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ABSTRACT

An agorithm for harmonic decomposition of time-variant
signals is derived from a least squares harmonic (LSH)
technique. The estimates of harmonic amplitudes and phases
are formulated as the solution of a set of linear equations
which minimizing mean square error; the signa frequency is
modeled by alinear or quadratic polynomial and obtained via
a local search over polynomial coefficients. An initid
estimate of signa frequency is necessary to reduce
computation time. This method is capable of producing
accurate and robust harmonic estimation in low SNR
situations. We show applicability to high accuracy speech
pitch and heart sound beat epoch estimation.

1. INTRODUCTION

Harmonic modeling, which is also known as a snusoida
representation, has been widely applied in a number of areas
such as speech coding, compression, enhancement, synthes's,
and pitch estimation. Basically, harmonic modeling can be
described as a finite combination of sinusoidal components,
and was first introduced by McAulay and Quetieri [4].

Usualy speech signals can be decomposed into two parts: a
quasi -periodic (harmonic component) and a non-periodic part
(noise component). A crucial step for harmonic modeling isto
find the parameters of harmonic components, e.g. their
amplitudes, frequencies, and phases. A variety of techniques
have been proposed for this decomposition of harmonic
signals, such as the high-resolution andysis of the short-time
Fourier Transform (STFT) [4], the multiband excitation
model (MBE) [3], and the least squares harmonic model
(LSH) [1]. The first two techniques have been successfully
used for low bit-rate speech coding; however their
performance degrades &t low SNR. The LSH model is capable
of producing more accurate and robust harmonic analysis,
even at very low SNR; however, as will be shown, its
performance degrades significantly with rapid changes in
signal frequency.

In this paper, we propose a harmonic analysis method for
time-variant signas, which is a substantially modified version
of the LSH approach developed by Abu-Shikhah and Deriche
[1]. The key difference from LSH [1] is that the fundamental
frequency of signal is alowed to vary with time within the
data segment. A linear or quadratic polynomial is used to fit
the frequency variation in the data segment. The best-fit
harmonic estimation is then obtained via minimizing mean
square error (MSE). As we will show, our extended LSH
(ELSH) model has been successfully used to detect heartbeats
from acoustic signals recorded from body-worn sensors with
presence of very strong body-motion interference and ambient
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noise [7]. We dso apply this technique to estimate pitch
epochs from linear prediction (LP) residuals of speech signals.
The quantitative modeling accuracy of harmonic estimation is
also available as areliable indicator to classify voiced versus
unvoiced sounds.

2. EXTENDED LEAST SQUARESHARMONIC
MODEL

Suppose we have a harmonic signal that consists of a set of
sinusoids, which is given by
M
s(k) =G cosliay Kk +4) , &)
i=1

where g(K) is a segment of a harmonic signal with length N.
k=0,1, ... , N-1 is the discrete time index, M is the tota
number of harmonic components, C; and ¢ are the amplitude
and phase angle for each harmonic component i=1,2, ... , M,
and ay(k) is the normalized fundamental frequency. For
ELSH, our key difference from LSH [1], where ) was
constant, isthat ay(k) isalowed to vary with time.

The LSH model, with our time-varying extension, assumes
that the signd is the sum of a harmonic signd and a noise, so
that the signa isgiven by

M

s(k) =h(K) +n(k) =} C coslic()k +¢) +n(k) . @

The harmonic component h(k) in equations (2) can be
rewritten as:

(k) = 3, costicq (0K + ) o

=G [coslicy, (K)K) cos( ) ~sin(i qg(K)K) sin( 4]

=§:[A cos{icg (K)k) =B, sin(i ¢ (K)K)] ,
where A =C;jcos(q) , Bj=Cjsin(q), and

. tan‘l(%j , ifA=0 @
" tm*(%j +7, ifA <0 .

The weighted mean square error (MSE) between s(k) and h(Kk)
isthen:

N=

E =%z{ s(k) ~h(k} W(K) (5)

k=0

:%Nz:f{s(k) ~ 3] A cos(ica (K)k) ~B sin(i ag,(k)k)]} W(K),

where W(K) is weight of the K" sample point for MSE
calculation.
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For a given sequence of fundamenta frequency ay(k), the
minimum MSE is found by
0E 0E

—=0, —=0,forj=1,2,...,M. (6)
6Aj OBJ'

The above equation ends up with alinear equation

-2 )

where A and B are Mx1 unknown vectors to be determined,
and other matrices are defined as:

Qi) = Y- costiaW(K oo k)

R(ji) = -3 SniaW (K os( k) o

S(1.)= Y- cosiaaW(R)Sn(j k)
T(j,i)= —NZjSi n(iaw K)W(K)sin(j 3k) ,

Yi(i) = ¥ sW(Koos(jeak)

Y,(j) = Y. s(kW(K)sin(japk) ,
k=0
wherei,j=1,2,...,M,and k=0, 1, ... N-1.

Solving equation set (7) for agiven ay(k) resultsin

AL (Q RY1(v ©
B/ls T Yo,
and then C; and ¢ can be obtained from equation (4).

Solving equation (7) only yields amplitudes and phases given
a specified fundamental frequency ay(k). There is no closed-
form anaytical solution for the unknown input signa
frequency. In order to estimate the unknown signal freguency,
we need to repetitively solve equation (7) for a range of
discrete ap(k)'s, and select the ay(k) that gives the minimum
MSE with corresponding C; and ¢ as the final results. Since
the result of a Fourier decomposition is unique, the true signa
fundamental frequency (k) aways yields the minimum
MSE among all possible ay(k)'s.

3. FUNDAMENTAL FREQUENCY ESTIMATE

If we alow ay(k) to vary independently for each k=0,1,...,N-1
and then search for al possible combinations of ay(k), the
number of computations would be impractical. So here we
choose a polynomial to model ay(k)'s evolution in k (discrete
time). The polynomial could be zeroth order (constant
frequency, one free parameter), first order (linear chirp, two
free parameters), second order (quadratic fregquency, three
parameters), or higher order. Since the computation time
increases  exponentially with  polynomial order, the
computation time for high order polynomials is considerable.
An accurate initial estimation of frequency is necessary to
narrower down the search range and lower computation time.

In order to lower computation time, we implemented the
polymonial models via a step-up recursion. We start with a
constant frequency model and search over all candidates of a

range of discrete «. This step is same as the agorithm
describe in  [1]. Then we step up with a linear frequency
model. We formulate the instantaneous frequency of the
signa as

W (K)=a+bk . (10)
Since the instantaneous frequency is the derivative of the
whole phase term (i (K)k+ @) with respect to time, ay(K)
in equation (2) istherefore written as

1
@ (K) :a+5bk : (11)
For convenience, we set
—ﬁ,...,-l, 0, l,...,ﬁ—l if N iseven
k= f\l—l ? N-1 (12)
-—,..,-1,0,1,..,—= if N is odd
2 2

without losing loss of generalization, so that the instantaneous
frequency ang(K) has mean of a and slope of b. We use @y
calculated from the constant frequency model as the initia
estimate of a. Then we search dl combinations of a and b to
find the one with minimum M SE.

If necessary, we can continue to step up to a quadratic time-
varying frequency model, where we mode instantaneous
frequency as

(. (K) =2 +bk +c(k? —%Zkkz) , (13)
and the corresponding phase term ay(K) is written as
1 1 1
k)=a+>bk +c(Zk*> -—=>" Kk?). (14)
@y (k) =a+2bk +o(k* — 3, k)

Adding a constant term _ 1 z k2 conveniently makes a the
N k

mean and b the slope of the instantaneous frequency.
Therefore we can directly use a and b calculated from the
linear model astheinitid estimate.

We can ostensibly continue to step up to obtain high order
frequency model via a similar formulation. However higher
order frequency models require substantially more
computation time and tend to fit noise. Using overlapped data
windows aso helps to obtain a better fit to frequency
variation. In practice, the polynomia order should be
determined from data qudity, the nature of the unknown
signal, and computation efficiency.

4. APPLICATIONS AND PERFORMANCE

Our extended LSH (ELSH) approach has been successfully
applied to detect acoustic heartbeat signal a very low SNR.
We a so demonstrate its application to pitch estimation.

4.1 Acoustic Heartbeat Detection

For healthy and safety reasons there are needs for, say, an
army or fire department to monitor soldier or firefighter's
physiological indicators via body-worn acoustic sensors while
they are doing their missions [7]. Heart rate is the most
important physiological indicator for human health. Rdiable
algorithms are needed to estimate heart rate from acoustic
heartbeat sounds. In such situations, the acoustic heartbeat
signals. (1) have strong periodicity, but usualy buried into
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strong ambient noise and body motion interference; (2) are
typically corrupted by additive noise sources that are non-
stationary and diverse in structure; (3) have a rate which, due
to varied activity, can change rapidly over a short time period.
In other words, we are dealing with a harmonic anadysis
problem with potentially abrupt and rapid fundamental
frequency change and low SNR.
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Figure 1. Comparison of modeling changes of instantaneous frequencies.

Frequency Model Constant Linear Quadratic
Normalized ) . :
Waveform MSE 54.0% 53.4% 12.0%

Table 1. Comparison of modeling errors
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Figure 2. Results of ELSH approach on low SNR (-10 dB) data.

We first give an example for ELSH applied to a clean
heartbeat signa (SNR = 10 dB) with arapid heart rate change
over a short time period. Figure 1 depicts the modeled
ingtantaneous frequencies for the constant, linear and
quadratic model, respectively. Table 1 shows the
corresponding normalized mean square error (MSE) between
the ELSH model and true waveform. From the constant to
linear frequency model, there is a minor improvement; yet
from linear to quadratic frequency model, the improvement is
significant.

Another example is given for presence of colored noise with
low SNR of -10 dB. In figure 2, the upper panel depicts the
origina signal and the ELSH model; the lower pane depicts
the instantaneous frequency of the signal and our results from
quadratic frequency model. The results clearly show that our
harmonic anaysis algorithm is very stable and reliable a low
SNR.

4.2 Pitch estimation and voicing detection

In recent years, harmonic analysis methods have received
much attention on speech coding [3, 6] and pitch estimation
[2, 5]. We proposed a method to estimate the pitch frequency
of speech signals usng ELSH. The schematic diagram for
pitch estimation is shown in figure 3. First alinear prediction
(LP) andysis was performed for every 100 ms and a LP
residua are generated. We partitioned the residual signa into
50 ms segments with a 25 ms overlap between segments to
avoid discontinuities. The ELSH was then performed for each
residual segment to obtain harmonic parameters and harmonic
model resynthesis. A cos? windowing function was applied
for accurate model reconstruction throughout overlapped
regions of the segments.

Usudly for speech coding or pitch estimation, a voiced-
unvoiced (U/V) classfier is aso needed. One of the
advantages of our approach is that the U/V discrimination
indicator can directly be obtained from harmonic modeling
accuracy, e.g. aharmonic-to-noiseratio (HNR)

> hiky’
X [s)-he] )
which is very similar to HNR defined in [2]. Our HNR was

calculated over a much shorter window (10 ms) to quickly
follow transitions between voiced and unvoiced sounds.
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Figure 3. Schematic diagram of pitch estimation approach.

We tested the performance and robustness of the ELSH
approach with polynomial time-varying frequency models.
Speech test data was obtained from the Carnegie Mdlon
University speech group website,
http://www.festvox.org/dbs/dbs time.html. We hand marked
pitch epochs for a comparison reference. ELSH was
performed on both original speech and the same speech with
added white noise. For each case, constant, linear and
quadratic time-varying frequency models were used. We aso
recorded computation time to compare computationa
efficiency.

Typical results for clean data (no additive noise) are shown in
figure 4 and figure 5. In figure 4, the upper panel depicts
comparison of pitch estimation results and hand marked
pitches; the lower panel depicts the HNR and the subsequent
result for U/V casdfication. The U/V discrimination
threshold was set at 3 dB by averaging results of other
utterances. In figure 5, we can cdealy see that the HNR
performs very well as anindication of U/V classification.

The comparisons for different noise levels and frequency
models are shown in table 2. We used a previously-defined
relative accuracy [8] to qudify the performance of the
agorithm, which is defined as
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13 ‘f(k)_fELSH (k)‘

N kzll f(k)
where f(k) and fg sy(k) are the hand marked pitch and
estimated pitch from ELSH model a K" pitch period,
respectively. The accuracy values show that the ELSH
approach performs extremely well in low SNR stuations.
Going from clean data to noise level of -10dB, there is only
about a 1.3 percent drop in overall accuracy. It should aso be
noted that best results were obtained by using different
window size for different noiselevels.

(16)

Relative Accuracy = |1 x100% ,
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Figure 4. Reaults of pitch estimation (no additive noise). (a) shows
results of linear frequency model and hand-marked pitches. (b)
shows HNR (solid line) and decisons of U/V classification
(dotted line, high level — voiced; low level — unvoiced) . The
threshold is3 dB.
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Figure 5. LP residual and Harmonic Synthesis (no additive noise).
The upper trace is residual signal and lower trace is harmonic
synthesis. The dotted line separates estimated voiced and
unvoiced regions.

There are differences between frequency models. At low
noise levd (SNR> -5dB), a higher order modd generates
better results, but aso takes more computation time; at high
noise level (SNR< -10dB), a higher order model tends to fit
noise and thus generates worse results. In practice, a proper
order should be chosen by balancing between accuracy and
computation efficiency. Order is also affected by data quality
and window size. In generd, a short window potentially has
less frequency variation and a low order mode may be
sufficient; a long window potentially has more frequency
variation and thus may need a high order model, yet offers
higher tolerance to noise. For the speech tests, noise levels,
and window sizes presented in this paper, since the
advantages of the quadratic model were dight, we preferred
the linear frequency model at low noise level.

5. CONCLUSION

In this paper, we presented an approach for harmonic anaysis,
which is an extenson to LSH. It has been demonstrated that
this extended LSH approach not only is exceptionaly robust
and accurate a low SNR, but also is capable of capturing
rapid frequency change. Two applications of this approach
were shown in the paper. The application to acoustic heartbeat
detection, where the quadratic time-varying model was used,
has shown success on difficult data. The application to pitch
estimation has potential for high resolution pitch estimation.
The disadvantage of this method is that the computation
complexity is high. It isthus not currently efficient to use this
approach for U/V classification only. Future work on alarge
speech data base is needed to confirm the conclusion of
sufficiency of the linear time-varying model.
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