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ABSTRACT 
 
This paper describes an attempt to extract distinctive phonetic 
features (DPFs) that represent articulatory gestures in linguistic 
theory by using a multi-layer neural network (MLN) and to 
apply the DPFs to noise-robust speech recognition. In the DPF 
extraction stage, after converting a speech signal to acoustic 
features composed of local features (LFs), an MLN with 33 
output units corresponding to context-dependent DPFs of 11 
DPFs, 11 preceding context DPFs, and 11 following context 
DPFs maps the LFs to DPFs. The proposed DPF parameters 
without MFCC were firstly evaluated in comparison with a 
standard parameter set of MFCC and dynamic features on a 
word recognition task using clean speech and the result showed 
the same performance as that of the standard set. Noise 
robustness of these parameters was then tested with four types 
of additive noise and the proposed DPF parameters 
outperformed the standard set except one additive noise type. 
 

1. INTRODUCTION 
 

A set of MFCC parameters, which is based on the short-term 
power spectrum and combined with dynamic features, has long 
been used in automatic speech recognition (ASR) systems. 
MFCC parameters can represent a log-spectrum envelope of a 
speech signal efficiently, however, because they are often 
deformed by the difference of transmission characteristics 
and/or contaminated by noise, the recognition accuracy of 
MFCC-based ASR is decreased. 

On the other hand, linguists have proposed distinctive 
phonetic features (DPFs) that represent the manner of 
articulation (vocalic, consonantal, continuant, …), tongue 
position (high, front, end, …), etc. and can separate each 
phoneme. The use of DPFs had been investigated previously in 
speech recognition, and has been actively discussed again in 
recent years [1,2,3,4,5,6]. In [1], a set of multi-layer neural 
networks (MLNs) was used to map acoustic features into DPFs. 
Each MLN was trained to extract a corresponding DPF, then in 
the recognition stage, DPFs output from MLNs are combined 
and used in an HMM classifier. In [2], a Gaussian mixture 

model (GMM) was used to extract DPFs by comparing the 
likelihood in articulatory feature presence models with that in 
articulatory feature absence models. In these previous works, 
DPFs have been used together with conventional MFCC 
parameters for an input to an HMM classifier. 

We aim to achieve high performance in noise-robust ASR by 
using DPFs only. The main differences between our proposed 
method and the previous works are:  
(1) Input acoustic features of an MLN are not MFCC but   

local features (LFs) [7] described in section 2, and 
(2) Output DPFs of an MLN, which are extracted using a 

single MLN, are context-dependent, that is, DPFs with 33 
dimensions consist of 11 DPFs, 11 preceding context DPFs, 
and 11 following context DPFs. 

In this paper, firstly the proposed method is compared with a 
baseline HMM-based ASR system with a standard parameter set 
of MFCC and dynamic features on an isolated spoken-word 
recognition task using a clean speech database. Experiments are 
also carried out to evaluate the differences in input and output 
parameters. Finally, noise robustness is evaluated using various 
types of additive noise. 

This paper is organized as follows. Section 2 outlines the 
implementation of a DPF extractor, Section 3 describes the 
experimental setup and results, and provides a discussion, and 
Section 4 finishes with some conclusions. 
 

2. DPF EXTRACTOR 
 

2.1 Distinctive Phonetic Features (DPFs) 
Figure 1 shows a three-dimensional DPF space converted 

from an original 11-dimensional space of Japanese distinctive 
features (vocalic, consonantal, high, back, low, anterior, coronal, 
obstruent, voiced, continuant, nasal) by using the 
multi-dimensional scaling (MDS) method. As shown in Figure 1, 
phonologically similar phonemes, such as the group of vocalic 
and consonantal phonemes, are distributed closely while the 
others are separated. The merits of using DPFs in speech 
recognition are described as follows.  
A) DPFs can express those phonemes for which the manner 

of utterance is similar, as close distance vectors. 
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Figure 1. Three-dimensional DPF space by using MDS. 
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Figure 2. DPF feature extractor. 
 
B) The intermediate expression of DPFs is located between 

continuous acoustic-feature vectors and discrete 
representations of words and might be more robust 
because DPFs explicitly characterize the property in 
speech production. 

We conjecture that the DPFs will achieve accurate recognition 
in adverse environments. 

In the actual implementation of a feature extractor, two 
articulatory features of “vocalic/non-vocalic” and “consonantal/ 
non-consonantal” were replaced by “semi-vowel (/j, w, r/)/ 
non-semi-vowel” and “fricative(/s, z, h/) /non-fricative”. 

2.2 Design of a DPF Extractor 
It is difficult to directly apply DPFs to speech recognition 

because articulatory gestures are not always the same between 
individuals, speech acquisition environments and speakers’ 
articulatory organs vary, and so forth. This section describes the 
mapping procedure from acoustic features to DPFs with a single 
MLN. 

The proposed feature extractor is illustrated in Figure 2. At 
the acoustic feature extraction stage, firstly, an input speech is 
converted into LFs. The LFs are then entered into an MLN after 
combining a current frame Xt with the other two frames that are 
N-points before and after from the current frame (Xt-N, Xt+N). 
The MLN has 33 output units (11×3) corresponding to 
context-dependent DPFs that consist of 11 DPFs, 11 preceding 
context DPFs, and 11 following context DPFs. The MLN is 
trained to output the value of 1 for the corresponding DPF 
elements with an input phoneme and its adjacent phonemes. 
Finally, the outputs of the MLN are used for an input to an 
HMM classifier as a sequence of DPF vectors. 
 

3. EXPERIMENTS 
 

3.1 Speech and Noise Database 
 The following three data sets were used: 
D1.  Acoustic model design set with clean speech: 
A subset of “ASJ(Acoustic Society of Japan) Continuous 
Speech Database”, consisting of 4,503 sentences uttered by 30 
male speakers (16 kHz, 16-bit). 
D2.  Test data set with clean speech: 
A subset of “Tohoku University and Matsushita Spoken Word 
Database”, consisting of 100 words uttered by 10 unknown male 
speakers each. The sampling rate was converted from 24 kHz to 
16 kHz. 
D3.  Additive noise data set: 
A subset of “RWCP Sound Scene Database in Real Acoustical 
Environments”, consisting of the following three kinds of noise: 
-  Mobile Phone: the ring tone of a mobile phone. 
-  Particles: the sound when particles fall onto a metal plate. 
-  Whistle: the sound when a whistle is blown. 
In addition to these three types of noise, white noise is also 
applied. 

3.2 Spectrogram of Noise 
Figure 3 shows the spectrum patterns of the three types of 

additive noise used in the experiments. As shown in Figure 3, 
“Mobile Phone” and “Whistle” are consecutive sounds in a 
certain frequency band, while “Particles” will contaminate the 
clean speech in all frequency bands like white noise. 

3.3 Experimental Setup 
3.3.1 Acoustic feature parameters 

The following two acoustic features were investigated for the 
input of MLN.  
(A) DPF(MFCC) 

An input speech is sampled at 16 kHz and a 512-point FFT of 
the 25 ms Hamming-windowed speech segments is applied 
every 10 ms. The resultant FFT power spectrum is then integrat- 
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Figure 3. Spectrogram of noise. 

 
 
ed into 24-ch BPFs output with mel-scaled center frequencies. 
Then, 25 feature parameters including 12 static parameters 
(mel-cepstrum), 12 dynamic features (∆t) and ∆P (logarithmic 
power) are extracted after converting the output of BPFs into 
cepstrum coefficients (MFCC) by using DCT. MFCC 
parameters are processed with CMN for every utterance. 
(B) DPF(LF: Local Features) 

Two LFs are firstly extracted by a three-point linear 
regression (LR) calculation along the time and frequency axis 
on a time spectrum pattern [8]. Then, after converting the two 
LFs into cepstrum with 12 dimensions by using DCT, 
respectively, 25 feature parameters including ∆P are composed. 
3.3.2 MLN structure 

The acoustic feature parameters described above were used to 
train a single MLN with four layers including two hidden layers. 
Each layer consists of 75, 256, 64, and 33 units from the input 
layer, respectively. An MLN input of MFCC-based parameters 
is combined with continuous three frames, while the input of 
LF-based parameters is combined with the current frame and 
two adjacent frames that are three points before and after. 

Two input acoustic feature parameters of DPF(MFCC) and 
DPF(LF) use the same frame length. The MLN is trained using 
a back-propagation algorithm. The number of training data of 
each tri-phone is limited to a maximum of 30 and the data is 
selected using nearest neighborhood clustering. 
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Figure 4. Comparison of the configuration of 

MLN output unit. 
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Figure 5. Experimental result: clean speech. 

 
3.3.3 HMM acoustic model 

The D1 data set was used to design 43 Japanese monophone 
HMMs with five states and three loops. In the HMM, output 
probabilities are represented in the form of Gaussian mixtures, 
and diagonal matrices are used. 

3.4 Experimental Results and Discussion 
Speaker-independent isolated spoken-word recognition tests 

were carried out with the D2 data set. 
(A) Comparison of MLN structure 

The difference of MLN structures was evaluated. Figure 4 
shows the experimental result. The MLN with 33 context- 
dependent output units yields higher performance than that with 
11 context-independent output units at the comparatively higher 
mixtures of 8 and 16.  

The improvement of performance by MLN with 
context-dependent is considered to be as follows. The MLN 
with context-independent could separate the phonological 
information between phonemes by mapping into 11-dimensional 
DPFs, however, the performance was not increased at the higher 
mixtures because it often occurred the mapping error in an 
adjacent phoneme boundary. On the other hand, although the 
MLN with context-dependent also occurred the mapping error, 
the context of output could reduce the effect of that. 
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Figure 6. Experimental result: noisy data. 

(SNR=10 dB, Mixture=16) 
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Figure 7. Experimental result: noisy data. 

                 (SNR=5 dB, Mixture=16) 
 
(B) Comparison of input acoustic parameters of MLN 

Figure 5 shows the experimental result. In the baseline, the 
input of HMM is the conventional acoustic feature set with 38 
dimensions which consists of MFCC with CMN, dynamic 
features (∆t, ∆t∆t), ∆P and ∆∆P. DPF(MFCC) degraded the 
performance regardless of the number of mixtures while  
DPF(LF) showed better performance than DPF(MFCC). The 
proposed DPF(LF) without MFCC parameters achieved the 
same performance in comparison with the baseline parameter. 
(C)  Evaluation of noise robustness 

Figures 6 and 7 illustrate the recognition result after adding 
D3 noise data set and white noise to the D2 data set with 
SNR=10 dB and SNR=5 dB, respectively. The proposed 
DPF(LF) showed word error reduction for the three types of 
noise except “Particles”. Particularly, in “Mobile Phone”, 
DPF(LF) significantly improved the word error rate from 12.0% 
to 7.3% in SNR=10 dB and from 20.0% to 15.2% in SNR=5 dB.  

The LF parameter represents the variance of the log-power 
spectrum along the time and frequency axis. Thus, when speech 
is contaminated by noise distributed over all frequency bands 
such as “Particles”, then LFs obtain little phonologic 
information, and hence the proposed DPF(LF) parameter 
reduces the performance. With respect to the “Particles” in 
another experiments, by using the DPFs together with the 
conventional MFCC, we obtained the improvement of error rate 
from 26.2% to 23.7% in SNR=10 dB and from 60.4% to 55.9% 

in SNR=5 dB in comparison with the use of only DPFs. We 
need further study on this point. 
 

4. CONCLUSION 
 

A novel feature extractor based on distinctive phonetic 
features was proposed. Acoustic parameters were mapped to 
DPFs by using an MLN with context-dependent output units. 
LFs showed better performance than MFCC as an input of the 
MLN. The proposed DPF without the conventional MFCC 
parameter provided almost the same results as the standard 
MFCC-based feature parameter in HMM-based isolated 
spoken-word recognition experiments with clean speech, and 
could significantly reduce the effect of high-level additive noise, 
particularly the ring tone of a mobile phone. 

In future work, we will discuss how to improve the DPF 
extractor, and investigate the use of DPF in practical 
environments. 
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