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ABSTRACT 
 
In this paper we propose a two-stage recognition schema 
for open set text-independent speaker recognition tasks. 
First we try to find a best matched model (which gets the 
best score) for the unknown speaker like many other 
systems. But then unlike other classical threshold selecting 
methods that make decisions based on the best score, we 
use the scores over a reference speakers set as a whole 
(called the set-score pattern): a binary classifier (e.g., an 
SVM) is then built to recognize acceptable and rejectable 
patterns. The results show that the set-score pattern 
classification method gives reasonably good performance. 
An obvious improvement has been seen compared to 
simple threshold selecting methods. And the painful 
procedure to choose a good threshold can be avoided too. 

 

1. INTRODUCTION 
 
Speaker recognition, one important branch of speech 
processing, is the process of automatically recognizing 
who is speaking by using speaker-specific information 
included in speech waves [1].  According to the 
constraints of the utterances, speaker recognition methods 
can be divided into two major categories: text-dependent 
methods and text-independent ones. The former require 
the speaker to provide utterances of words or sentences 
that the system prompts, and the latter do not. Speaker 
recognition can also be classified into “open set” and 
“close set” cases with respect to whether there is in the 
recognizing process a decision procedure to tell if “the 
unknown does not match any of the models” [2]. As for 
this paper, only open set text-independent speaker 
recognition is concerned. 

Being a purely acoustic recognition task, text-
independent speaker recognition faces several challenges, 
namely the high variability of channel properties and the 
question of choosing appropriate feature parameters and 
model structures to capture the unique characteristics of an 

individual voice. Currently, short-term cepstrum-based 
features are most commonly used. And among the various 
modeling techniques in application, the most successful 
are statistical models including hidden Markov models 
(HMM), vector quantization (VQ) and Gaussian Mixture 
models (GMM), etc [2].  

In common cases, a speaker recognition system 
calculates the distance (sometimes in the form of a 
probability) between the unknown speaker and each 
known model and then chooses the best matched as the 
result. We call each distance a score. As for open set cases, 
a fixed or adaptive threshold is always used to determine if 
the best score is good enough so the result can be accepted. 
It is often difficult to find appropriate thresholds because 
the speakers and utterances vary so much. In this paper we 
propose a two-stage recognition schema to overcome this 
problem. First, we use a VQ-based classifier to find the 
best matched model for the unknown speaker: we called it 
the speaker classifier. Second, a binary classifier (an SVM) 
is applied and rejection decisions are made based on the 
scores over a reference speakers set (called the set-score 
pattern), so that a threshold selecting procedure can be 
avoided: we called it the set-score pattern classifier. 

This paper is organized as follows: first we discuss the 
structure of the speaker classifier in section 2, and then the 
set-score pattern classifier in section 3. Finally, we present 
experimental results in section 4, followed by the 
conclusions in section 5. 
  

2. THE SPEAKER CLASSIFIER 
 
The most widely used statistical modeling techniques in 
text-independent speaker recognition are VQ and GMMs. 
Considering its simplicities and robustness, we choose VQ 
as the basic method in the first stage. 

In a VQ-based recognition system, a speaker is 
modeled as a set of feature vectors generated from his/her 
voice samples. When training, the speaker models are 
constructed by clustering the feature vectors into N 
separate clusters called cells. Each cell is then represented 
by a code vector, which is often the average vector of that 
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cell. The resulting set of code vectors is called a codebook, 
and is stored in the speaker database.  In the recognizing 
stage, an input utterance is vector-quantized by the 
codebook of each reference speaker. The VQ distortion in 
the codebook is accumulated (over the entire utterance) 
and is used for making the result determination (Fig. 1) [6]. 

 

 
 

Fig. 1: Block diagram of a VQ-Based recognition system 
 

In a system with M  reference speakers, denote the 
codebook for speaker i as: },,,{ 21 iNiii cccC L= , 

Mi ,,1L= , where N is the size of a codebook and ijc  is 
the code vector of codebook i’s  jth cell. The matching of 
an unknown speaker to the reference speakers set is then 
performed as follow: the sequence of feature vectors 

},,,{ 21 TxxxX L=  is extracted from the utterance, the 
distance between X and every Ci : ),( iCXd , is calculated 
by some distortion measurement, and the codebook with 
minimal distance is choosed as the recognition result, i.e.: 

)},({minarg i
i

CXdresult =  (2.1) 

An simple algorithm to calculate the distance ),( iCXd  is 
to accumulate the distance (to be simplified, we use 
Euclidean distance) between every feature vector tx  and 

the corresponding nearest code word )(tikc  in codebook 

iC : 

∑=
t

tikti cxdCXd ),(),( )(
  (2.2) 

Various kinds of modification to the distance measurement, 
for example, weighted Euclidean distance, have been 
made to the VQ-based systems and have achieved more or 
less performance improvements.  

With the basic system mentioned above, we can now 
define the terms of “score” and “set-score” in detail. For a 
feature vector sequence X and a codebook iC , ),( iCXd  
is called a score of X on codebook iC  . For scores of a 
feature sequence X and a reference set S with M speakers 
(represented by M codebooks), vector 

)},(,),,(),,({ 21 MS CXdCXdCXdd L=  is called a set-
score of X on speakers set S. The speaker classification 
process can be viewed as the procedure of searching for 
the best score of the feature vector sequence (derived from 
the utterance) on the codebooks then. Here we can see that 
the set-score on the speakers set S is a byproduct. 
 

3. THE SET-SCORE PATTERN CLASSIFIER 
 
3.1. Rejection considerations for open set recognition 
 
For close set systems, when the best score is found, the 
corresponding model is output as the recognition result. 
But when dealing with open set cases, one more question 
must be answered: is the score good enough or is it only 
better than others (the match might be quite bad in fact).  

A common way is to define a threshold for each model: 
if the score is better than the threshold we accept the result, 
otherwise reject it. But it is not easily applicable because 
speakers and utterances vary all the time and it requires 
quite some specialized knowledge and empirical 
information to get a good threshold. 

Further more, we can see that the threshold selecting 
methods use only part of the score information (the best or 
the N-best). How if we use the entire scores information? 
Here comes the idea. We don’t care too much on the 
numerical value of a single score or several, on the other 
hand, we regard the scores on the speakers set (the set-
score) as a pattern of the speaker and try to apply a 
classifier on them. Obviously it is a binary classification 
problem: to be or to be not. Several methods have been 
considered, such as Multi-Layer Perceptron (MLP) and 
SVMs. We decide to use SVMs because they have strong 
generalization capacities and are much faster (using SMO 
Sequential Minimal Optimization algorithm [5]). 
 
3.2. Support Vector Machines 
 
In recent years, Support Vector Machines have been used 
for a wide variety of classification problems. They have 
shown good generalization capacities in application. In 
short, SVMs map the input feature vectors (the input space) 
into a high dimensional space (called the feature space), 
and then try to find an optimal hyper-plane (a linear 
classifier: bwxxf +⋅=)( ) to separate the train samples. 
The non-linear mapping provides SVMs the power to 
accomplish complex classification tasks, and the simple 
architecture of a linear classifier in the feature space 
supplies them a good control of generalization capacities. 

An SVM works as follow: consider the training sample 
vectors of two classes,  

),( ii yx , n
i Rx ∈ , }1,1{ −+∈iy . 

For linear separable cases, the SVM try to find a hyper-
plane in all possible separating hyper-planes which has the 
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maximal margin. We can do that by minimizing 2w , 

subject to the constraints: 
1)( ≥+⋅ bwxy ii , i∀   (3-1) 

The problem can be converted to a convex quadratic 
programming problem and in the problem the training data 
appears only in the form of dot products, ji xx ⋅  [3]. 

As for non-linear cases, we first map the data to a 
Euclidean Space H using mapping HR n →Φ : , then 
search for the optimal hyper-plane in space H  instead 
of nR . Like above, the training algorithm depends on the 
data only through dot products in H  (i.e., )()( ji xx Φ⋅Φ ). 

So, if we can find a kernel function K : 
)()(),( jiji xxxxK Φ⋅Φ= , we can even avoid the 

explicit form of mapping Φ . Practically we are more 
interested in the kernel function than the mapping, as 
Mercer’s Condition can tell what kind of kernel functions 
have corresponding mapping pairs },{ ΦH  [3]. 

There are various kinds of kernel functions used in 
practice. Two kernels used in our systems: the polynomial 
kernel (Eq.3-2) and the Gaussian radial basis function 
(RBF) kernel (Eq.3-3). 

pyxyxK )1(),( +⋅=   (3-2) 
22 2),( σyxeyxK −−=   (3-3) 

One more thing to be mentioned is the Soft Margin, which 
is introduced to handle non-separable cases. Constraints 
(3-1) are relaxed by introducing positive slack variables iξ : 

iii bwxy ξ−≥+⋅ 1)( , 0≥iξ , i∀ . (3-4) 
And now the optimizing problem is to minimize 

∑+
i

i
2 ξCw  [4]. Here C is the penalty function and 

controls the complexity/generalization capacities of the 
machine. Roughly speaking, when C becomes larger, the 
machine fits closer to the training data but lose some 
generalization capacities, or otherwise. 
 
3.3. Set-score pattern classification 
 
Denote 0S  for the set of speakers which the system 
“knows”, which is set up by the speaker classifier 
mentioned in Sec. 2: a rejection decision: if the speaker 
belongs to 0S  or not, is to be made. Denote rS for the 
reference speakers set on which the set-score is calculated. 

rS  is set up in similar ways as those of 0S . rS is not 
necessarily equal to 0S . In fact, we define 2 operation 
modes with respect to the characteristics of rS : if rS  is 
equal to 0S , we call that the system is working in “self-set” 
mode, otherwise, “reference-set” mode. In “self-set” mode, 

the codebooks of rS  are the same as those of 0S , thus do 
not need to be trained separately. In “reference-set” mode, 
if rS  is not a subset of 0S , extra training is required. 

After the codebooks of  rS  have been constructed, the 
speaker’s speech is divided into subsequences of equal 
lengths and each subsequence’s set-score Sd on rS  is 
calculated. A classification machine (in our case, an SVM) 
is then trained using the set-scores: for each speaker i in 

0S , a optimal classification hyper-plane between set-
scores of i and those of others is built. 

When recognizing, the speaker classifier first find out 
the best matched speaker for the input speech data, then 
set-scores of the input is calculated and then classified by 
the speaker’s classification hyper-plane. 
 

4. EXPERIMENTS 
 
A database of 200 speakers (120 males and 80 females) 
collected in laboratory is used in our experiments. The 
wave data were recorded at the sampling rate of 8.0 kHz 
and the quality of 16 bits per sample. The average duration 
of the training samples is about 2 minute per speaker. 
Another 60s speech sequence for each speaker is recorded 
for testing purpose. 

The feature extraction process is performed using the 
following steps:  

· Divided into 60 ms frames, shifted by 30 ms. 
· DC value removal, high-emphasis filtering with 

filter )95.01(1 1−− z  , hamming windowing. 
·16 LPC-cepstral coefficients are calculated and then 

concatenated with the derivatives of themselves. Thus the 
dimension of the feature vector is therefore 16 + 15 = 31. 
 
4.1. The baseline system (the speaker classifier) 
 
The baseline system is VQ-based with the codebook size 
of 64. All the 200 speakers are included in this system. For 
each speaker, the first half of the training speech (1 minute) 
is used to train his/her codebook. When recognizing, the 
test speech is divided into three different subsequences of 
the lengths 12 seconds, 6 seconds and 3 seconds. The 
recognition results are shown below: 

 
Systems and parameters Recognition rate 

VQ, 3.0s, codebook size 64 88% 
VQ, 6.0s, codebook size 64 97.5% 
VQ, 12s, codebook size 64 98.5% 
VQ, 6.0s, codebook size 80 98.5% 

 
Tab. 1:  Recognition results of the baseline systems 

 
We can conclude that the system can achieve quite high 
accuracy when the testing speech is no shorter than 6 
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seconds. Thus out comes our speaker classifier: a 64-code 
VQ system with 1 minute training speech and 6 seconds 
testing speech.  
 
4.2. The set-score pattern classifier 
 
First we test the “self-set” mode recognition. We choose 
150 speakers randomly as the known speakers set 0S , and 
the others as the unknown. The codebooks are simply 
copied from the baseline system. Then each speaker’s 
wave data is divided into 6 second sequences to train the 
set-score classifier (if not equal, a compensatory factor is 
applied). We try different kinds of kernels and parameters 
when training the SVMs. With the trained system, we 
divided the 1 minute testing speech into 6s sequences (9 
sequences per speaker) and test each. The results are listed 
in Tab. 2: 
 

Methods and parameters  Accept  
(all/bd) 

Reject 
(all/bd) 

VQ (adaptive thresholding) 88% 90% 
P/D3/C100 71%/74% 93%/87%
P/D5/C100 74%/76% 88%/81%
R/C100 76%/79% 94%/86%
R/C100/1m 84%/79% 94%/93%
R/C50/2m 89%86% 96%/92%

 
VQ/SVM 
(self set) 

R/C200/2m 89%/86% 96%/93%
 

Tab. 2: Recognition correct rate of VQ/SVM systems 
NOTE: The adaptive threshold selecting method has not 

been fully optimized. Acronyms: P: a polynomial kernel, R: an 
RBF kernel, D (polynomial kernels only): degree, C: the penalty 
function, 1m means using another half of the 2min speech when 
training the SVM (the default is to reuse the first half 1min), 2m 
means using the entire 2min speech, “all”: all the scores are used, 
“bd”: the best discarded. 
 

To test the efficiency of the set-score pattern, we 
attempt to discard the best score both in the training and 
the recognizing stage, performance degrades, but not too 
much (see Tab.2). We can also see that when training data 
increase, the correct rate increases quite much too: this is 
mainly because 1 min speech can only produce 10 set-
scores, which may be too few for an SVM classifier. RBF 
kernels also have given better results in our experiments. 

We also test the “reference set” mode. The 200 
speakers is divided into 3 sets: 100 for the reference set,  
50 for the known, and 50 for the unknown. The 
recognition rate (R/C100) for the reference and the known 
set are 76% and 68%, and the rejection rate for the 
unknown is 93%, not so good yet. One reason is that the 
reference set is smaller and less representative. 

A typical error rate distribution of speakers for a good 
result (R/C200/2m) is show in Fig. 2. We can find out that 
for most speakers, the error rates are low: for acceptable 

cases, more than 50% speakers (see 0% error rate column) 
pass all 9 tests, more than 85% speakers fail no more than 
1 test), and the numbers for rejections cases are even 
better (75% and 93%, respectively). 

 

 
 

Fig. 2: Error distribution of speakers 
 

5. CONCLUSIONS 
 
There are two main points in our experiments 
considerations. The first is to use as much information as 
possible: i.e., we use a set-score other than a single best 
score for rejection decision. The second is to build a 
simple system with a better generalization capacity and 
then try to make improvements.  

From the results we can conclude that both set-score 
pattern and SVMs are quite robust. And with enough 
training data, they are also efficient. Improvements can 
also be made too: better score representation, other 
classification methods can be tried, etc. 
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