
THIN CLIENT FRONT-END PROCESSOR FOR DISTRIBUTED SPEECH RECOGNITION

K. F. Chow, S. C. Liew, K. T. Lua

School of Computing, National University of Singapore
3 Science Drive 2, Singapore 117543

ABSTRACT

We present a front-end feature processor for distributed speech
recognition for an integer-based DSP, and we employ block
floating point and range reduction for the computation of
elementary functions. We show that by reducing the numerical
accuracy of the block floating point and the elementary
functions, we are able to reduce the operational requirements to
12.6 wMOPs, 2.4 kWords of RAM, 3.7 kWords of ROM. When
used on a small vocabulary of 800 words 6.4 perplexity, and a
large vocabulary of 20,200 words 102.5 perplexity, our
optimized DSP front-end produces recognition accuracy
comparable to an equivalent implementation on a floating point
processor, without requiring a retrain of the recognition system
with features produced by our DSP front-end.

1. INTRODUCTION

There have been recent interests in the research community
related to distributed speech recognition (DSR). Of particular
interest is the Speech, Transmission and Quality Aspects (STQ)
group of the European Telecommunications Standards Institute
(ETSI), whose work includes the definition of a standard for an
advanced front-end processor for distributed speech recognition
[1, 2]. They have defined the algorithm for compatibility
between the mobile client and the recognition back-end. The
algorithm may then be implemented on an integer-based digital
signal processor (DSP) at the client.

In DSP programming, there is often a need to trade off
between numerical accuracy and power consumption in the
DSP. While there have been recent advances in DSP technology
that offer hardware floating point units within the processor,
integer-based DSPs remain popular for their affordability. An
implementation of the front-end feature extraction on an integer
DSP for distributed speech recognition should satisfy three
conditions: (i) low computational complexity, (ii) low memory
consumption, (iii) minimal degradation in recognition accuracy
compared to a floating point equivalent implementation. In this
paper, we present a front-end feature extractor for distributed
speech recognition for an integer-based DSP.

2. IMPLEMENTATION

Figure 1 shows the block diagram of our DSP front-end
implementation.
 Our DSP front-end accepts a 16 kHz speech signal and

divides into frames of 20 milliseconds, with a 10-millisecond
overlap. The Fast Hartley Transform (FHT) is used, instead of
the Fast Fourier Transform (FFT). Both FHT and FFT produce
the same output but FHT is preferred for its reduced complexity
[3]. Additive noise is handled with magnitude spectral
subtraction as oppose to power spectral subtraction, as
magnitude spectral subtraction has been shown [4] to be more
robust. Root Cepstral Coefficients (RCC) is implemented using
a root transformation of the filter-bank energies in place the
traditional MFCC which uses a logarithmic transformation. The
RCC is known for its improved robustness under noisy
conditions [5, 6]. A discrete cosine transform converts the root-
powered filter banks to cepstral features. Convolutional noise is
then handled with a technique known as Blind Equalization [7]
that is frame-synchronous and performs better than RASTA [8].
At the end of the processing, the 13 features (12 cepstral
features, 1 log energy) are quantized and packed into a stream.

Figure 1: Block diagram of our front-end processor.

3. BLOCK FLOATING POINT

Block Floating Point [9] (BFP) is a technique used in integer
processing to compromise speed and numerical accuracy.
Clearly, in an integer DSP, we do not have the luxury of
hardware-assisted floating point operations for maximum
numerical accuracy. The use of fixed point arithmetic, however,

ADC

Framing/Pre-emphasis

Hamming Window

Fast Hartley Transform

Magnitude Spectrum

Spectral Subtraction

Power Spectrum

Mel Filter-Bank

Root Transform

DCT

Feature Quantization
1 log energy

12 cepstral
coefficients

to network

16 kHz speech signal

Blind EQ

Log Energy

II - 290-7803-7663-3/03/$17.00 ©2003 IEEE ICASSP 2003

➠ ➡

suffers from inaccuracy, due to its limited range. Floating point
may be emulated in software in an integer-DSP processor, but
assigning an exponent for every mantissa may be too
computationally expensive. We may retain the benefits of
floating point and keep the computational complexity low, by
allowing several mantissas to share a single exponent.

If there are K values X(0), X(1), …, X(K-1), they may be
represented by their separate mantissa and exponent components
such that

)(2)()(
iXe

iXmiX ×= , 24
)(

24 20.220.1 ⋅<≤⋅ iXm (1)
Then, in a BFP implementation,

σ

ση
,

,

2
2)()(

)(

)()(
X

X

e
iX

e
iXiX

m
miX

×′=

×>>=
 (2)

such that the mantissas)1()1()(,...,, −Λ+Λ+ΛΛ ′′′ σσσ XXX mmm share

the same exponent σ,Xe where

)/,0[
),max()1(,...,)1(,)(,

Λ∈∀
= −Λ+Λ+ΛΛ

K
eeee XXXX

σ
σσσσ (3)

Λ is defined as the size of each block of exponents that share a
single exponent and is currently set to 16. An increase in Λ
increases the sharing, and hence decreases computational
complexity at the cost of reduced numerical accuracy, and vice
versa.

BFP is implemented in the stages where the power and
magnitude spectrum of the frame of speech is used, where
K=256. In particular, it is implemented in the Fast Hartley
Transform, Magnitude Spectrum, Spectral Subtraction, Power
Spectrum, Log Energy and the Mel Filter-Bank Analysis stages
of the block diagram as shown in Figure 1.

4. RANGE REDUCTION FOR ELEMENTARY
FUNCTIONS

The elementary functions of logarithm, square-root and the root-
power are computed with a table-based approach known as
range reduction [10, 11]. In general, the reduction may be
defined as:

))(),...,(),(),...((
)(

11
2

1
112

−−−=
=

ff NN RfRfRfxRRRfg
xfy

 (4)

where f(ab)=g(f(a),f(b)) and where the value of Nf indicates the
number of reduction steps for elementary function f(x).
Depending on the property of the elementary function f,
function g may take on the function of a sum or a product of f(a)
and f(b). For example, the logarithm of the same form in
equation (4) above may be expressed as:

2ln)ln(...)ln()...ln(

)2ln(
)ln(

11
11 loglog xNxN

e
x

eRRmRR
m
xy

x

++++=
⋅=

=

−−
 (5)

And the square-root and root-power are of the same form and
may be expressed as:

αααα

α

α

x
powpow

x

e
NN

e
x

RRxRR
m

xy

2...)...(
)2(

11 ⋅⋅⋅⋅=
⋅=

=

−−
 (6)

where the square-root is a special case where α=0.5. Ri is a
reduction function that is a table of Si number of pre-computed
values, and the function may be defined as follows:
)...(121 xRRRrR iii −= (7)

such that the following condition holds:

 ∑+<≤ =
−

i
n nS

i xRRR 120.1...0.1 12 (8)
To achieve condition (8), the reduction function ri may be
defined as:

1

11 22)0.1(0.1)(
−

∑−












×












×−+= ==∑ i

n n

i

n n SS
i vvr (9)

where the size of each table or ri is is2 . Whether f is the
elementary function of logarithm or a root-power, when

xRRR
fN 12... is approximated to 1.0, equation (4) may be re-

expressed as
))(),...,(),((11

2
1

1
−−−=

fNRfRfRfgy (10)

 The number of reduction steps have been set for the
logarithm, square-root and root-power (for RCC) as Nlog=2,
Npow=2, Nsqrt=3 respectively. We set S=8, (where S=Si, i∀)
which indicates the precision of the reduction table ri. A smaller
S or N will result in the decrease in the computational
complexity and ROM usage. It is likely, however, that it will
result in the decrease the recognition accuracy due to the
decrease in numerical accuracy.

5. FEATURE QUANTIZATION

To reduce network bandwidth, we may use the vector
quantization techniques defined by ETSI [11] or by IBM [12].
But in favor of a technique that is both low in computational
complexity and low in memory usage, we employ a scalar
quantization technique that uses a µ-law-like companding
function to achieve the quantization. If C(v) ≥ 0, then the
quantized index C'(i) may be defined as follows:

)12(
)1ln(

1ln
,12max()(1

)(

1 −×
+







 +

−=′ −

−

−
+

ii

i

i L

i

C
CiC

i
LiC

µ

µ
 (11)

If, however, C(i) < 0, then

)2
)1ln(

1ln
,2max()(1

)(

1 −

−

− ×
+







 +

−=′
−

ii

i

i L

i

C
CiC

i
LiC

µ

µ
 (12)

where µi is the curve of the µ-law function, iC is the mean,
+
iC the positive maximum of iCiC −)(, −

iC the negative

maximum of iCiC −)(of the i-th cepstral coefficient. Li the
number of bits that the i-th cepstral coefficient will be quantized
with. It should be clear that with this technique, the bit-rate of
the compression may be varied only by altering the value of Li
without incurring any penalty in computational complexity or
memory usage.

6. EXPERIMENTS

Our experiments were performed with a Semi-Continuous
Hidden Markov Model speech recognition system developed by
our lab. The system uses agglomerated word-internal triphones.
Our corpus, collected by our lab, is a speaker-dependent corpus
related to a command and control application. It consists of 800
English words and its trigram language model has a perplexity
of 6.4. The training set spans about 3 hours and consists of

II - 30

➡ ➡

1,500 clean spoken utterances, from which 784 triphones were
trained. The test set spans about ¾-hour and consists of 500
clean spoken utterances. Three different noises—F16 cockpit,
Volvo car interior, Factory—publicly obtained from the Signal
Processing Information Base artificially added to each sample to
simulate the desired condition.

The accuracy of the recognition is computed by the
following expression,

 %100(%) ×
−−−

=
total

delinssubtotal
N

NNNNACC (13)

where Ntotal is the total number of words, Nsub the number of
substitions, Nins the number of insertions and Ndel the number of
deletions. All accuracy is presented as the averaged accuracy for
all three noise conditions. The computational complexity is
computed in weight million operations per second (wMOPs) as
defined in [13].

Table 1 compares the recognition accuracy of our DSP
front-end processor under different compression rates with the
recognition accuracy of a floating point equivalent
implementation of the front-end processor. Table 2 shows the
operational requirements of the DSP front-end compared to the
ETSI STQ’s operational requirements for the Advanced Front-
End processor [14].

 Average Word Accuracy (%)
 FP DSP DSP DSP
Bitrate (kbps) 41.6 41.6 7.0 4.8
Clean 95.3 95.3 95.1 95.0
30 dB 95.3 95.3 95.2 94.9
25 dB 95.2 95.2 95.1 94.7
20 dB 94.8 94.8 94.8 94.4
15 dB 92.6 92.6 92.5 91.4
10 dB 77.1 77.1 76.5 72.5
05 dB 38.2 38.2 38.0 36.9
00 dB 34.2 34.1 34.3 33.9

Table 1: Accuracy of our DSP front-end against an FP
front end for a small vocabulary task.

 ETSI

Requirements
Our Baseline

Implementation
Complexity (wMOPs) 17.0 15.978
ROM (kWords) 15.0 8.080
RAM (kWords) 6.0 2.413

Table 2: Our DSP front-end processor against ETSI’s
specified operational requirements.

Clearly, the accuracy of our unquantized DSP-based front-

end feature extraction is close, if not equivalent, to the floating
point implementation, bearing in mind that the engine was
trained with features extracted with the floating point front-end.
It should be noted that while the quantization performs fairly
well in 4.8 kbps under clean conditions, the recognition
accuracy degrades significantly at low SNRs. In view of this, we
have chosen 7.0 kbps as the quantization rate for the rest of the
experiments. It can be seen that the front-end processor that we
have developed runs within the operational requirements spelled
out by ETSI STQ Aurora.

Optimization may be achieved by increasing the sharing of
the exponent in the BFP technique. This may be accomplished
by increasing the value for Λ. Using 7.0 kbps as the
compression rate, Table 3 shows that the recognition accuracy

suffers no degradation even when all 256 mantissas share 1
exponent (Λ=256). It also shows small decrease in
computational complexity and RAM usage.

Further optimization may be achieved by reducing S.
Numerical accuracy is expected to decrease. Table 4 shows that
the decrease in recognition accuracy is minimal, if S=4. When
S=0, however, the reduction is omitted. Consequently, the
computational complexity decreases sharply. The recognition,
however, degrades significantly as well.

 Average Word Accuracy (%)
Λ 16 32 64 128 256
Clean 95.1 95.1 95.1 95.1 95.1
30dB 95.2 95.3 95.3 95.3 95.3
25dB 95.1 95.2 95.2 95.2 95.2
20dB 94.8 94.8 94.8 94.8 94.8
15dB 92.5 92.5 92.5 92.5 92.5
10dB 76.5 76.5 76.5 76.5 76.5
5dB 38.0 38.0 38.0 38.0 38.0
0dB 34.3 34.3 34.3 34.3 34.3
 Operational Requirements
Complexity 15.98 15.91 15.87 15.85 15.84
RAM 2.413 2.397 2.389 2.385 2.383
ROM 8.080 8.080 8.080 8.080 8.080

Table 3: Effects of varying Λ.

 Average Word Accuracy (%)
S 8 6 4 2 0
Clean 95.1 95.1 95.1 95.2 94.0
30dB 95.3 95.2 95.2 95.3 94.0
25dB 95.2 95.2 95.1 95.2 93.6
20dB 94.8 94.8 94.8 94.8 92.1
15dB 92.5 92.4 92.5 92.2 84.8
10dB 76.5 76.5 76.6 76.3 61.4
5dB 38.0 38.1 38.1 37.7 36.0
0dB 34.3 34.2 34.1 33.8 33.0
 Operational Requirements
Complexity 15.84 15.84 15.84 15.84 11.65
RAM 2.383 2.383 2.383 2.383 2.383
ROM 8.080 4.624 3.760 3.544 3.490

Table 4: Effects of varying S.

 Average Word Accuracy (%)
Nlog, Npow, Nsqrt 2,2,3 2,2,2 2,2,1 1,1,2 1,1,1
Clean 95.1 95.1 95.2 95.1 95.1
30dB 95.2 95.2 95.2 95.2 95.2
25dB 95.1 95.2 95.2 95.2 95.2
20dB 94.8 94.9 94.8 94.8 94.8
15dB 92.5 92.5 92.5 92.3 92.2
10dB 76.6 76.8 76.9 76.4 76.3
5dB 38.1 38.0 38.3 37.8 37.6
0dB 34.1 34.2 34.4 33.7 33.7
 Operational Requirements
Complexity 15.84 14.26 12.62 14.06 12.42
RAM 2.383 2.383 2.383 2.383 2.383
ROM 3.760 3.696 3.664 3.632 3.568

Table 5: Effects of varying Nlog, Npow, Nsqrt.

 One final optimization may be performed on the DSP front

II - 31

➡ ➡

end processor by reducing the number of reduction steps per
elementary function. Table 5, however, shows that we are able
to keep the degradation in recognition accuracy fairly stable
when the number of reduction steps of the square-root, Nsqrt, is
reduced to 1. We also observe a signification decrease in
computational complexity and ROM usage.

7. LARGE VOCABULARY SPEECH RECOGNITION

Our large vocabulary, collected by our lab, has 20,200 words
and its trigram language model has a perplexity of 102.5
obtained from a corpus of 15 million running words. The
training set is a speaker-dependent 15-hour collection of 15,000
clean spoken utterances, from which a total of 1,690 triphones
were trained. The test-set is a 1-hour dictation of 1,000 clean
spoken utterances. The same three types of noise and the various
SNR levels were simulated by amplifying and artificially adding
them into the clean signals. Table 6 demonstrates that our DSP
implementation of the front-end processor suffers insignificant
degradation in recognition accuracy even when used on a large
vocabulary corpus.

Implementation FP DSP DSP
Bitrate (kbps) 41.6 41.6 7.0
Λ N/A 16 256
S N/A 8 4
Nlog, Npow, Nsqrt N/A 2, 2, 3 2, 2, 1
 Average Word Accuracy (%)
Clean 92.6 92.6 92.4
30 dB 92.2 92.2 92.0
25 dB 91.8 91.7 91.8
20 dB 89.1 89.1 89.2
15 dB 79.9 79.9 80.0
10 dB 55.3 55.1 54.9
05 dB 33.6 33.6 33.5
00 dB 31.7 31.6 31.7
 Operational Requirements
Complexity N/A 15.98 12.62
RAM N/A 2.413 2.383
ROM N/A 8.080 3.664

Table 6: Comparing our DSP front-end against an FP
front-end for a large vocabulary task.

 ETSI

Requirements
Our Optimized
Implementation

Complexity (wMOPs) 17.0 12.62
ROM (kWords) 15.0 2.383
RAM (kWords) 6.0 3.664

Table 7: Our optimized DSP front-end against the
ETSI specified operational requirements.

8. CONCLUSION

We have shown that the recognition accuracy produced by our
DSP front-end processor is comparable if not equivalent to a
floating point implementation of the front-end processor. This
implies that we do not need to train the recognition system
specifically with the features produced by the DSP front-end.
And this is true for both small vocabulary and large vocabulary
systems. We have shown that we may derive large savings in
computational complexity, ROM and RAM usage without

sacrificing the recognition accuracy. As a result, our DSP front-
end processor, as shown in Table 7, runs within the limits for
the operational requirements specified by ETSI requirements for
the advanced front-end.

9. REFERENCES

[1] STQ Aurora Working Group, “ETSI ES 202 050 V1.1.1,”
ETSI, Jul. 2002.

[2] STQ Aurora Working Group, “ETSI ES 201 108 V1.1.2,”
ETSI, Apr. 2000.

[3] A. Ganapathiraju, J. Hamaker, A. Skjellum and J. Picone,
"A Comparative Analysis of FFT Algorithms," available at
http://www.isip.msstate.edu/publications/journals/index.html,
Dec. 1997.

[4] A. Acero. and R. M. Stern, “Towards microphone-
independent speech recognition,” in Proc. of the DARPA
Speech and Natural Language Workshop , 1990.

[5] U. Yapanel, J. H. L. Hansen, R. Sarikaya and B. Pellon,
“Robust Digit Recognition in Noise: An Evaluation Using the
AURORA Corpus,” in Eurospeech, vol. 1, pp. 209-212, 2001.

[6] R. Sarikaya and J. H. L. Hansen, “Analysis of the Root
Cepstrum for Acoustic Modeling and Fast Decoding in Speech
Recognition,” in Eurospeech, Sep. 2001.

[7] L. Mauuray, “Blind Equalization in the Cepstral Domain for
Robust Speech Recognition,” in Proc. European Signal
Processing Conference, 1998.

[8] C. Kermovant, “A Comparison of Noise Reduction
Techniques for Robust Speech Recognition,” in IDIAP
Research Report, Jul. 1999.

[9] A. V. Oppenheim, “Realization of Digital Filters using
Block Floating-Point Arithmetic,” in IEEE Trans. on Audio and
Electroacoustics, vol. 18, pp. 130-136, Jun. 1970.

[10] M. Schulte and E. Swartzlander, “Exact Rounding of
Certain Elementary Functions,” in Proc. of the 11th IEEE
Symposium on Computer Arithmetic, pp. 138-145, Jul. 1993.

[11] J. Hormigo and J. Villalba, “A Hardware Algorithm for
Variable-Precision Logarithm,” in Proc. IEEE Conf. on
Application-Specific Systems, Architectures and Processors, pp.
215-224, Jul. 2000.

[12] G. N. Ramaswamy and P. S. Gopalakrishnan,
“Compression of Acoustic Features for Speech Recognition in
Network Environments,” in IEEE Intl. Conf. on Acoustics,
Speech and Signal Processing, pp. 977-980, 1998.

[13] ITU-T, “ITU-T Software Library Tools 2000 User’s
Manual,” in ITU-T Users’ Groups on Software Tools, Geneva,
Dec. 2000.

[14] STQ Aurora DSR Working Group, “Advanced DSR Front-
End: Definition of Required Performance Characteristics,” in
AU/371/01, Oct. 2001.

II - 32

➡ ➠

