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ABSTRACT 
In speaker recognition applications, channel variability is a major 
cause of errors. Techniques in the feature, model and score 
domains have been applied to mitigate channel effects. In this 
paper we present a new feature mapping technique that maps 
feature vectors into a channel independent space. The feature 
mapping learns mapping parameters from a set of channel-
dependent models derived from a channel-independent model via 
MAP adaptation. The technique is developed primarily for 
speaker verification, but can be applied for feature normalization 
in speech recognition applications. Results are presented on 
NIST landline and cellular telephone speech corpora where it is 
shown that feature mapping provides significant performance 
improvements over baseline systems and similar performance to 
Hnorm and Speaker-Model-Synthesis (SMS). 

1. INTRODUCTION 

One of the largest challenges in speaker recognition 
applications is dealing with channel variability. Typically 
a speaker will enroll his/her voice using one microphone 
or handset and then wish to be verified using a different 
microphone or handset. Since different microphones 
impose different characteristics on the acoustic signal, the 
spectrum-based features, pervasive in automatic speaker 
recognition systems, extracted for enrollment and 
verification will be different and hence result in a low 
match score. In addition to differing microphones, channel 
effects encompass other factors such as the acoustic 
environment (e.g., office, auto, etc.) and the transmission 
means (e.g., landline, cellular, VoIP, etc.). Since the 
speaker and channel information are bound together in the 
spectrum, anything that modifies the spectrum may cause 
difficulties. 

Compensation techniques for channel effects have been 
applied in three domains. On the input side, feature 
domain compensation is aimed at removing the channel 
effects from the feature vectors prior to model training or 
verification. These include well-known and widely used 
techniques such as cepstral mean subtraction, RASTA 
filtering and spectral subtraction. On the output side, score 
domain compensation attempts to remove model score 
scales and shifts caused by varying input channel 

conditions.  Examples of score domain compensation 
techniques are Hnorm [1] and Tnorm [2]. In model 
domain compensation the aim is to modify verification 
models to minimize the effects of varying channels. An 
example is Speaker Model Synthesis (SMS) [3], which 
learns how model parameters change between different 
channels and applies this transformation to synthesize 
speaker models under unseen enrollment conditions. 
Compensation in the different domains is of course not 
exclusive (indeed each seeks to remove different aspects 
of channel effects and so can have additive benefits) nor 
are all compensation techniques cleanly categorized into 
one of these domains. Of the three domains, feature 
domain compensation is perhaps the more general and 
widely useful since it is not tied to any particular model or 
score configuration. In this paper we present a new 
technique called feature mapping that extends the 
mapping idea from SMS to develop a more general feature 
domain channel compensation technique.  The new 
technique is shown to be as effective as SMS for speaker 
verification on landline and cellular NIST speaker 
recognition corpora while also demonstrating a structure 
better suited for adaptation and as compensation for 
speech recognition systems. 

In the next section we briefly describe the speaker 
verification system used throughout this paper. We next 
review the SMS approach and then describe the new 
feature mapping technique. This is followed by a 
description of the experiment data, design and results. 

2. SPEAKER VERIFICATION SYSTEM 

The speaker verification system discussed in this paper is 
shown in Figure 1 and fully described in [1]. In the front-
end processing features are extracted from the speech 
signal and feature domain compensation is applied. In this 
work, the feature vector (extracted every 10 ms) is of 38 
dimensions consisting of 19 mel-warped cepstra, derived 
from the frequency band 300-3300 Hz, and their first 
order derivatives, estimated with a 5-frame window. To 
compensate for linear channel effects (possibly time-
varying), standard RASTA filtering is applied to the 
cepstra elements. The speaker and background models, 
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which are used to form the likelihood ratio test statistic 
during verification, are both 2048 order Gaussian Mixture 
Models. The background model is typically trained using a 
1-2 hours of speech from a large number of speakers over 
a variety of microphone/channel types. The speaker model 
is then derived from the background model using the 
available enrollment speech and one pass MAP estimation. 
For verification, the log likelihood of the input speech 
utterance is computed against both the background and 
speaker models, the difference taken and compared to a 
threshold to decide whether to accept or reject the putative 
speaker claim.  
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Figure 1 Structure of the speaker verification system in 
this paper. 

3. SPEAKER MODEL SYNTHESIS 

In [4] it was shown that better speaker verification 
performance can be obtained when the speaker and 
background model are channel matched, that is trained 
using speech from the same channel/microphone type. 
However, in many applications, it is unlikely to have user 
enrollment speech from all channel types that the user will 
use for later verification. Thus the motivation behind SMS 
is to synthesize a speaker model from “unseen” channels 
so that channel matched background scoring can be 
applied. 

Root GMMRoot GMM

Channel 1 GMMChannel 1 GMM Channel 2 GMMChannel 2 GMM

Speaker Channel 1 GMMSpeaker Channel 1 GMM Speaker Channel 2 GMMSpeaker Channel 2 GMM

synthesis

transform

 Figure 2 Speaker Model Synthesis (SMS). 

This is accomplished as follows (see  Figure 2). 
First a channel independent root GMM is trained using an 
aggregation of data from many different channels. Next, 
channel dependent GMMs are trained by using channel 
dependent data to adapt the channel independent root 
GMM. Since all models are derived from a common root, 
there is a correspondence between Gaussian components 
in the models. Transformations between the different 
channel dependent model parameters are then created by 
simply computing the mean shift, variance scale and 
weight scale to transform one channel dependent model 

into another The transformation of parameters from 
component i, ( , , )i i iω µ σ 1, from channel dependent 
model 1 to channel dependent model 2 would be 
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i i i iT ω ω ω ω→ =
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When a speaker enrolls, the most likely channel dependent 
background model is detected and adapted via MAP 
adaptation. Synthetic speaker models for the other channel 
dependent types are also generated2. During verification, 
again the most likely channel dependent background 
model is detected and the likelihood ratio with the 
corresponding channel dependent speaker model is 
computed and reported for the accept/reject decision. Note 
that since all models are derived via MAP adaptation from 
a single root model, a fast scoring technique [1] is 
available making this operation computationally 
inexpensive. 

4. FEATURE MAPPING 

While SMS focuses on synthesizing speaker models for 
unseen channels, the feature mapping approach, described 
in this section, focuses on mapping features from different 
channels into a common channel independent feature 
space. The two approaches are related in that they both 
learn transformations or mappings by examining how 
model parameters shift and scale after MAP adaptation. 
This new approach is motivated by several factors. First, a 
feature domain approach potentially has wider use since it 
is not tied to any particular recognition structure or model. 
Second, mapping features into a single space allows 
aggregation of information potentially obtained from 
several different channel types. For example, speech for 
enrollment or adaptation from several different channel 
types can be aggregated into a single features space before 
model building or updating. With SMS, separate speaker 
models must be maintained and an arbitrary selection of a 
common channel dependent model is made to combine 
model parameters. 

Figure 3 shows the structure for the feature mapping 
system. As in SMS, a channel independent root GMM is 
trained using an aggregation of data from many different 
channels and channel dependent GMMs are trained by 
adapting the root GMM using channel dependent data. 
The model parameter changes between the channel 
independent and a channel dependent model indicate how 
the feature space distributions between the two spaces are 

 
1 mixture weight, mean and standard deviation 
2Practically, synthetic models are generated on the fly during verification. 
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related and thus are used to create feature-mapping 
functions  

Root GMMRoot GMM

Channel 1 GMMChannel 1 GMM Channel 2 GMMChannel 2 GMM

Speaker GMMSpeaker GMM

mappingmapping

Figure 3 Feature Mapping 

For simplicity, assume we are working with diagonal 
covariance GMMs; the full covariance case can be 
similarly derived. Let x  be a feature from the space 
modeled by channel dependent 1 GMM (CD1) and 

, where 

is the jth mixture component of 

the CD1 GMM. The mapping of 
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The effect of this mapping is to transform 
into . For a feature 

vector, the above mapping is applied to each vector 
element separately to create a mapped feature vector. 

1( ,CD CD
i ix N µ σ∼ ( ,CI CI

i iy N µ σ∼

The feature mapper operates as follows. Given an input 
utterance, the most likely channel dependent model is first 
detected and then each feature vector in the utterance is 
mapped to the channel independent space based on its top-
1 decoded Gaussian in the channel dependent GMM. The 
top-1 Gaussian decoding comes as a no cost by-product 
from the fast scoring technique used in computing the 
most likely channel dependent model. For multi-speaker 
speech verification cases, where the channel type may be 
changing within an utterance, the system can detect the 
channel type and map features over a short-term window 
of 1-2 seconds rather than the whole input utterance.  

Although the mapping is independent of the follow-on 
recognition system, it is possible to couple the verification 
structure with the mapping models for greater efficiency. 
This is done during training by using the mapped features 
from enrollment speech for MAP adaptation of the 
channel independent root GMM. The system then uses the 
root GMM as a universal background model. During 
verification, the mapped features from the input speech are 
scored against the speaker and root GMM and the 
likelihood ratio score reported. 

Note that both SMS and feature mapping are related in 
spirit to work on Stochastic Matching [5]. 

5. EXPERIMENTS 

In this section we report on speaker detection experiments 
conducted on landline and cellular data from the NIST 
speaker recognition evaluations (SRE). The landline data 
is conversational telephone speech derived from the 
Switchboard-II phase-1 and phase-2 corpora3. The 
evaluation includes 457 male and 546 female speakers. 
For each speaker, approximately 2 minutes of speech 
extracted from a single telephone call is used for 
enrollment. Verification utterances are nominally 30 
seconds in duration but vary between 0 and 60 seconds 
and come from phone numbers different than those used 
for enrollment. There are 3026 male and 3026 female 
verification utterances. Each verification utterance is 
scored against 11 putative speaker models with no cross-
sex trials4. Additionally some results on the 2002 cellular 
corpus derived from Switchboard-II phase 4 are also 
presented. This corpus consists of 139 male and 191 
female speakers with 2 minutes of training speech from a 
single telephone call and 1140 male verification utterances 
and 2119 female verification utterances of nominally 30 
seconds duration. 

Results are presented using Detection Error Tradeoff 
(DET) plots, which show the system tradeoff of misses 
versus false acceptances. Performance is computed by 
pooling all scores from male and female trials. Along with 
equal error rate (EER), the minimum decision cost 
function (DCF), defined as DCF = 0.1*Pr(miss) + 
0.99*Pr(false_alarm), is also used as an overall 
performance measure. 

In Figure 4 we show a DET comparing four systems run on 
the landline corpus. The baseline system uses a single 
2048 background GMM trained using data from 
Switchboard-II phase 3 that is balanced for sex and 
handset type (carbon-button and electret). The handset 
labels are derived from an automatic system [6]. The 
baseline+Hnorm system is the baseline system with the 
standard Hnorm [1] score normalization applied. The SMS 
and feature mapping systems use the above background 
model as a channel independent root model and have four 
channel dependent models (male-electret, female-electret, 
male-carbon, female-carbon) trained using subsets of the 
complete root training data. It is clear from these results 
that (a) feature mapping provides significant improvement 
over the baseline system, (b) feature mapping provides the 
same performance improvement as Hnorm and (c) the 
feature mapping and SMS systems provide similar 
performance. The second point is significant since Hnorm 

 
3 The 2000 NIST SRE corpora is available from the LDC; see 
http://www.ldc.upenn.edu/Catalog/LDC2001S97.html  
4 The 2000 NIST SRE evaluation plan can be found at 
http://www.nist.gov/speech/tests/spk/2000/doc/spk-2000-plan-v1.0.html 
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requires computationally expensive normalization 
parameter estimation after enrollment. 

 

Figure 4 Landline Corpus: DET comparing baseline (red 
solid), baseline+Hnorm (red dots), SMS (green dash-dot) and 
feature mapping (black dashed). 

 

Figure 5 Cellular Corpus: DET comparing baseline (red 
solid), feature mapping (black dashed) and feature 
mapping+Tnorm (blue dots) 

The feature mapping system was also applied to the 
cellular corpus by using cellular data to update the channel 
independent root model and adding six cellular channel 
dependent models (male and female GSM, analog and 
digital)5. The results are shown in Figure 5. Again we see 

the feature mapping produces significant gains over the 
baseline system using the same channel independent 
background model. The third DET on this plot shows the 
feature mapping system with Tnorm [2] applied, 
demonstrating that different domain normalizations can be 
effectively combined.  A set of 100 male and 100 female 
speakers models from the 1997 SRE landline corpus was 
used for Tnorm. With Tnorm, the EER slightly reduces 
from 9.1% to 8.7%, while the minimum DCF value drops 
from 39x10-3 to 34x10-3. Similar reductions were obtained 
when applying Tnorm to the landline corpus. Additionally, 
a form of Hnorm, called Cnorm when used with feature 
mapping, where we estimate and remove score bias and 
scales for each channel type, has been used, but was found 
to produce less of a performance gain than Tnorm and is 
more expensive to apply.  

Baseline 

Others 

                                                           
5 The GSM data is from the 2001 NIST cellular corpus and the analog 
and digital data is from the OGI National Cellular Database 
(http://cslu.cse.ogi.edu/corpora/natcell/ ). 

It is significant to note that for the 2002 NIST SRE, a 
single system using feature mapping was successfully 
applied to the landline, cellular and multimodal corpora 
tasks without background model retraining. 

6. CONCLUSIONS 

This paper has presented a new feature mapping approach 
for minimizing channel variability in the feature domain 
and demonstrated the performance advantage for both a 
landline and cellular telephone speaker detection task. The 
approach is a general compensation technique suitable for 
application to other speech recognition tasks. Future work 
will focus on applying it to a telephone speech recognition 
task and to other cross-channel speaker detection tasks. 
Additional development will examine an iterative 
approach to refining the mappings (as in [5]) and ways of 
adding new channels without updating the root model. 
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