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ABSTRACT

In speaker recognition applications, channel variability is a major
cause of errors. Techniques in the feature, model and score
domains have been applied to mitigate channel effects. In this
paper we present a new feature mapping technique that maps
feature vectors into a channel independent space. The feature
mapping learns mapping parameters from a set of channel-
dependent models derived from a channel-independent model via
MAP adaptation. The technique is developed primarily for
speaker verification, but can be applied for feature normalization
in speech recognition applications. Results are presented on
NIST landline and cellular telephone speech corpora where it is
shown that feature mapping provides significant performance
improvements over baseline systems and similar performance to
Hnorm and Speaker-Model-Synthesis (SMS).

1. INTRODUCTION

One of the largest challenges in speaker recognition
applications is dealing with channel variability. Typically
a speaker will enroll his/her voice using one microphone
or handset and then wish to be verified using a different
microphone or handset. Since different microphones
impose different characteristics on the acoustic signal, the
spectrum-based features, pervasive in automatic speaker
recognition systems, extracted for enrollment and
verification will be different and hence result in a low
match score. In addition to differing microphones, channel
effects encompass other factors such as the acoustic
environment (e.g., office, auto, etc.) and the transmission
means (e.g., landline, cellular, VoIP, etc.). Since the
speaker and channel information are bound together in the
spectrum, anything that modifies the spectrum may cause
difficulties.

Compensation techniques for channel effects have been
applied in three domains. On the input side, feature
domain compensation is aimed at removing the channel
effects from the feature vectors prior to model training or
verification. These include well-known and widely used
techniques such as cepstral mean subtraction, RASTA
filtering and spectral subtraction. On the output side, score
domain compensation attempts to remove model score
scales and shifts caused by varying input channel

conditions. Examples of score domain compensation
techniques are Hnorm [1] and Tnorm [2]. In model
domain compensation the aim is to modify verification
models to minimize the effects of varying channels. An
example is Speaker Model Synthesis (SMS) [3], which
learns how model parameters change between different
channels and applies this transformation to synthesize
speaker models under unseen enrollment conditions.
Compensation in the different domains is of course not
exclusive (indeed each seeks to remove different aspects
of channel effects and so can have additive benefits) nor
are all compensation techniques cleanly categorized into
one of these domains. Of the three domains, feature
domain compensation is perhaps the more general and
widely useful since it is not tied to any particular model or
score configuration. In this paper we present a new
technique called feature mapping that extends the
mapping idea from SMS to develop a more general feature
domain channel compensation technique. The new
technique is shown to be as effective as SMS for speaker
verification on landline and cellular NIST speaker
recognition corpora while also demonstrating a structure
better suited for adaptation and as compensation for
speech recognition systems.

In the next section we briefly describe the speaker
verification system used throughout this paper. We next
review the SMS approach and then describe the new
feature mapping technique. This is followed by a
description of the experiment data, design and results.

2. SPEAKER VERIFICATION SYSTEM

The speaker verification system discussed in this paper is
shown in Figure 1 and fully described in [1]. In the front-
end processing features are extracted from the speech
signal and feature domain compensation is applied. In this
work, the feature vector (extracted every 10 ms) is of 38
dimensions consisting of 19 mel-warped cepstra, derived
from the frequency band 300-3300 Hz, and their first
order derivatives, estimated with a 5-frame window. To
compensate for linear channel effects (possibly time-
varying), standard RASTA filtering is applied to the
cepstra elements. The speaker and background models,
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which are used to form the likelihood ratio test statistic
during verification, are both 2048 order Gaussian Mixture
Models. The background model is typically trained using a
1-2 hours of speech from a large number of speakers over
a variety of microphone/channel types. The speaker model
is then derived from the background model using the
available enrollment speech and one pass MAP estimation.
For verification, the log likelihood of the input speech
utterance is computed against both the background and
speaker models, the difference taken and compared to a
threshold to decide whether to accept or reject the putative
speaker claim.
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Figure 1 Structure of the speaker verification system in
this paper.

3. SPEAKER MODEL SYNTHESIS

In [4] it was shown that better speaker verification
performance can be obtained when the speaker and
background model are channel matched, that is trained
using speech from the same channel/microphone type.
However, in many applications, it is unlikely to have user
enrollment speech from all channel types that the user will
use for later verification. Thus the motivation behind SMS
is to synthesize a speaker model from “unseen” channels
so that channel matched background scoring can be
applied.

= Channel 1 GMM ~ P Channel 2GMM |

transform

Figure 2 Speaker Model Synthesis (SMS).

This is accomplished as follows (see Figure 2).
First a channel independent root GMM is trained using an
aggregation of data from many different channels. Next,
channel dependent GMMs are trained by using channel
dependent data to adapt the channel independent root
GMM. Since all models are derived from a common root,
there is a correspondence between Gaussian components
in the models. Transformations between the different
channel dependent model parameters are then created by
simply computing the mean shift, variance scale and
weight scale to transform one channel dependent model
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When a speaker enrolls, the most likely channel dependent
background model is detected and adapted via MAP
adaptation. Synthetic speaker models for the other channel
dependent types are also generated’. During verification,
again the most likely channel dependent background
model is detected and the likelihood ratio with the
corresponding channel dependent speaker model is
computed and reported for the accept/reject decision. Note
that since all models are derived via MAP adaptation from
a single root model, a fast scoring technique [1] is
available making this operation computationally
inexpensive.

4. FEATURE MAPPING

While SMS focuses on synthesizing speaker models for
unseen channels, the feature mapping approach, described
in this section, focuses on mapping features from different
channels into a common channel independent feature
space. The two approaches are related in that they both
learn transformations or mappings by examining how
model parameters shift and scale after MAP adaptation.
This new approach is motivated by several factors. First, a
feature domain approach potentially has wider use since it
is not tied to any particular recognition structure or model.
Second, mapping features into a single space allows
aggregation of information potentially obtained from
several different channel types. For example, speech for
enrollment or adaptation from several different channel
types can be aggregated into a single features space before
model building or updating. With SMS, separate speaker
models must be maintained and an arbitrary selection of a
common channel dependent model is made to combine
model parameters.

Figure 3 shows the structure for the feature mapping
system. As in SMS, a channel independent root GMM is
trained using an aggregation of data from many different
channels and channel dependent GMMs are trained by
adapting the root GMM using channel dependent data.
The model parameter changes between the channel
independent and a channel dependent model indicate how
the feature space distributions between the two spaces are

! mixture weight, mean and standard deviation
2 . . . . .
Practically, synthetic models are generated on the fly during verification.
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related and thus are used to create feature-mapping
functions

Channel 2 GMM

mapping mapping

Root GMM >
Speaker GMM

Figure 3 Feature Mapping

For simplicity, assume we are working with diagonal
covariance GMMs; the full covariance case can be
similarly derived. Let x be a feature from the space
modeled by channel dependent 1 GMM (CDI1) and
i =argmax,_ ., & p’'(x), where

p (x) = N(u™' ,a)is the j™ mixture component of

the CD1 GMM. The mapping of X to a channel
independent feature, ), is then given by
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The effect of this mapping is to transform
X~ N(,LII.CDI,UI.CDI) into y ~ N(,uf’,af’) . For a feature

vector, the above mapping is applied to each vector
element separately to create a mapped feature vector.

The feature mapper operates as follows. Given an input
utterance, the most likely channel dependent model is first
detected and then each feature vector in the utterance is
mapped to the channel independent space based on its top-
1 decoded Gaussian in the channel dependent GMM. The
top-1 Gaussian decoding comes as a no cost by-product
from the fast scoring technique used in computing the
most likely channel dependent model. For multi-speaker
speech verification cases, where the channel type may be
changing within an utterance, the system can detect the
channel type and map features over a short-term window
of 1-2 seconds rather than the whole input utterance.

Although the mapping is independent of the follow-on
recognition system, it is possible to couple the verification
structure with the mapping models for greater efficiency.
This is done during training by using the mapped features
from enrollment speech for MAP adaptation of the
channel independent root GMM. The system then uses the
root GMM as a universal background model. During
verification, the mapped features from the input speech are
scored against the speaker and root GMM and the
likelihood ratio score reported.

Note that both SMS and feature mapping are related in
spirit to work on Stochastic Matching [5].

5. EXPERIMENTS

In this section we report on speaker detection experiments
conducted on landline and cellular data from the NIST
speaker recognition evaluations (SRE). The landline data
is conversational telephone speech derived from the
Switchboard-II phase-1 and phase-2 corpora’. The
evaluation includes 457 male and 546 female speakers.
For each speaker, approximately 2 minutes of speech
extracted from a single telephone call is used for
enrollment. Verification utterances are nominally 30
seconds in duration but vary between 0 and 60 seconds
and come from phone numbers different than those used
for enrollment. There are 3026 male and 3026 female
verification utterances. Each verification utterance is
scored against 11 putative speaker models with no cross-
sex trials’. Additionally some results on the 2002 cellular
corpus derived from Switchboard-II phase 4 are also
presented. This corpus consists of 139 male and 191
female speakers with 2 minutes of training speech from a
single telephone call and 1140 male verification utterances
and 2119 female verification utterances of nominally 30
seconds duration.

Results are presented using Detection Error Tradeoff
(DET) plots, which show the system tradeoff of misses
versus false acceptances. Performance is computed by
pooling all scores from male and female trials. Along with
equal error rate (EER), the minimum decision cost
function (DCF), defined as DCF = 0.1*Pr(miss) +
0.99*Pr(false_alarm), is also used as an overall
performance measure.

In Figure 4 we show a DET comparing four systems run on
the landline corpus. The baseline system uses a single
2048 background GMM trained wusing data from
Switchboard-II phase 3 that is balanced for sex and
handset type (carbon-button and electret). The handset
labels are derived from an automatic system [6]. The
baseline+tHnorm system is the baseline system with the
standard Hnorm [1] score normalization applied. The SMS
and feature mapping systems use the above background
model as a channel independent root model and have four
channel dependent models (male-electret, female-electret,
male-carbon, female-carbon) trained using subsets of the
complete root training data. It is clear from these results
that (a) feature mapping provides significant improvement
over the baseline system, (b) feature mapping provides the
same performance improvement as Hnorm and (c) the
feature mapping and SMS systems provide similar
performance. The second point is significant since Hnorm

* The 2000 NIST SRE corpora is available from the LDC; see
http://www.ldc.upenn.edu/Catalog/LDC2001S97.html

4 The 2000 NIST SRE evaluation plan can be found at
http://www.nist.gov/speech/tests/spk/2000/doc/spk-2000-plan-v1.0.html
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requires  computationally  expensive  normalization

parameter estimation after enrollment.
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Figure 4 Landline Corpus: DET comparing baseline (red
solid), baseline+Hnorm (red dots), SMS (green dash-dot) and
feature mapping (black dashed).
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Figure 5 Cellular Corpus: DET comparing baseline (red

solid), feature mapping (black dashed) and feature
mapping+Tnorm (blue dots)

The feature mapping system was also applied to the
cellular corpus by using cellular data to update the channel
independent root model and adding six cellular channel
dependent models (male and female GSM, analog and
digital)’. The results are shown in Figure 5. Again we see

3 The GSM data is from the 2001 NIST cellular corpus and the analog
and digital data is from the OGI National Cellular Database
(http://cslu.cse.ogi.edu/corpora/natcell/ ).

the feature mapping produces significant gains over the
baseline system using the same channel independent
background model. The third DET on this plot shows the
feature mapping system with Tnorm [2] applied,
demonstrating that different domain normalizations can be
effectively combined. A set of 100 male and 100 female
speakers models from the 1997 SRE landline corpus was
used for Tnorm. With Tnorm, the EER slightly reduces
from 9.1% to 8.7%, while the minimum DCF value drops
from 39x10 to 34x10~. Similar reductions were obtained
when applying Tnorm to the landline corpus. Additionally,
a form of Hnorm, called Cnorm when used with feature
mapping, where we estimate and remove score bias and
scales for each channel type, has been used, but was found
to produce less of a performance gain than Tnorm and is
more expensive to apply.

It is significant to note that for the 2002 NIST SRE, a
single system using feature mapping was successfully
applied to the landline, cellular and multimodal corpora
tasks without background model retraining.

6. CONCLUSIONS

This paper has presented a new feature mapping approach
for minimizing channel variability in the feature domain
and demonstrated the performance advantage for both a
landline and cellular telephone speaker detection task. The
approach is a general compensation technique suitable for
application to other speech recognition tasks. Future work
will focus on applying it to a telephone speech recognition
task and to other cross-channel speaker detection tasks.
Additional development will examine an iterative
approach to refining the mappings (as in [5]) and ways of
adding new channels without updating the root model.
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