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ABSTRACT 

 
We present a front-end feature processor for distributed speech 
recognition for an integer-based DSP, and we employ block 
floating point and range reduction for the computation of 
elementary functions. We show that by reducing the numerical 
accuracy of the block floating point and the elementary 
functions, we are able to reduce the operational requirements to 
12.6 wMOPs, 2.4 kWords of RAM, 3.7 kWords of ROM. When 
used on a small vocabulary of 800 words 6.4 perplexity, and a 
large vocabulary of 20,200 words 102.5 perplexity, our 
optimized DSP front-end produces recognition accuracy 
comparable to an equivalent implementation on a floating point 
processor, without requiring a retrain of the recognition system 
with features produced by our DSP front-end. 

 
1. INTRODUCTION 

 
There have been recent interests in the research community 
related to distributed speech recognition (DSR). Of particular 
interest is the Speech, Transmission and Quality Aspects (STQ) 
group of the European Telecommunications Standards Institute 
(ETSI), whose work includes the definition of a standard for an 
advanced front-end processor for distributed speech recognition 
[1, 2]. They have defined the algorithm for compatibility 
between the mobile client and the recognition back-end. The 
algorithm may then be implemented on an integer-based digital 
signal processor (DSP) at the client.  

In DSP programming, there is often a need to trade off 
between numerical accuracy and power consumption in the 
DSP. While there have been recent advances in DSP technology 
that offer hardware floating point units within the processor, 
integer-based DSPs remain popular for their affordability. An 
implementation of the front-end feature extraction on an integer 
DSP for distributed speech recognition should satisfy three 
conditions: (i) low computational complexity, (ii) low memory 
consumption, (iii) minimal degradation in recognition accuracy 
compared to a floating point equivalent implementation. In this 
paper, we present a front-end feature extractor for distributed 
speech recognition for an integer-based DSP.  
 

2. IMPLEMENTATION 
 
Figure 1 shows the block diagram of our DSP front-end 
implementation. 
 Our DSP front-end accepts a 16 kHz speech signal and 

divides into frames of 20 milliseconds, with a 10-millisecond 
overlap. The Fast Hartley Transform (FHT) is used, instead of 
the Fast Fourier Transform (FFT). Both FHT and FFT produce 
the same output but FHT is preferred for its reduced complexity 
[3]. Additive noise is handled with magnitude spectral 
subtraction as oppose to power spectral subtraction, as 
magnitude spectral subtraction has been shown [4] to be more 
robust. Root Cepstral Coefficients (RCC) is implemented using 
a root transformation of the filter-bank energies in place the 
traditional MFCC which uses a logarithmic transformation. The 
RCC is known for its improved robustness under noisy 
conditions [5, 6]. A discrete cosine transform converts the root-
powered filter banks to cepstral features. Convolutional noise is 
then handled with a technique known as Blind Equalization [7] 
that is frame-synchronous and performs better than RASTA [8]. 
At the end of the processing, the 13 features (12 cepstral 
features, 1 log energy) are quantized and packed into a stream. 
 

 
 

Figure 1: Block diagram of our front-end processor. 
  

3. BLOCK FLOATING POINT 
 
Block Floating Point [9] (BFP) is a technique used in integer 
processing to compromise speed and numerical accuracy. 
Clearly, in an integer DSP, we do not have the luxury of 
hardware-assisted floating point operations for maximum 
numerical accuracy. The use of fixed point arithmetic, however, 
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suffers from inaccuracy, due to its limited range. Floating point 
may be emulated in software in an integer-DSP processor, but 
assigning an exponent for every mantissa may be too 
computationally expensive. We may retain the benefits of 
floating point and keep the computational complexity low, by 
allowing several mantissas to share a single exponent. 

If there are K values X(0), X(1), …, X(K-1), they may be 
represented by their separate mantissa and exponent components 
such that  
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Λ is defined as the size of each block of exponents that share a 
single exponent and is currently set to 16. An increase in Λ 
increases the sharing, and hence decreases computational 
complexity at the cost of reduced numerical accuracy, and vice 
versa. 

BFP is implemented in the stages where the power and 
magnitude spectrum of the frame of speech is used, where 
K=256. In particular, it is implemented in the Fast Hartley 
Transform, Magnitude Spectrum, Spectral Subtraction, Power 
Spectrum, Log Energy and the Mel Filter-Bank Analysis stages 
of the block diagram as shown in Figure 1. 
 

4. RANGE REDUCTION FOR ELEMENTARY 
FUNCTIONS 

 
The elementary functions of logarithm, square-root and the root-
power are computed with a table-based approach known as 
range reduction [10, 11]. In general, the reduction may be 
defined as: 
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where f(ab)=g(f(a),f(b)) and where the value of Nf indicates the 
number of reduction steps for elementary function f(x). 
Depending on the property of the elementary function f, 
function g may take on the function of a sum or a product of f(a) 
and f(b). For example, the logarithm of the same form in 
equation (4) above may be expressed as: 
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And the square-root and root-power are of the same form and 
may be expressed as: 
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where the square-root is a special case where α=0.5. Ri is a 
reduction function that is a table of Si number of pre-computed 
values, and the function may be defined as follows: 
 )...( 121 xRRRrR iii −=  (7) 

such that the following condition holds: 
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To achieve condition (8), the reduction function ri may be 
defined as: 
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where the size of each table or ri is is2 . Whether f is the 
elementary function of logarithm or a root-power, when 

xRRR
fN 12...  is approximated to 1.0, equation (4) may be re-

expressed as 
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 The number of reduction steps have been set for the 
logarithm, square-root and root-power (for RCC) as Nlog=2, 
Npow=2, Nsqrt=3 respectively. We set S=8, (where S=Si, i∀ ) 
which indicates the precision of the reduction table ri. A smaller 
S or N will result in the decrease in the computational 
complexity and ROM usage. It is likely, however, that it will 
result in the decrease the recognition accuracy due to the 
decrease in numerical accuracy. 
 

5. FEATURE QUANTIZATION 
 
To reduce network bandwidth, we may use the vector 
quantization techniques defined by ETSI [11] or by IBM [12]. 
But in favor of a technique that is both low in computational 
complexity and low in memory usage, we employ a scalar 
quantization technique that uses a µ-law-like companding 
function to achieve the quantization. If C(v) ≥ 0, then the 
quantized index C'(i) may be defined as follows: 
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If, however, C(i) < 0, then  
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where µi is the curve of the µ-law function, iC is the mean,  
+
iC the positive maximum of iCiC −)( , −

iC the negative 

maximum of iCiC −)(  of the i-th cepstral coefficient. Li the 
number of bits that the i-th cepstral coefficient will be quantized 
with. It should be clear that with this technique, the bit-rate of 
the compression may be varied only by altering the value of Li 
without incurring any penalty in computational complexity or 
memory usage. 
 

6. EXPERIMENTS 
 
Our experiments were performed with a Semi-Continuous 
Hidden Markov Model speech recognition system developed by 
our lab. The system uses agglomerated word-internal triphones. 
Our corpus, collected by our lab, is a speaker-dependent corpus 
related to a command and control application. It consists of 800 
English words and its trigram language model has a perplexity 
of 6.4. The training set spans about 3 hours and consists of 
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1,500 clean spoken utterances, from which 784 triphones were 
trained. The test set spans about ¾-hour and consists of 500 
clean spoken utterances. Three different noises—F16 cockpit, 
Volvo car interior, Factory—publicly obtained from the Signal 
Processing Information Base artificially added to each sample to 
simulate the desired condition.  

The accuracy of the recognition is computed by the 
following expression,  

 %100(%) ×
−−−

=
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N
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where Ntotal is the total number of words, Nsub the number of 
substitions, Nins the number of insertions and Ndel the number of 
deletions. All accuracy is presented as the averaged accuracy for 
all three noise conditions. The computational complexity is 
computed in weight million operations per second (wMOPs) as 
defined in [13]. 

Table 1 compares the recognition accuracy of our DSP 
front-end processor under different compression rates with the 
recognition accuracy of a floating point equivalent 
implementation of the front-end processor. Table 2 shows the 
operational requirements of the DSP front-end compared to the 
ETSI STQ’s operational requirements for the Advanced Front-
End processor [14]. 
 

 Average Word Accuracy (%) 
 FP DSP DSP DSP 
Bitrate (kbps) 41.6 41.6 7.0 4.8 
Clean 95.3 95.3 95.1 95.0 
30 dB 95.3 95.3 95.2 94.9 
25 dB 95.2 95.2 95.1 94.7 
20 dB 94.8 94.8 94.8 94.4 
15 dB 92.6 92.6 92.5 91.4 
10 dB 77.1 77.1 76.5 72.5 
05 dB 38.2 38.2 38.0 36.9 
00 dB 34.2 34.1 34.3 33.9 

 

Table 1: Accuracy of our DSP front-end against an FP 
front end for a small vocabulary task. 

 
 ETSI 

Requirements 
Our Baseline 

Implementation 
Complexity (wMOPs) 17.0 15.978 
ROM (kWords) 15.0 8.080 
RAM (kWords) 6.0 2.413 

 

Table 2: Our DSP front-end processor against ETSI’s 
specified operational requirements. 

 
Clearly, the accuracy of our unquantized DSP-based front-

end feature extraction is close, if not equivalent, to the floating 
point implementation, bearing in mind that the engine was 
trained with features extracted with the floating point front-end. 
It should be noted that while the quantization performs fairly 
well in 4.8 kbps under clean conditions, the recognition 
accuracy degrades significantly at low SNRs. In view of this, we 
have chosen 7.0 kbps as the quantization rate for the rest of the 
experiments. It can be seen that the front-end processor that we 
have developed runs within the operational requirements spelled 
out by ETSI STQ Aurora. 

Optimization may be achieved by increasing the sharing of 
the exponent in the BFP technique. This may be accomplished 
by increasing the value for Λ. Using 7.0 kbps as the 
compression rate, Table 3 shows that the recognition accuracy 

suffers no degradation even when all 256 mantissas share 1 
exponent (Λ=256). It also shows small decrease in 
computational complexity and RAM usage. 

Further optimization may be achieved by reducing S. 
Numerical accuracy is expected to decrease. Table 4 shows that 
the decrease in recognition accuracy is minimal, if S=4. When 
S=0, however, the reduction is omitted. Consequently, the 
computational complexity decreases sharply. The recognition, 
however, degrades significantly as well.  
 

 Average Word Accuracy (%) 
Λ 16 32 64 128 256 
Clean 95.1 95.1 95.1 95.1 95.1 
30dB 95.2 95.3 95.3 95.3 95.3 
25dB 95.1 95.2 95.2 95.2 95.2 
20dB 94.8 94.8 94.8 94.8 94.8 
15dB 92.5 92.5 92.5 92.5 92.5 
10dB 76.5 76.5 76.5 76.5 76.5 
5dB 38.0 38.0 38.0 38.0 38.0 
0dB 34.3 34.3 34.3 34.3 34.3 
 Operational Requirements 
Complexity 15.98 15.91 15.87 15.85 15.84 
RAM 2.413 2.397 2.389 2.385 2.383 
ROM 8.080 8.080 8.080 8.080 8.080 

 

Table 3: Effects of varying Λ. 
 

  Average Word Accuracy (%) 
S 8 6 4 2 0 
Clean 95.1 95.1 95.1 95.2 94.0 
30dB 95.3 95.2 95.2 95.3 94.0 
25dB 95.2 95.2 95.1 95.2 93.6 
20dB 94.8 94.8 94.8 94.8 92.1 
15dB 92.5 92.4 92.5 92.2 84.8 
10dB 76.5 76.5 76.6 76.3 61.4 
5dB 38.0 38.1 38.1 37.7 36.0 
0dB 34.3 34.2 34.1 33.8 33.0 
 Operational Requirements 
Complexity 15.84 15.84 15.84 15.84 11.65 
RAM 2.383 2.383 2.383 2.383 2.383 
ROM 8.080 4.624 3.760 3.544 3.490 

 

Table 4: Effects of varying S. 
 

  Average Word Accuracy (%) 
Nlog, Npow, Nsqrt 2,2,3 2,2,2 2,2,1 1,1,2 1,1,1 
Clean 95.1 95.1 95.2 95.1 95.1 
30dB 95.2 95.2 95.2 95.2 95.2 
25dB 95.1 95.2 95.2 95.2 95.2 
20dB 94.8 94.9 94.8 94.8 94.8 
15dB 92.5 92.5 92.5 92.3 92.2 
10dB 76.6 76.8 76.9 76.4 76.3 
5dB 38.1 38.0 38.3 37.8 37.6 
0dB 34.1 34.2 34.4 33.7 33.7 
 Operational Requirements 
Complexity 15.84 14.26 12.62 14.06 12.42 
RAM 2.383 2.383 2.383 2.383 2.383 
ROM 3.760 3.696 3.664 3.632 3.568 

 

Table 5: Effects of varying Nlog, Npow, Nsqrt. 
 
 One final optimization may be performed on the DSP front 
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end processor by reducing the number of reduction steps per 
elementary function. Table 5, however, shows that we are able 
to keep the degradation in recognition accuracy fairly stable 
when the number of reduction steps of the square-root, Nsqrt, is 
reduced to 1. We also observe a signification decrease in 
computational complexity and ROM usage. 
 

7. LARGE VOCABULARY SPEECH RECOGNITION 
 
Our large vocabulary, collected by our lab, has 20,200 words 
and its trigram language model has a perplexity of 102.5 
obtained from a corpus of 15 million running words. The 
training set is a speaker-dependent 15-hour collection of 15,000 
clean spoken utterances, from which a total of 1,690 triphones 
were trained. The test-set is a 1-hour dictation of 1,000 clean 
spoken utterances. The same three types of noise and the various 
SNR levels were simulated by amplifying and artificially adding 
them into the clean signals. Table 6 demonstrates that our DSP 
implementation of the front-end processor suffers insignificant 
degradation in recognition accuracy even when used on a large 
vocabulary corpus. 
 

Implementation FP DSP DSP 
Bitrate (kbps) 41.6 41.6 7.0 
Λ N/A 16 256 
S N/A 8 4 
Nlog, Npow, Nsqrt N/A 2, 2, 3 2, 2, 1 
 Average Word Accuracy (%) 
Clean 92.6 92.6 92.4 
30 dB 92.2 92.2 92.0 
25 dB 91.8 91.7 91.8 
20 dB 89.1 89.1 89.2 
15 dB 79.9 79.9 80.0 
10 dB 55.3 55.1 54.9 
05 dB 33.6 33.6 33.5 
00 dB 31.7 31.6 31.7 
 Operational Requirements 
Complexity N/A 15.98 12.62 
RAM N/A 2.413 2.383 
ROM N/A 8.080 3.664 

 

Table 6: Comparing our DSP front-end against an FP 
front-end for a large vocabulary task. 

 
 ETSI 

Requirements 
Our Optimized 
Implementation 

Complexity (wMOPs) 17.0 12.62 
ROM (kWords) 15.0 2.383 
RAM (kWords) 6.0 3.664 

 

Table 7: Our optimized DSP front-end against the 
ETSI specified operational requirements. 

 
8. CONCLUSION 

 
We have shown that the recognition accuracy produced by our 
DSP front-end processor is comparable if not equivalent to a 
floating point implementation of the front-end processor. This 
implies that we do not need to train the recognition system 
specifically with the features produced by the DSP front-end. 
And this is true for both small vocabulary and large vocabulary 
systems. We have shown that we may derive large savings in 
computational complexity, ROM and RAM usage without 

sacrificing the recognition accuracy. As a result, our DSP front-
end processor, as shown in Table 7, runs within the limits for 
the operational requirements specified by ETSI requirements for 
the advanced front-end. 
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