, if the (j + 1)-th up-
date of µ̃smd(j + 1), σ̃smd(j + 1), r̃kd(j + 1) and τ̃kd(j + 1) are
calculated, then the (j + 1)-th update of the original parameters
will be

µsmd(j + 1) = µ̃smd(j + 1)σsmd(j) , (20)

σsmd(j + 1) = exp{σ̃smd(j + 1)} , (21)

rkd(j + 1) = r̃kd(j + 1)τkd(j) , (22)

τkd(j + 1) = exp{τ̃kd(j + 1)} , (23)

and are used to estimate ζ̃t(s, m) for the next update of the trans-
formed parameters.

4. EXPERIMENTS AND RESULTS

4.1. Aurora2 Database and Experimental Setup

The task used to verify our idea is the speaker independent recog-
nition of connected digit strings. The recognition results presented
in this section are produced on the Aurora2 database using the ref-
erence of Aurora front-end version 2.0 [7]. In this front-end, for
each frame, a 39-dimensional feature vector is generated, which
consists of 12 MFCCs (MFCC of order 0 is not included) and
logarithmic frame energy, plus their first and second order deriva-
tives. Whole word left-to-right CDHMMs are created for all dig-
its. The CDHMM consists of 18 states, each having 3 Gaussian
mixture components with diagonal covariance matrices. Besides,
two pause models, “sil” and “sp”, are created to model the si-
lence before/after the digit string and the short pause between any
two digits. In the BASELINE system shown in Table 1, all of
the CDHMMs are trained from the collection of 8440 utterances
that come from 20 subsets representing 4 different noise scenarios
(i.e., suburban train, babble, car and exhibition hall) at 5 different
SNRs (i.e., 20dB, 15dB, 10dB, 5dB and the clean condition). The
test set consists of three different parts. For the Test Set A, the
same four types of noises as those in training set are added to its
subsets, but with 7 different SNRs. For the Test Set B, another 4
types of noises (i.e., restaurant, street, airport and train station)
are added to its subset with also 7 SNRs. For the Test C, suburban
train and street noises are used as the additive noise sources but the
speech and noise are filtered with a MIRS characteristic while the
G.712 characteristic is used in training set as well as the first two
test sets. During the recognition, an utterance can be modelled by
any sequence of digits with the possibility of a “sil” model at the
beginning and at the end and a “sp” model between two digits. All
of the recognition experiments are performed with the search en-
gine of HTK3.0 toolkit [18] and follow exactly the default scripts
provided in Aurora2 CD-ROM.

4.2. Experimental Results

In order to illustrate the potential of considering the uncertainty
in the procedure of stochastic vector mapping, a reference system
using the deterministic parameters for stochastic vector mapping
is built first which is labeled as “VM-DET” in Table 1. The value
of the deterministic parameters are estimated using the SPLICE
algorithm. The CDHMM parameters are estimated by using an
ML criterion. The details about the construction of this reference
system can be found in [16].

In the experiment considering the uncertainty of the stochas-
tic vector mapping, which is labeled as “VM-UNCERTAIN” in
Table 1, we use the discriminant function defined in Eq.(6) to
characterize the decision function of the recognizer. In order to
estimate the hyperparameters of the prior distribution of the cor-
rection vectors used in stochastic vector mapping, for each noisy
training feature vector yt, we estimate its pseudo-clean version x̂t

by using Eq. (3). The corresponding bias vector bt = x̂t − yt

is treated as a sample of p(bk) = N (bk; {rkd}, {τ2
kd}), where

k = arg maxK
j=1 p(j|yt). In this way, we can collect a set of bias

vector samples for each p(bk). The hyperparameter rk is set to be
the same as the corresponding estimate in conventional SPLICE
algorithm and τ2

kd is estimated as a sample variance with rkd as
mean. The CDHMM parameters are the same as in reference sys-
tem. From the experimental results of VM-UNCERTAIN and VM-
DET, it is observed that although VM-UNCERTAIN can perform
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Table 1. Aurora2 Word Error Rate (Multicondition Training)
Set A Set B Set C Overall

BASELINE 11.93% 12.78% 15.44% 12.97%
VM-DET 9.99% 12.92% 13.34% 11.83%

VM-UNCERTAIN 9.37% 13.24% 13.03% 11.65%
UNC-MCE(Ξ) 8.95% 12.21% 12.46% 10.96%

slightly better than that of VM-DET in terms of overall accuracy,
the accuracies in Test Set B are actually degraded. This result is not
surprising because the success of the VM-UNCERTAIN is highly
dependent on the goodness of the assumed prior distribution for the
specific testing scenario. We guess that the proper distribution of
correction vectors for Test Set B is quite different from the one de-
rived as above from the training samples. That is why we propose
the MCE training approach with the newly designed discriminant
function in this paper, hoping that the direct link between the set-
ting of the relevant hyperparameters and the MCE objective of the
recognizer may offer a better estimation.

To examine the correctness of the above statement, the algo-
rithm described in Section 3 is partly implemented and the cor-
responding experiment is labeled as “UNC-MCE(Ξ)” in Table 1.
In this experiment, the CDHMM parameters and hyperparameters
rk are the same as in the experiment “VM-UNCERTAIN”, while
the variance hyperparameters, Ξk, are estimated using MCE cri-
terion. It is observed from Table 1 that the MCE training of Ξk

helps reduce the word error rate from that of 11.65% by VM-
UNCERTAINTY to 10.96%. Compared with that of baseline sys-
tem, it represents a relative word error rate reduction of 15.5%.

5. DISCUSSION AND CONCLUSION

In this paper, we present a novel framework to introduce the uncer-
tainty into the classifier design and the parameter estimation for the
uncertain feature compensation under a consistent MCE principle.
The preliminary experimental results on Aurora2 have shown the
potential of this new approach. Considering the fact of that our
system in [16] has provided a relative error reduction of 38.42%
compared with the baseline system, which jointly update the cor-
rection vectors and CDHMM parameters through MCE training
without accounting for uncertainty, it would be interesting to ver-
ify in our future work whether an even better performance can be
achieved by a joint MCE estimation of all the hyperparameters as
well as the CDHMM parameters using the new discriminant func-
tion as defined in this paper. Furthermore, if we treat the CDHMM
parameters also as if they were random, then the uncertainties in
both the feature compensation and the model compensation can be
embedded together by designing a new discriminant function ac-
counting for both uncertainties, which might provide more space
for improving our ASR system in dealing with mismatch condi-
tions where the accurate information about the mismatch are not
available.
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