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ABSTRACT

In this paper we introduce a MAP estimation of spea-
ker modelsin Automatic Speaker Verification with adis-
tance constraint: the D-MAP adaptation. The D-MAPis
based on the Kullback-L eibler distances and provides an
easy way to automatically compute a speaker-dependent
adaptation of the model parameters. We formulate adis-
tance constrained MAP criterion and we show an equi-
vaence between the D-MAP adaptation and the score
normalization called D-Norm. From the results obtai-
ned with the D-MAP technique, we show that this me-
thod gives better performance than a classical speaker-
independent MAP adaptation. It is also found that the
D-MAP based system without score normalization per-
formssimilarly to aclassical MAP system with amodel-
based score normalization.

1 Introduction

In text-independent Automatic Speaker Verification
(ASV), the main state-of-the-art approach for speaker
modeling consists in using Gaussian Mixture Models
(GMM) [1]. This family of models are suited to des-
cribe multi-variate real densities when choosing an ap-
propriate number of gaussians in the mixture, and they
provide agood way to model statistical behavior of spea-
ker acoustic features. Bayesian adaptation of the speaker
models, with a Maximum A Posteriori (MAP) criterion,
have shown to be more efficient that the Maximum Like-
lihood (ML) estimation, in particular when the amount
of training data available is limited. In the MAP esti-
mation scheme, the speaker models are adapted from an
a priori model, called the background model or world
model, using the data of the training utterance for each
speaker. This method gives more robust estimates of the
model parameters because it limits over-adaptation on
the training data (as opposed to the ML estimation) by
assuming a prior distribution for these parameters. The
background model, which isused as an initial model for
adaptation, is built using a large amount of speech data
from various speakers, with ML estimation.

Crucial factors in MAP adaptation are the weigh-
ting coefficients between the a priori parameters and
the parameters derived directly from the training data
(i.e. the ML parameters). These coefficients balance the
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weight between a priori knowledge taken from the back-
ground model, and new knowledge from the training
utterance. Thus, in a general way, it should be given
a high contribution, in the adaptation process, to trai-
ning utterances with high information content, in term
of variety and amount of acoustic features, because
in these cases the ML estimates of model parameters
should be good. On the contrary, training utteranceswith
poor information content would lead to bad ML esti-
mated parameters and then should have a low weight
in MAP adaptation, letting prior parameters to domi-
nate. In the GMM MAP theory [2], the weighting coef-
ficients are data-dependent, gaussian index-dependent,
and can be parameter-dependent. However, in prac-
tice, more simple determinations of these coefficients
are usualy used by considering coefficients that are
gaussian-independent and parameter-independent, and
which only depend on the training utterance duration or
are simply fixed to a constant value.

In this paper, we propose an aternative way to au-
tomatically determine a speaker dependent weighting
coefficient using information content considerations on
the training data. We use a relative information mea-
sure from the field of information theory which is the
Kullback-Leibler (KL) distance between an estimated
speaker model and the world model. Recent works [3]
have shown that the KL distances between the speaker
models and the world model are strongly correlated with
the mean scores delivered by these models for impos-
tor accesses. We propose a technique to normalize the
speaker models at the estimation level such that every
speaker models are at a fixed distance from the world
model, by computing the appropriate weighting coeffi-
cient. This should imply aconcentration of the impostor
scores and thus a better separation of the distributions of
client scores and impostor scores. This technique can be
formulated as a distance constrained MAP adaptation,
the D-MAP, which is exposed in section 2 of this paper.
We first recall the classical MAP adaptation formulae
for GMM and the various approaches used in practice to
determine the weighting coefficient for adaptation. We
then expose a constrained MAP criterion based on the
KL distances and we explain the links between the D-
MAP adaptation and the score normalization called D-
Norm (distance normalization). The experimentsand re-
sults of the D-MAP technique are reported in section 3
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where we show that thistechnique, which determines an
individual weighting coefficient for each speaker, out-
performs the classical MAP technique with a global op-
timization of a fixed weighting coefficient. The section
4 concludes this paper and exposes the perspectives of
this work.

2 D-MAP estimation of GMMs

21 MAP adaptation of GMMs

The probability density function (p.d.f) p(y) of a K-
component GMM for d-dimensional acoustic vectors y
is defined as:

p(y) = wiGr(y) @
k=1

where Gy, is a gaussian function with a d-dimensional
mean vector ux, and ad x d covariance matrix X, which
is usualy assumed to be diagonal, and wy, is the re-
lative weight of Gy, in the mixture (5, wx = 1).
From atraining utterance Y = {yi,...,yr } of duration
T, the MAP estimation of the parameters {wx,ux, 2k }
of a GMM spesker model can be achieved using the
EM algorithm by iteratively adapting the parameters,
initialy set to the prior model parameters. The new es-
timates {wk,ﬂk,i‘k} are computed from the old ones
{wk, .2 } and from the training data via the follo-
wing formulae [1] :

wp o< ap (w/T) + (1 — ap)wy )
fe = o+ (1 —al)m )
S o= oS+ (1 —a))(Sk+pi) —ar @)

The data-derived parameters vy, ,,, and Sy, are respec-
tively the global occupation rate of gaussian G, and the
sample mean and variance calculated under the p.d.f G
(see[1] or [2] for the corresponding formulag). The new
estimates of the weights {«wy, } are rescaled so that they
sum to one.

The weighting coefficients {a}? ;% ;. } depend on
the training data, the gaussian index and the parameter.
For a parameter 0 € {w,u,X}, the corresponding coef-
ficient is defined as:

0 Tk _ 1
NS e O

where p(6) is an a priori fixed relevance factor which
can depend on the parameters and which control the
balance of the adaptation. This factor, which is homo-
geneous to v, must be determined using prior experi-
ments or knowledge, and can be seen as an equivalent
occupation rate for the a priori data. In practice, some
simplifications can be used to compute the weighting
coefficients by considering parameter- and gaussian- in-
dependent coefficients. For example, these coefficients
may only depend on the duration T" of the training ut-
terance which corresponds to set p(8)=p and to replace
~& by T in (5). Thisisavery intuitive determination of

the weighting coefficients because it gives a high weight
in the adaptation to training utterances with a long du-
ration. An other way, which isthe simplest one, isto fix
the weighting coefficients to a constant value indepen-
dently of thetraining data. This correspondsto p(6) i
in equation (5). In that case, it is usually necessary to
globally optimize the value of this unique weighting co-
efficient o on preliminary experiments, which implies
the use of adevelopment data set. This technique which
does not take into account the information content of the
training utterances, leads to non optimal performance
because of speaker-dependent biases in the distribution
of the verification scores. This is due to the heteroge-
neous information content of the training utterances and
score normalization techniques can be undertood as a
means to compensate these biases. In our baseline ASV
system, this basic classical MAP adaptation is imple-
mented and we will use it asareferencein the following
of this paper.

In the next section, we propose an information-
based MAP criterion which lead to a speaker-dependent
MAP adaptation, the D-MAP.

2.2 Kullback-Leibler distanceconstrai-
ned MAP criterion

2.2.1 General formulation

It has been experimentally shown in [3] that the
mean impostor score S;,.,,, Obtained with a speaker mo-
del is strongly correlated with the symmetric KL dis-
tance K L2 between this model and the world model.
These two quantities are linked with an approximative
linear relation:

Simp & —c. KL2 (6)

where ¢ is a positive constant. It means that varied and
sparse KL distances between the speaker models and the
world model would lead to sparse impostor scores with
speaker-dependent biases in their distribution. On the
contrary, concentrated KL distances would lead to more
concentrated impostor scores with reduced speaker de-
pendent biases. Starting from these considerations, we
want to introduce an equi-distance constraint at the es-
timation level, to force every speaker models to be at a
common reference distance from the world model.

The symmetric KL distance K L2 between a spea-
ker model px, and the world model pw is the sum of
the two oriented dual KL divergences, defined as rela-
tive entropies between these models:

KL2 = By [log 2] + By, [log 2] (7)
bw px;

Given that in the MAP adaptation scheme the world mo-
del is used as the a priori model, the K L2 distance for
a given speaker model is linked to the weighting coeffi-
cient o used for the adaptation:
- for @=0, no adaptation at all is performed and then the
speaker model and the world model are strictly identi-
ca. Inthiscasewe have: KL2 = 0.
- for a=1, the maximum adaptation is performed and the
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estimated speaker model isthe ML estimate. In this case
the KL distance hasits ML value: K L2 = Dy

We can then express K L2 as a function of « and
D

KL2 :D]\lL.f(a) (8)

where f(.) isafunction of o with the constraint f(0) =
0 and f(1) = 1. If wewant to obtain aconstant KL dis-
tance equal to areference distance D,.. ¢ for each spea-
ker X7, the corresponding speaker-dependent « coeffi-
cientis:

o) = f7Y(D,ey /DY) 9

This relation defines the distance constrained MAP cri-
terion for the D-MAP adaptation scheme. Note that it

implies to know the ML distance Dg\ﬁ) for every spea-
ker. So an ML estimation of every speaker model has
to be done before performing the D-MAP adaptation.
Furthermore, we assume in relation (9) that the function
f(.) isknown and invertible. Also, as the KL distance
increases (possibly not monotonically) from 0 to Dy,
when « variesfrom 0 to 1, the reference distance should
be chosen such that VX;,D,.; < Dg\ﬁ) to ensure that

a0 e o,1] foral X;.

2.2.2 GMM mean-only adaptation with D-MAP

In our ASV system, we only adapt the means { . }
of the speaker GMMs which corresponds to set ;=0
in (2) and a=0 in (4). The weights and variances of
every speaker models are set to the values of the world
model ones. In practice, this method has shown no loss
of performance versus the more sophisticated method
of a complete adaptation of the parameters (weight,
means and variances) [1]. In this section we expose
the determination of the D-MAP coefficient o**) in
the case of mono-gaussian models and multi-gausian
models, with mean-only adaptation.

The gaussian case:

The gaussian case corresponds to have K=1 in (1).
We study this basic case to understand the behavior of
K L2 versus o and to introduce the multi-gaussian case.
The MAP estimate of the mean ™! of a gaussian spea-
ker model px, has the following form:

A =g+ (1= )™ (10)

We can then show that, in the case of mean only adapta-
tion (i.e. 2* = (W) = ) the KL distance between
a gaussian spesker model px, and the gaussian world
model pw has the quadratic form:

KL2 = Dyp.o” (12)

where D,y is a function of the sample mean 3, the
world model mean (") and the covariance matrix .
Thevalue for o*?) can easily be computed by inverting
thisrelation:

o™ = (D,.; /DY) (12)

This relation may be used for every speaker in the
case of gaussian models. We will see that we can not
find such arelation in the case of multi-gaussian models.

The multi-gaussian case:

In the multi-gaussian case, we can not find a clo-
sed form relation for the K L2 distance as in the mono-
gaussian case. So we can't express the D-MAP coeffi-
cient X0 as a simple function of D}’ and D,.;.
We choose to use an iterative procedure to determine
the appropriate value of aX!). We make a first es-
timation a%’ ) of this coefficient by determining an
easily-inversible approximative relation between K L2
and «*?) of the following form:

KL2 ~ Dyp.0” (13)

We then have:
o™ % (Dyes /DY )P (14)
With agiven 3, we compute afirst approximation a%’) ,

we estimate the corresponding model and we compute
its KL distance with a Monte-Carlo method as in [3].
We then refine the value of «**) with a dichotomous
procedure until K L2(Xt) approximates D, ; witha5%
accuracy.

The experiments have shown that for the majority of the
speakers, only afew iterations (1 or 2) of this procedure
are necessary to achieve the estimation of a(X*), A de-
velopment on alittle subset of speakers has shown that
B = 4 isagood compromise to approximate the average
behaviour of K L2*1) versus o2,

2.3 Link between D-MAP and D-Norm

The D-MAP process leads to speaker models that
al are at a constant distance D, from the world mo-
del. Given the relation (6) the impostor mean scores for
every speaker should then be approximately constant :

§5n_pMAP (X1) ® —¢.Dyey = constant (15)
The D-Norm isascore normalization based on the use of
the Kullback-Leibler distance between the speaker mo-
dels and the world model. A score S(X;) for an access
with claimed identity X; is D-Normalized as follows:

_5(Xx)
T KL2(X0)

By the relation (6), this leads to impostor mean scores
that are quasi-constant, as in the case of D-MAP:

SD—Norm(Xl) (16)

_ Simp(X1)
T KL2(X1)

—=D—Norm

Simp (X1) ~ —c = constant

(17)

Thus, the D-MAP adaptation and the D-Norm score nor-
malization have a similar effect on the impostor scores.
They only differ by the scaling factor D,.; and they
should therefore lead to comparable performance. This
indicates that there is an equivalence between a model-
based score normalization and an appropriate adaptation
scheme and that such score normalizations are not a-
way's necessary.
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3 Experimentsand results

3.1 Description of the ASV system
and database

The ASV system that we use is derived from the
IRISA/ELISA baseline system for the NIST’ 01 evalua
tion [4]. The acoustic analysis of this system gives 32-
dimensional acoustic vectors with the first 16 cepstral
coefficients and their respective deltas. The statistical
models are 128-components GMMs with diagonal co-
variance matrices and we use gender- and handset-type-
dependent world models. We adapt the speaker models
from the world model using the EM algorithm with a
MAP criterion. The database that we use is a subset
of the NIST’01 evaluation set [5], which contains tele-
phone conversations of american students and where the
training utterances are about 2 minutes long.

3.2 Results

The Equal Error Rates (EERS) of the IRISA/ELISA
system with the classical MAP adaptation are given in
TAB.1with several values of a. The performanceisglo-
bally optimized by choosing «=0.4, which givesan EER
of 11.2%. TAB.1 aso reports the EER of the system

MAP
o 0 025 | 04 0.6 0.8
EER(%) | 13.7 | 12.05 | 11.2 | 11.25 | 1145
D-MAP MAPO.4
D,y 0.25 0.5 0.8 +D-Norm
EER(%) | 10.45 | 104 | 104 10.75

TAB. 1—. EERof the IRISA/ELISA systemwith classical
MAP adaptation, D-MAP and MAP0.4+D-Norm

with a D-MAP adaptation with three different values for
D,.. The results show that the choice of D,..; does
not seem to be decisive for the performance. The D-
MAP procedure, which gives an EER of about 10.4%,
outperforms the classicad MAP with the optimal va-
lue for . Figure 1 plots the Detection Error Tradeoff
(DET) curves of the IRISA/ELISA system for an ML
estimation (MAPO) as a reference, an optimal classical
MAP adaptation (MAPO.4) and the D-MAP adaptation
(D-MAP). Through these curves we show that the D-
MAP system performs better than the MAPOQ.4 system
for functioning points going from low miss rates to the
EER point, and that these systems perform comparably
for points with alow false alarm rate.

In TAB.1 we aso give the EER of the MAP0.4 system
with D-Norm (10.75%), which is dlightly outperformed
by the D-MAP system. Furthermore, through addition-
nal experiments we have noticed that model-based nor-
malizations like D-Norm or Z-Norm have no influence
on the performance of the D-MAP system. Thus, such
score normalizations are not necessary when the adap-
tation process is appropriate, and they are only useful
to compensate speaker-dependent biases due to non-
optimal adaptation.

% - MAPO (ML)
40 \‘;\\‘ - - MAPO.4 (optimal
N — D-MAP

Miss probability (in %)
m

I M 1 . ; ;
0102 05 1 2 5 10 20 40
False Alarm probability (in %)

FIG. 1 — DET curves. Performance of the IRISA/ELISA
system with various estimation schemes, without score
normalization.

4 Conclusion

We have proposed a distance-normalized MAP es-
timation of the speaker models in ASV: The D-MAP
adaptation. From the results we obtained, it has been
shown that the D-MAP performs better than a classical
MAP which globally optimizes a fixed adaptation coef-
ficient. Furthermore we haveillustrade that model-based
score normalizations are not so essential (even may be
unnecessary) when the D-MAP is performed because a
model normalization isdirectly applied at the estimation
level. However, the D-MAP does not have the effect of
score normalizations based on the test data like the T-
Norm. Nevertheless, we think that information content
considerations can also be used for the test data, in asi-
milar way than in the D-MAP, for example by learning
distance-normalized models of the tests. These test mo-
dels could be used in the scoring process and could lead
to test-normalized scores similar to those obtained with
the T-Norm.
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