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ABSTRACT 
 

An algorithm for harmonic decomposition of time-variant 
signals is derived from a least squares harmonic (LSH) 
technique. The estimates of harmonic amplitudes and phases 
are formulated as the solution of a set of linear equations 
which minimizing mean square error; the signal frequency is 
modeled by a linear or quadratic polynomial and obtained via 
a local search over polynomial coefficients. An initial 
estimate of signal frequency is necessary to reduce 
computation time. This method is capable of producing 
accurate and robust harmonic estimation in low SNR 
situations. We show applicability to high accuracy speech 
pitch and heart sound beat epoch estimation. 
 

1. INTRODUCTION 

Harmonic modeling, which is also known as a sinusoidal 
representation, has been widely applied in a number of areas 
such as speech coding, compression, enhancement, synthesis, 
and pitch estimation. Basically, harmonic modeling can be 
described as a finite combination of sinusoidal components, 
and was first introduced by McAulay and Quatieri [4].   
 
Usually speech signals can be decomposed into two parts: a 
quasi-periodic (harmonic component) and a non-periodic part 
(noise component). A crucial step for harmonic modeling is to 
find the parameters of harmonic components, e.g. their 
amplitudes, frequencies, and phases. A variety of techniques 
have been proposed for this decomposition of harmonic 
signals, such as the high-resolution analysis of the short-time 
Fourier Transform (STFT) [4], the multiband excitation 
model (MBE) [3],  and the least squares harmonic model 
(LSH) [1]. The first two techniques have been successfully 
used for low bit-rate speech coding; however their 
performance degrades at low SNR. The LSH model is capable 
of producing more accurate and robust harmonic analysis, 
even at very low SNR; however, as will be shown, its 
performance degrades significantly with rapid changes in 
signal frequency.  
 
In this paper, we propose a harmonic analysis method for 
time-variant signals, which is a substantially modified version 
of the LSH approach developed by Abu-Shikhah and Deriche 
[1]. The key difference from LSH [1] is that the fundamental 
frequency of signal is allowed to vary with time within the 
data segment. A linear or quadratic polynomial is used to fit 
the frequency variation in the data segment. The best-fit 
harmonic estimation is then obtained via minimizing mean 
square error (MSE). As we will show, our extended LSH 
(ELSH) model has been successfully used to detect heartbeats 
from acoustic signals recorded from body-worn sensors with 
presence of very strong body-motion interference and ambient 

noise [7]. We also apply this technique to estimate pitch 
epochs from linear prediction (LP) residuals of speech signals. 
The quantitative modeling accuracy of harmonic estimation is 
also available as a reliable indicator to classify voiced versus 
unvoiced sounds. 
   

2. EXTENDED LEAST SQUARES HARMONIC 
MODEL 

Suppose we have a harmonic signal that consists of a set of 
sinusoids, which is given by 
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where s(k) is a segment of a harmonic signal with length N. 
k=0,1, … , N-1 is the discrete time index, M is the total 
number of harmonic components, Ci and φi are the amplitude 
and phase angle for each harmonic component i=1,2, … , M, 
and ω0(k) is the normalized fundamental frequency. For 
ELSH, our key difference from LSH [1], where ω0 was 
constant, is that ω0(k) is allowed to vary with time.  
 
The LSH model, with our time-varying extension, assumes 
that the signal is the sum of a harmonic signal and a noise, so 
that the signal is given by  
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The harmonic component h(k) in equations (2) can be 
rewritten as: 
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where cos( )A Ci i iφ= , sin( )B Ci i iφ= , and 
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The weighted mean square error (MSE) between s(k) and h(k) 
is then: 
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where W(k) is weight of the kth sample point for MSE 
calculation. 
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For a given sequence of fundamental frequency ω0(k), the 
minimum MSE is found by 
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, for j=1, 2, … , M. (6) 

 
The above equation ends up with a linear equation 
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where A and B are M×1 unknown vectors to be determined, 
and other matrices are defined as:  

1

0 0
0

1

0 0
0

1

0 0
0

1

0 0
0

1

1 0
0

2

( , ) cos( ) ( ) cos( ) ,

( , ) sin( ) ( )cos( ) ,

( , ) cos( ) ( )sin( ) ,

( , ) sin( ) ( )sin( ) ,

( ) ( ) ( )cos( ) ,

( ) ( ) ( )

N

k
N

k
N

k
N

k
N

k

j i i k W k j k

j i i k W k j k

j i i k W k j k

j i i k W k j k

j s k W k j k

j s k W k

ω ω

ω ω

ω ω

ω ω

ω

−

=
−

=
−

=
−

=
−

=

=

= −

=

= −

=

=

∑

∑

∑

∑

∑

Q

R

S

T

Y

Y
1

0
0

sin( ) ,
N

k

j kω
−

=
∑

 (8) 

where i, j =1, 2, … , M, and  k=0, 1, … N-1. 
 
Solving equation set (7) for a given ω0(k) results in 
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and then Ci and φi can be obtained from equation (4). 
 
Solving equation (7) only yields amplitudes and phases given 
a specified fundamental frequency ω0(k). There is no closed-
form analytical solution for the unknown input signal 
frequency. In order to estimate the unknown signal frequency, 
we need to repetitively solve equation (7) for a range of 
discrete ω0(k)’s, and select the ω0(k) that gives the minimum 
MSE with corresponding Ci and φi as the final results. Since 
the result of a Fourier decomposition is unique, the true signal 
fundamental frequency ω0(k) always yields the minimum 
MSE among all possible ω0(k)’s. 
 

3. FUNDAMENTAL FREQUENCY ESTIMATE 

If we allow ω0(k) to vary independently for each k=0,1,…,N-1 
and then search for all possible combinations of ω0(k), the 
number of computations would be impractical. So here we 
choose a polynomial to model ω0(k)’s evolution in k (discrete 
time). The polynomial could be zeroth order (constant 
frequency, one free parameter), first order (linear chirp, two 
free parameters), second order (quadratic frequency, three 
parameters), or higher order. Since the computation time 
increases exponentially with polynomial order, the 
computation time for high order polynomials is considerable. 
An accurate initial estimation of frequency is necessary to 
narrower down the search range and lower computation time.  
 
In order to lower computation time, we implemented the 
polymonial models via a step-up recursion. We start with a 
constant frequency model and search over all candidates of a 

range of discrete ω0. This step is same as the algorithm 
describe in  [1]. Then we step up with a linear frequency 
model. We formulate the instantaneous frequency of the 
signal as 

( )inst k a bkω = +    . (10) 

Since the instantaneous frequency is the derivative of the 
whole phase term 

0( ( ) )ii k kω φ+  with respect to time, ω0(k) 

in equation (2) is therefore written as 
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without losing loss of generalization, so that the instantaneous 
frequency ωinst(k) has mean of a and slope of b. We use ω0 
calculated from the constant frequency model as the initial 
estimate of a. Then we search all combinations of a and b to 
find the one with minimum MSE. 
 
If necessary, we can continue to step up to a quadratic time-
varying frequency model, where we model instantaneous 
frequency as  
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and the corresponding phase term ω0(k) is written as 
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Adding a constant term 21
k
k

N
− ∑  conveniently makes a the 

mean and b the slope of the instantaneous frequency. 
Therefore we can directly use a and b calculated from the 
linear model as the initial estimate. 
 
We can ostensibly continue to step up to obtain high order 
frequency model via a similar formulation. However higher 
order frequency models require substantially more 
computation time and tend to fit noise. Using overlapped data 
windows also helps to obtain a better fit to frequency 
variation. In practice, the polynomial order should be 
determined from data quality, the nature of the unknown 
signal, and computation efficiency.  
 

4. APPLICATIONS AND PERFORMANCE 

Our extended LSH (ELSH) approach has been successfully 
applied to detect acoustic heartbeat signal at very low SNR. 
We also demonstrate its application to pitch estimation. 
 
4.1 Acoustic Heartbeat Detection 

For healthy and safety reasons there are needs for, say, an 
army or fire department to monitor soldier or firefighter’s 
physiological indicators via body-worn acoustic sensors while 
they are doing their missions [7]. Heart rate is the most 
important physiological indicator for human health. Reliable 
algorithms are needed to estimate heart rate from acoustic 
heartbeat sounds. In such situations, the acoustic heartbeat 
signals: (1) have strong periodicity, but usually buried into 
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strong ambient noise and body motion interference; (2) are 
typically corrupted by additive noise sources that are non-
stationary and diverse in structure; (3) have a rate which, due 
to varied activity, can change rapidly over a short time period. 
In other words, we are dealing with a harmonic analysis 
problem with potentially abrupt and rapid fundamental 
frequency change and low SNR. 
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Figure 1. Comparison of modeling changes of instantaneous frequencies. 
 

Frequency Model Constant Linear Quadratic 
Normalized 

Waveform MSE 
54.0% 53.4% 12.0% 

Table 1. Comparison of modeling errors 
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Figure 2. Results of ELSH approach on low SNR (-10 dB) data. 

 
We first give an example for ELSH applied to a clean 
heartbeat signal (SNR = 10 dB) with a rapid heart rate change 
over a short time period. Figure 1 depicts the modeled 
instantaneous frequencies for the constant, linear and 
quadratic model, respectively. Table 1 shows the 
corresponding normalized mean square error (MSE) between 
the ELSH model and true waveform. From the constant to 
linear frequency model, there is a minor improvement; yet 
from linear to quadratic frequency model, the improvement is 
significant.  
 
Another example is given for presence of colored noise with 
low SNR of -10 dB. In figure 2, the upper panel depicts the 
original signal and the ELSH model; the lower panel depicts 
the instantaneous frequency of the signal and our results from 
quadratic frequency model. The results clearly show that our 
harmonic analysis algorithm is very stable and reliable at low 
SNR. 
 

4.2 Pitch estimation and voicing detection 

In recent years, harmonic analysis methods have received 
much attention on speech coding [3, 6] and pitch estimation 
[2, 5]. We proposed a method to estimate the pitch frequency 
of speech signals using ELSH. The schematic diagram for 
pitch estimation is shown in figure 3. First a linear prediction 
(LP) analysis was performed for every 100 ms and a LP 
residual are generated. We partitioned the residual signal into 
50 ms segments with a 25 ms overlap between segments to 
avoid discontinuities. The ELSH was then performed for each 
residual segment to obtain harmonic parameters and harmonic 
model resynthesis. A cos2 windowing function was applied 
for accurate model reconstruction throughout overlapped 
regions of the segments. 
 
Usually for speech coding or pitch estimation, a voiced-
unvoiced (U/V) classifier is also needed. One of the 
advantages of our approach is that the U/V discrimination 
indicator can directly be obtained from harmonic modeling 
accuracy, e.g. a harmonic-to-noise ratio (HNR) 

[ ]

2

10 2

( )
10 log  ,

( ) ( )
k

k

h k
HNR

s k h k

 
 =
 − 

∑

∑

  (15) 

which is very similar to HNR defined in [2]. Our HNR was 
calculated over a much shorter window (10 ms) to quickly 
follow transitions between voiced and unvoiced sounds.  
 

 
Figure 3. Schematic diagram of pitch estimation approach. 

 
We tested the performance and robustness of the ELSH 
approach with polynomial time-varying frequency models. 
Speech test data was obtained from the Carnegie Mellon 
University speech group website, 
http://www.festvox.org/dbs/dbs_time.html. We hand marked 
pitch epochs for a comparison reference. ELSH was 
performed on both original speech and the same speech with 
added white noise. For each case, constant, linear and 
quadratic time-varying frequency models were used. We also 
recorded computation time to compare computational 
efficiency. 
 
Typical results for clean data (no additive noise) are shown in 
figure 4 and figure 5. In figure 4, the upper panel depicts 
comparison of pitch estimation results and hand marked 
pitches; the lower panel depicts the HNR and the subsequent 
result for U/V classification. The U/V discrimination 
threshold was set at 3 dB by averaging results of other 
utterances. In figure 5, we can clearly see that the HNR 
performs very well as an indication of U/V classification.  
 
The comparisons for different noise levels and frequency 
models are shown in table 2.  We used a previously-defined 
relative accuracy [8] to qualify the performance of the 
algorithm, which is defined as 
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where f(k) and fELSH(k) are the  hand marked pitch and 
estimated pitch from ELSH model at kth pitch period, 
respectively. The accuracy values show that the ELSH 
approach performs extremely well in low SNR situations. 
Going from clean data to noise level of -10dB, there is only 
about a 1.3 percent drop in overall accuracy. It should also be 
noted that best results were obtained by using different 
window size for different noise levels.  
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Figure 4.  Results of pitch estimation (no additive noise). (a) shows 
results of linear frequency model and hand-marked pitches. (b) 
shows HNR (solid line) and decisions of U/V classification 
(dotted line, high level – voiced; low level – unvoiced) . The 
threshold is 3 dB. 
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Figure 5. LP residual and Harmonic Synthesis (no additive noise). 

The upper trace is residual signal and lower trace is harmonic 
synthesis. The dotted line separates estimated voiced and 
unvoiced regions. 

 
Frequency Model Constant Linear Quadratic 

No additive noise 
50 ms data window 

98.9% 99.1% 99.2% 

White noise (SNR= -5 dB) 
50 ms data window 

98.4% 98.6% 98. 7% 

White noise (SNR= -10 dB) 
100 ms data window 

98.0% 97.8% 97.9% 

White noise (SNR= -15 dB) 
100 ms data window 

92.7% 92.6% 92.6% 

Approx. Computation 
Time  (sec) 

110 340 830 

Table 2. Relative accuracy for different noise levels and frequency 
models. The algorithm is implemented in MATLAB R13 
running on AMD Athlon 1.5GHz system with Windows 2000. 
The computation time is for 5 second speech sampled at 16 KHz. 

There are differences between frequency models. At low 
noise level (SNR≥ -5dB), a higher order model generates 
better results, but also takes more computation time; at high 
noise level (SNR≤ -10dB), a higher order model tends to fit 
noise and thus generates worse results. In practice, a proper 
order should be chosen by balancing between accuracy and 
computation efficiency. Order is also affected by data quality 
and window size. In general, a short window potentially has 
less frequency variation and a low order model may be 
sufficient; a long window potentially has more frequency 
variation and thus may need a high order model, yet offers 
higher tolerance to noise. For the speech tests, noise levels, 
and window sizes presented in this paper, since the 
advantages of the quadratic model were slight, we preferred 
the linear frequency model at low noise level. 
 

5. CONCLUSION 

In this paper, we presented an approach for harmonic analysis, 
which is an extension to LSH. It has been demonstrated that 
this extended LSH approach not only is exceptionally robust 
and accurate at low SNR, but also is capable of capturing 
rapid frequency change. Two applications of this approach 
were shown in the paper. The application to acoustic heartbeat 
detection, where the quadratic time-varying model was used, 
has shown success on difficult data. The application to pitch 
estimation has potential for high resolution pitch estimation. 
The disadvantage of this method is that the computation 
complexity is high. It is thus not currently efficient to use this 
approach for U/V classification only. Future work on a large 
speech data base is needed to confirm the conclusion of 
sufficiency of the linear time-varying model. 
 
We acknowledge help from technical discussions with Prof. 
Mari Ostendorf. This work was funded by the Army Research 
Lab. 
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