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ABSTRACT

In this paper we introduce a MAP estimation of spea-
ker models in Automatic Speaker Verification with a dis-
tance constraint: the D-MAP adaptation. The D-MAP is
based on the Kullback-Leibler distances and provides an
easy way to automatically compute a speaker-dependent
adaptation of the model parameters. We formulate a dis-
tance constrained MAP criterion and we show an equi-
valence between the D-MAP adaptation and the score
normalization called D-Norm. From the results obtai-
ned with the D-MAP technique, we show that this me-
thod gives better performance than a classical speaker-
independent MAP adaptation. It is also found that the
D-MAP based system without score normalization per-
forms similarly to a classical MAP system with a model-
based score normalization.

1 Introduction
In text-independent Automatic Speaker Verification

(ASV), the main state-of-the-art approach for speaker
modeling consists in using Gaussian Mixture Models
(GMM) [1]. This family of models are suited to des-
cribe multi-variate real densities when choosing an ap-
propriate number of gaussians in the mixture, and they
provide a good way to model statistical behavior of spea-
ker acoustic features. Bayesian adaptation of the speaker
models, with a Maximum A Posteriori (MAP) criterion,
have shown to be more efficient that the Maximum Like-
lihood (ML) estimation, in particular when the amount
of training data available is limited. In the MAP esti-
mation scheme, the speaker models are adapted from an
a priori model, called the background model or world
model, using the data of the training utterance for each
speaker. This method gives more robust estimates of the
model parameters because it limits over-adaptation on
the training data (as opposed to the ML estimation) by
assuming a prior distribution for these parameters. The
background model, which is used as an initial model for
adaptation, is built using a large amount of speech data
from various speakers, with ML estimation.

Crucial factors in MAP adaptation are the weigh-
ting coefficients between the a priori parameters and
the parameters derived directly from the training data
(i.e. the ML parameters). These coefficients balance the

weight between a priori knowledge taken from the back-
ground model, and new knowledge from the training
utterance. Thus, in a general way, it should be given
a high contribution, in the adaptation process, to trai-
ning utterances with high information content, in term
of variety and amount of acoustic features, because
in these cases the ML estimates of model parameters
should be good. On the contrary, training utterances with
poor information content would lead to bad ML esti-
mated parameters and then should have a low weight
in MAP adaptation, letting prior parameters to domi-
nate. In the GMM MAP theory [2], the weighting coef-
ficients are data-dependent, gaussian index-dependent,
and can be parameter-dependent. However, in prac-
tice, more simple determinations of these coefficients
are usually used by considering coefficients that are
gaussian-independent and parameter-independent, and
which only depend on the training utterance duration or
are simply fixed to a constant value.

In this paper, we propose an alternative way to au-
tomatically determine a speaker dependent weighting
coefficient using information content considerations on
the training data. We use a relative information mea-
sure from the field of information theory which is the
Kullback-Leibler (KL) distance between an estimated
speaker model and the world model. Recent works [3]
have shown that the KL distances between the speaker
models and the world model are strongly correlated with
the mean scores delivered by these models for impos-
tor accesses. We propose a technique to normalize the
speaker models at the estimation level such that every
speaker models are at a fixed distance from the world
model, by computing the appropriate weighting coeffi-
cient. This should imply a concentration of the impostor
scores and thus a better separation of the distributions of
client scores and impostor scores. This technique can be
formulated as a distance constrained MAP adaptation,
the D-MAP, which is exposed in section 2 of this paper.
We first recall the classical MAP adaptation formulae
for GMM and the various approaches used in practice to
determine the weighting coefficient for adaptation. We
then expose a constrained MAP criterion based on the
KL distances and we explain the links between the D-
MAP adaptation and the score normalization called D-
Norm (distance normalization). The experiments and re-
sults of the D-MAP technique are reported in section 3
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where we show that this technique, which determines an
individual weighting coefficient for each speaker, out-
performs the classical MAP technique with a global op-
timization of a fixed weighting coefficient. The section
4 concludes this paper and exposes the perspectives of
this work.

2 D-MAP estimation of GMMs

2.1 MAP adaptation of GMMs
The probability density function (p.d.f) p�y� of aK-

component GMM for d-dimensional acoustic vectors y
is defined as:

p�y� �
KX

k��

wkGk�y� (1)

where Gk is a gaussian function with a d-dimensional
mean vector �k and a d�d covariance matrix �k which
is usually assumed to be diagonal, and wk is the re-
lative weight of Gk in the mixture (

PK
k�� wk � �).

From a training utterance Y � fy������yT g of duration
T , the MAP estimation of the parameters fwk��k��kg
of a GMM speaker model can be achieved using the
EM algorithm by iteratively adapting the parameters,
initially set to the prior model parameters. The new es-
timates f �wk���k���kg are computed from the old ones
fwk��k��kg and from the training data via the follo-
wing formulae [1] :

�wk � �wk ��k�T � � ��� �wk �wk (2)

��k � ��kyk � ��� ��k��k (3)

��k � ��kSk � ��� ��k ���k � ��k�� ���k (4)

The data-derived parameters �k, yk, and Sk are respec-
tively the global occupation rate of gaussian Gk, and the
sample mean and variance calculated under the p.d.f Gk
(see [1] or [2] for the corresponding formulae). The new
estimates of the weights f �wkg are rescaled so that they
sum to one.

The weighting coefficients f�wk ��
�
k ��

�
k g depend on

the training data, the gaussian index and the parameter.
For a parameter � � fw����g, the corresponding coef-
ficient is defined as :

��k �
�k

�k � ����
�

�

� � ������k
(5)

where ���� is an a priori fixed relevance factor which
can depend on the parameters and which control the
balance of the adaptation. This factor, which is homo-
geneous to �k, must be determined using prior experi-
ments or knowledge, and can be seen as an equivalent
occupation rate for the a priori data. In practice, some
simplifications can be used to compute the weighting
coefficients by considering parameter- and gaussian- in-
dependent coefficients. For example, these coefficients
may only depend on the duration T of the training ut-
terance which corresponds to set ����=� and to replace
�k by T in (5). This is a very intuitive determination of

the weighting coefficients because it gives a high weight
in the adaptation to training utterances with a long du-
ration. An other way, which is the simplest one, is to fix
the weighting coefficients to a constant value indepen-
dently of the training data. This corresponds to ������k
in equation (5). In that case, it is usually necessary to
globally optimize the value of this unique weighting co-
efficient � on preliminary experiments, which implies
the use of a development data set. This technique which
does not take into account the information content of the
training utterances, leads to non optimal performance
because of speaker-dependent biases in the distribution
of the verification scores. This is due to the heteroge-
neous information content of the training utterances and
score normalization techniques can be undertood as a
means to compensate these biases. In our baseline ASV
system, this basic classical MAP adaptation is imple-
mented and we will use it as a reference in the following
of this paper.

In the next section, we propose an information-
based MAP criterion which lead to a speaker-dependent
MAP adaptation, the D-MAP.

2.2 Kullback-Leibler distance constrai-
ned MAP criterion

2.2.1 General formulation

It has been experimentally shown in [3] that the
mean impostor score Simp obtained with a speaker mo-
del is strongly correlated with the symmetric KL dis-
tance KL� between this model and the world model.
These two quantities are linked with an approximative
linear relation :

Simp � �c�KL� (6)

where c is a positive constant. It means that varied and
sparse KL distances between the speaker models and the
world model would lead to sparse impostor scores with
speaker-dependent biases in their distribution. On the
contrary, concentrated KL distances would lead to more
concentrated impostor scores with reduced speaker de-
pendent biases. Starting from these considerations, we
want to introduce an equi-distance constraint at the es-
timation level, to force every speaker models to be at a
common reference distance from the world model.

The symmetric KL distance KL� between a spea-
ker model pXl and the world model pW is the sum of
the two oriented dual KL divergences, defined as rela-
tive entropies between these models:

KL� � EpX
l
	log

pXl
pW


 �EpW 	log
pW
pXl


 (7)

Given that in the MAP adaptation scheme the world mo-
del is used as the a priori model, the KL� distance for
a given speaker model is linked to the weighting coeffi-
cient � used for the adaptation :
- for �=�, no adaptation at all is performed and then the
speaker model and the world model are strictly identi-
cal. In this case we have: KL� � �.
- for �=�, the maximum adaptation is performed and the
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estimated speaker model is the ML estimate. In this case
the KL distance has its ML value : KL� � DML.

We can then express KL� as a function of � and
DML:

KL� � DML�f��� (8)

where f��� is a function of � with the constraint f��� �
� and f��� � �. If we want to obtain a constant KL dis-
tance equal to a reference distance Dref for each spea-
ker Xl, the corresponding speaker-dependent � coeffi-
cient is :

��Xl� � f���Dref�D
�Xl�
ML � (9)

This relation defines the distance constrained MAP cri-
terion for the D-MAP adaptation scheme. Note that it
implies to know the ML distance D�Xl�

ML for every spea-
ker. So an ML estimation of every speaker model has
to be done before performing the D-MAP adaptation.
Furthermore, we assume in relation (9) that the function
f��� is known and invertible. Also, as the KL distance
increases (possibly not monotonically) from � to DML

when � varies from � to �, the reference distance should
be chosen such that �Xl�Dref 	 D

�Xl�
ML to ensure that

��Xl� � 	���
 for all Xl.

2.2.2 GMM mean-only adaptation with D-MAP

In our ASV system, we only adapt the means f�kg
of the speaker GMMs which corresponds to set �wk =�
in (2) and ��k =� in (4). The weights and variances of
every speaker models are set to the values of the world
model ones. In practice, this method has shown no loss
of performance versus the more sophisticated method
of a complete adaptation of the parameters (weight,
means and variances) [1]. In this section we expose
the determination of the D-MAP coefficient ��Xl� in
the case of mono-gaussian models and multi-gausian
models, with mean-only adaptation.

The gaussian case:
The gaussian case corresponds to have K=� in (1).

We study this basic case to understand the behavior of
KL� versus � and to introduce the multi-gaussian case.
The MAP estimate of the mean ��Xl of a gaussian spea-
ker model pXl has the following form :

���Xl� � �y � ��� ����W � (10)

We can then show that, in the case of mean only adapta-
tion (i.e. ��Xl� � ��W � � �) the KL distance between
a gaussian speaker model pXl and the gaussian world
model pW has the quadratic form :

KL� � DML��
� (11)

where DML is a function of the sample mean y, the
world model mean ��W � and the covariance matrix �.
The value for ��Xl� can easily be computed by inverting
this relation :

��Xl� � �Dref�D
�Xl�
ML �

�

� (12)

This relation may be used for every speaker in the
case of gaussian models. We will see that we can not
find such a relation in the case of multi-gaussian models.

The multi-gaussian case:
In the multi-gaussian case, we can not find a clo-

sed form relation for the KL� distance as in the mono-
gaussian case. So we can’t express the D-MAP coeffi-
cient ��Xl� as a simple function of D�Xl�

ML and Dref .
We choose to use an iterative procedure to determine
the appropriate value of ��Xl�. We make a first es-
timation �

�Xl�

��� of this coefficient by determining an
easily-inversible approximative relation between KL�
and ��Xl� of the following form :

KL� � DML��
� (13)

We then have:

��Xl� � �Dref�D
�Xl�
ML ���� (14)

With a given 
, we compute a first approximation ��Xl���� ,
we estimate the corresponding model and we compute
its KL distance with a Monte-Carlo method as in [3].
We then refine the value of ��Xl� with a dichotomous
procedure until KL��Xl� approximates Dref with a �

accuracy.
The experiments have shown that for the majority of the
speakers, only a few iterations (1 or 2) of this procedure
are necessary to achieve the estimation of ��Xl�. A de-
velopment on a little subset of speakers has shown that

 � � is a good compromise to approximate the average
behaviour of KL��Xl� versus ��Xl�.

2.3 Link between D-MAP and D-Norm
The D-MAP process leads to speaker models that

all are at a constant distance Dref from the world mo-
del. Given the relation (6) the impostor mean scores for
every speaker should then be approximately constant :

S
D�MAP
imp �Xl� � �c�Dref � constant (15)

The D-Norm is a score normalization based on the use of
the Kullback-Leibler distance between the speaker mo-
dels and the world model. A score S�Xl� for an access
with claimed identity Xl is D-Normalized as follows :

SD�Norm�Xl� �
S�Xl�

KL��Xl�
(16)

By the relation (6), this leads to impostor mean scores
that are quasi-constant, as in the case of D-MAP :

S
D�Norm
imp �Xl� �

Simp�Xl�

KL��Xl�
� �c � constant

(17)

Thus, the D-MAP adaptation and the D-Norm score nor-
malization have a similar effect on the impostor scores.
They only differ by the scaling factor Dref and they
should therefore lead to comparable performance. This
indicates that there is an equivalence between a model-
based score normalization and an appropriate adaptation
scheme and that such score normalizations are not al-
ways necessary.
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3 Experiments and results

3.1 Description of the ASV system
and database

The ASV system that we use is derived from the
IRISA/ELISA baseline system for the NIST’01 evalua-
tion [4]. The acoustic analysis of this system gives 32-
dimensional acoustic vectors with the first 16 cepstral
coefficients and their respective deltas. The statistical
models are 128-components GMMs with diagonal co-
variance matrices and we use gender- and handset-type-
dependent world models. We adapt the speaker models
from the world model using the EM algorithm with a
MAP criterion. The database that we use is a subset
of the NIST’01 evaluation set [5], which contains tele-
phone conversations of american students and where the
training utterances are about 2 minutes long.

3.2 Results
The Equal Error Rates (EERs) of the IRISA/ELISA

system with the classical MAP adaptation are given in
TAB.1 with several values of �. The performance is glo-
bally optimized by choosing �=���, which gives an EER
of ����
. TAB.1 also reports the EER of the system

MAP
� 0 0.25 0.4 0.6 0.8

EER(%) 13.7 12.05 11.2 11.25 11.45

D-MAP MAP0.4
Dref 0.25 0.5 0.8 +D-Norm

EER(%) 10.45 10.4 10.4 10.75

TAB. 1 –. EER of the IRISA/ELISA system with classical
MAP adaptation, D-MAP and MAP0.4+D-Norm

with a D-MAP adaptation with three different values for
Dref . The results show that the choice of Dref does
not seem to be decisive for the performance. The D-
MAP procedure, which gives an EER of about ����
,
outperforms the classical MAP with the optimal va-
lue for �. Figure 1 plots the Detection Error Tradeoff
(DET) curves of the IRISA/ELISA system for an ML
estimation (MAP0) as a reference, an optimal classical
MAP adaptation (MAP0.4) and the D-MAP adaptation
(D-MAP). Through these curves we show that the D-
MAP system performs better than the MAP0.4 system
for functioning points going from low miss rates to the
EER point, and that these systems perform comparably
for points with a low false alarm rate.
In TAB.1 we also give the EER of the MAP0.4 system

with D-Norm (�����
), which is slightly outperformed
by the D-MAP system. Furthermore, through addition-
nal experiments we have noticed that model-based nor-
malizations like D-Norm or Z-Norm have no influence
on the performance of the D-MAP system. Thus, such
score normalizations are not necessary when the adap-
tation process is appropriate, and they are only useful
to compensate speaker-dependent biases due to non-
optimal adaptation.
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FIG. 1 –. DET curves. Performance of the IRISA/ELISA
system with various estimation schemes, without score
normalization.

4 Conclusion
We have proposed a distance-normalized MAP es-

timation of the speaker models in ASV: The D-MAP
adaptation. From the results we obtained, it has been
shown that the D-MAP performs better than a classical
MAP which globally optimizes a fixed adaptation coef-
ficient. Furthermore we have illustrade that model-based
score normalizations are not so essential (even may be
unnecessary) when the D-MAP is performed because a
model normalization is directly applied at the estimation
level. However, the D-MAP does not have the effect of
score normalizations based on the test data like the T-
Norm. Nevertheless, we think that information content
considerations can also be used for the test data, in a si-
milar way than in the D-MAP, for example by learning
distance-normalized models of the tests. These test mo-
dels could be used in the scoring process and could lead
to test-normalized scores similar to those obtained with
the T-Norm.
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