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ABSTRACT

The bank-of-filters spectrum analysis model is commonly used in
the extraction of acoustic features for automatic speech recogni-
tion. The most critical component in the analysis model is a bank
of bandpass filters. In this paper, we studied a data-driven ap-
proach to designing a bank of “optimal” filters of various shapes
discriminatively so that the recognition error of a task is mini-
mized. Three different shapes of varying degree of constraints

wereinvestigated: (1) parametric Gaussian filters; (2) non-parametric

but constrained triangular-like filters; and (3) non-parametric and
unconstrained free-formed filters. Filtersweretrained to derivethe
new robust auditory features recently proposed by the Bell Labs.
In addition, both the filters (and thus the ensuing acoustic features)
and the acoustic model parameters were discriminatively trained.
The major result isthat our proposed triangular-like filters perform
at least as well as the free-formed filters and perform better than
the Gaussian filters.

1. INTRODUCTION

One commonly used method of spectral analysis in the extrac-
tion of acoustic features for automatic speech recognition (ASR)
is the bank-of-filters spectrum analysis model. It is motivated by
the human auditory perception process that is believed to be doing
spectral analysis through a bank of bandpass auditory filters. Ac-
cording to findings in psychoacoustics by Patterson and Moore et
al. [1], the shape of auditory filtersin the linear frequency scale is
symmetric at moderate sound levels and may be approximated by
Gaussian filters; and it becomes increasingly asymmetric at high
sound levels with the low-frequency side getting shallower and the
high-frequency side getting steeper. However, these findings were
obtained with simple or mixed tones and the effect was usually
measured on a single critical band. It is not clear that the Gaus-
sian approximation to the shape of auditory filters is optimal in
the perception of real speech. On the other hand, the computation
of mel-frequency cepstral coefficients (MFCC) employs a bank of
triangular filters. The triangular filters are a further approximation
to the Gaussian approximation of humans' auditory filters, and are
adopted for its computation efficiency.

Recently, we have been working on optimizing the parameters
involved in the feature extraction of the new robust auditory fea-
tures developed at the Bell Labs [2, 3]. (Hereafter, we will call it
the Bell Labs features.) The Bell Labs feature is derived by mim-
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icking closely the human peripheral auditory system. In particu-
lar, the filtering processes in the outer-middle ear and inner ear are
explicitly modeled. The new auditory feature was found outper-
forming MFCC, LPCC, and PLP in noise environments [2, 3]. In
our work, both feature extraction parameters and acoustic model
parameters are discriminatively trained to minimize the recogni-
tion error of a specific task using the M CE/GPD framework [4, 5].
One of our major contributions is that better discriminative audi-
tory features (DAF) are obtained through discriminative training
of non-parametric auditory filtersthat are “triangular-like”.

In this paper, we would like to study the effect of the shape of
auditory filtersin derving DAF. Auditory filters of three different
shapes and varying degree of constraints were investigated:

1. parametric Gaussian filters. It is motivated by humans
Gaussian-like auditory filters and it serves as the basis for
comparison.

2. non-parametric and weakly-constrained triangular-like fil-
ters. The triangular-like filters may be considered as a gen-
eralization of both triangular filters and Gaussian filters.

3. non-parametric and unconstrained free-formed filters. Ex-
cept that all filter weights must be positive, they may take up
any shapes even if they are not supported by any psychoa-
coustic evidence. Thisissimply mathematically motivated.

2. AUDITORY FILTERING
The extraction of the Bell Labs feature consists of the following
major steps:

o frame blocking with a window of 25ms at every 10ms of
speech;

e computing the FFT spectrum (in linear frequency domain);
o filtering by the outer-middle-ear transfer function;

e converting from the linear frequency scaleto the Bark scale
by linear interpolation to obtain a 128-point Bark spectrum;

e auditory filtering;
e de-correlation by DCT and computation of cepstrum; and
e computation of dynamic features.

There are 32 auditory filtersin our system and they are equally
spaced at an interval of 4 points apart in the Bark spectrum that
covers 0—4kHz. After auditory filtering, the 128-point input Bark
spectrum was converted to 32 channel energies from which ceptsra
are computed using DCT.
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Fig. 1. The auditory filter of the k-th channel
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Fig. 2. Representation of a 9-point triangular-like filter

Anauditory filter of our system hasthe general design of Fig. 1,
one for each channel. It can be thought of as a two-layer percep-
tron without any nonlinearity. The weight wgs, in the second layer
perceptron isthe gain of the auditory filter while the weightsin the
first layer arethe normalized filter weights. Although the two-layer
perceptron is equivalent to asingle-layer perceptron, the design al-
lows us to examine the resulting filter shapes and gains separately.
All the filter weights are required to be positive.

2.1. Auditory Filtersof Various Shapes
2.1.1. Triangular-like Filters

Motivated by findings from psychoacoustics, we propose to ap-
proximate humans' auditory filters by “triangular-like filters’: all
filter weights are positive with a maximum response of 1.0 in the
middle, and their values taper off to both ends asdepicted in Fig. 2.
The triangular-like constraint are implemented by two successive
parameter-space transformations. For a digital filter with (2L +
1) points, we associate the filter weights { w_r,...,w_1, wo,
wi, .. .,wL} with a set of deltas, {éLL, vy 021,01, .. ,(5L} SO
that after the parameter transformation and proper scaling, ¢; will
be equivalent to Aw; (see Fig. 2). Positively-indexed weights are
related to the positively-indexed deltas mathematically asfollows:

J
wy=1-FO _H@®)) , j=1,...,L (1)

i=1

where F'(.) and H(.) are any monotonically increasing functions
suchthat 0.0 < F(z) < 1.0 and 0.0 < H(z) . The negatively-

indexed weightsare similarly related to the negatively-indexed deltas.

In this paper, we used the exponential function as H(z) and the
sigmoid function as F(z).

2.1.2. Gaussian Filters

A Gaussian filter with (2L + 1) points may be represented as

wari =exp (=2) , i=-Ly 0L (@

Tk

Noticethat unlike our general triangular-likefilters, a Gaussian fil-
ter isalways symmetric. Furthermore, there isonly one parameter,
the variance, to estimate.

2.1.3. Free-formed Filters

A free-formed filter istotally unconstrained except that all thefilter
weights are positive.

3. DISCRIMINATIVE TRAINING OF FILTERS

Although we are concerned only about the filter parameters, it is
easier to describe their estimation in the larger context of discrimi-
native training of any parameters ¢ that control the feature extrac-
tion process. Some of these parameters are illustrated in Fig. 3,
and are denoted as follows:

e : Bark FFT inputs to auditory filters at time ¢
Ut : outputs from auditory filters at time ¢

zZt : channel outputs at time ¢

Tt : acoustic features at time ¢

Ve : static acoustic features at time ¢

v : delta acoustic features at time ¢

Wgk : gain of thefilter in the k-th channel

Wk : weights of the k-th filter

Ok : supplementary deltas associated with wek
Ytk : intermediate output of the k-th filter

As usual, vectors are bold-faced.

The empirical expected string-based misclassification error L,
is defined as

£O0) = 3D £u(0) = 3 D U(d(X.) ®

where © consists of any feature extraction parameters and acous-
tic model parameters; X, is one of the IV, training utterances;
I(.) is the soft error-counting sigmoid function; and d(X;) =
Gi(X;) — gi(X;) measures the ratio between the log-likelihood
of the correct string ¢; (X;) and that of its competing hypotheses
G;(X;). To optimize any parameter ¢, one finds the derivative of
the loss function £ w.r.t. ¢ for each training utterance X;, which
requires the partial derivative of g; w.rt. ¢. If we assume inde-
pendence between the feature extraction parameters and the model
parameters, and the dynamic features v; are the linear regression
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Fig. 3. Parameter notations in the extraction of our discriminative auditory feature

of the static features v,: v = Y 'L | ¢ Viqm, then
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Thus, al the computations boil down to finding a—(Z].

3.1. Re-estimation of Filter Gains

By applying the chain rule on variables z; and u: (see Fig. 1 and
Fig. 3), we have

Vg OV 9zy, Uy
owgr 9%y T OUy owgk
D 1
= Wj(k Dy (6)
Utk

where W(P) isthe DCT matrix and z;; = log ().
3.2. Re-estimation of Filter Weights
3.2.1. Triangular-like Filters

The positively-indexed filter weights of the k-th channel wer. are
re-estimated indirectly through the associated deltasdr.n, h = 1, .. .,
Using the chain rule, we obtain
OVt _ OVt oz U Ytk @
36kh e Otk Yk 36kh

1
= W](kD) E Wak * H (Skh |: ZF etkz:| (8)
t

The actual filter weights w1 are obtained by the appropriate in-
verse transformations of 4y, .

A similar formula may be derived for the negatively-indexed
deltas.

3.2.2. Gaussian Filters

Let us simplify the notation by representing the Gaussian variance
of the k-th (channel) filter o by px. The derivative of v:; W.rt. py
may be derived in asimilar way as Eqn.(7), and is given by
OV OV 0zyy U Ytk ©
opr, ik OUtk Ytk Ipy.
w1

= w®. L Ytk
Tk Utk Bk Opy,

where, since the filter output 3., = Zf}L etki * €XPp (—%)

i=L
oYtk 1 ) i2
Yook Eton(-5). o

3.2.3. Free-formed Filters

Each filter weight has to be trained in an unconstrained manner by
finding the partial derivative of v;; w.r.t. the weight wq ;.

My OV oz Uy ik (11)
OW ki Azyf AUy Yy IMWaki
1
= Wj(kD) ©—— - WBk - Cthi (12
Utk

SiNCeyix = Wak' - €tk.
4. EVALUATION

The effect of the filter shape on the discriminative auditory fea-
ture was investigated on Aurora2 [6]. The Aurora2 corpus con-
sists of simulated telephone utterances of digit strings with addi-
tive noises at various signal-to-noise ratios. In this paper, only the
multi-condition training mode was investigated and results were
reported by combining the performance on al of its three test sets
(A, B, and C) according to Aurora's evaluation standard.

4.1. Experimental Setup

The Bell Labs features were extracted from speech utterances ev-
ery 10ms as described in [2] except that the auditory filters were

- replaced by our triangular-like filters, Gaussian filters, and free-

formed filters. Each feature vector consisted of 13 MFCCsinclud-
ing 0, and their first- and second-order derivatives.

Regardless of their shapes, all our auditory filtershad 11 weights,
and each channel had its own filter. Triangular-like filters were
generally asymmetric, whereas Gaussian filters are, by definition,
symmetric. No restrictions were placed on free-formed filters, ex-
cept that like al other filters, the filter weights must be positive.

Following the baseline setup in the ICSLP conference in 2002,
each digit was represented by a context-independent whole-word
hidden Markov models (HMM) and was trained using the EM al-
gorithm to produce its initial ML estimates (MLE). Each model
was a straightly left-to-right HMM with 16 states and 3 Gaussian
components per state. The silence model had only 3 states, each
with 6 mixture components. There was also a 1-state short-pause
model tied to the middle state of the silence model. The HTK
toolkit was used for both training the MLE models as well as for
decoding. From the initial MLE models and auditory feature pa-
rameters, discriminative training was performed to obtain MCE
estimates of the HMM parameters and/or MCE estimates of the
filter parameters. Corrective training was employed using the 1-
nearest competing hypotheses [7].
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Fig. 4. Aurora2 performance of various training schemes using
triangular-like filters (Reference: |CSLP2002 baseline with tradi-
tional MFCCs is 87.03%; our baseline using Bell Labs auditory
features without discriminative training is 88.54%.)

4.2. Resultsand Discussion

Various ways to combine the discriminative training (DT) of the
filter parameters with that of the HMM parameters were tried and
we found that they should be done sequentially. Joint optimization
did not work and its result was just equal to that due to discrimina-
tive training of the model parameters alone. This agrees with the
experience from other researchers[8]. Thus, thefollowing training
schemes were finaly investigated:

e M-only: discriminative training of HMM parameters only;
e F-only: discriminative training of filter parameters only;

e F+ M-mce: discriminative training of filter parameters fol-
lowed by an MCE re-estimation of the models using the
new features (obtained with the new filter parameters);

e F+ M-mle: discriminative training of filter parameters fol-
lowed by an ML re-estimation of the models using the new
features;

e F+ M-mle + M-mce: same as the last one but followed by
a subsequent discriminative training of HMM parameters.

4.2.1. Effect of Various Training Schemes

Fig. 4 shows the results of various training schemes of the two
kinds of parameters using triangular-like filters. Similar trends are
observed for Gaussian filters or free-formed filters. It is clear that
the Bell Labs feature performs better than MFCC on the noise dig-
itsand reduces the word error rate (WER) by 11.6%. DT of model
parameters alone (M-only scheme) is very effective and reduces
the WER of our baseline by another 17.3%. DT of filter parame-
ters alone (F-only scheme) is less effective and reduces the WER
by only 4.1%. However, if itisfollowed by DT of the model pa-
rameters (F+M-mce), then the result is dlightly better than that of
M-only training. The biggest gain was obtained by first re-training
the HMM s using the new features derived from the new filtersfol-
lowed by another round of DT of the model parameters. The final
WER reduction is 21.7% over our baseline.

4.2.2. Effect of Filter Shapes

Table 1. Overall performance (in word accuracy in %) of DAF on
Aurora2 using filters of different shapes.

Filters M-only |F-only | F+ F+ |F+M-mle
M-mle | M-mce | + M-mce
Gaussian 90.19 | 88.72 | 88.75 | 90.16 90.33
free-formed | 90.52 | 89.01 | 89.22 | 90.72 91.01
triangular-like| 90.52 | 89.01 | 89.09 | 90.83 91.03

The results of discriminative auditory features (DAF) derived
using filters of various shapes are summarized in Table 1. It can be
seen that the Gaussian constraint limitsthe performance of DAFin
all training schemes, whereas the free-formed filters have almost
the same performance as our proposed triangular filters.

5. CONCLUSIONS

It is believed that humans' auditory filters may be approximated

well by Gaussian filters, and the computation of MFCCs usestrian-

gular filters. However, our study shows that the proposed triangul ar-
like filters are more general than either type of filters, and in the

Aurora2 task, they give better word recognition accuracy. There
are no psychoacoustic grounds for the use of free-formed filters;

but that they perform as well as our triangular-like filters shows

that the triangular-like filters may be “optimal”. We also believe

that since our triangular-likefilter is closer to humans' filter shape,

it may be more robust to varying environments.
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