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ABSTRACT

This paper describes an attempt to extract distinctive phonetic
features (DPFs) that represent articulatory gestures in linguistic
theory by using a multi-layer neural network (MLN) and to
apply the DPFs to noise-robust speech recognition. In the DPF
extraction stage, after converting a speech signal to acoustic
features composed of local features (LFs), an MLN with 33
output units corresponding to context-dependent DPFs of 11
DPFs, 11 preceding context DPFs, and 11 following context
DPFs maps the LFs to DPFs. The proposed DPF parameters
without MFCC were firstly evaluated in comparison with a
standard parameter set of MFCC and dynamic features on a
word recognition task using clean speech and the result showed
the same performance as that of the standard set. Noise
robustness of these parameters was then tested with four types
of additive noise and the proposed DPF parameters
outperformed the standard set except one additive noise type.

1. INTRODUCTION

A set of MFCC parameters, which is based on the short-term
power spectrum and combined with dynamic features, has long
been used in automatic speech recognition (ASR) systems.
MFCC parameters can represent a log-spectrum envelope of a
speech signal efficiently, however, because they are often
deformed by the difference of transmission characteristics
and/or contaminated by noise, the recognition accuracy of
MFCC-based ASR is decreased.

On the other hand, linguists have proposed distinctive
phonetic features (DPFs) that represent the manner of
articulation (vocalic, consonantal, continuant, ...), tongue
position (high, front, end, ...), etc. and can separate each
phoneme. The use of DPFs had been investigated previously in
speech recognition, and has been actively discussed again in
recent years [1,2,34,5,6]. In [1], a set of multi-layer neural
networks (MLNSs) was used to map acoustic features into DPFs.
Each MLN was trained to extract a corresponding DPF, then in
the recognition stage, DPFs output from MLNs are combined
and used in an HMM classifier. In [2], a Gaussian mixture
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model (GMM) was used to extract DPFs by comparing the
likelihood in articulatory feature presence models with that in
articulatory feature absence models. In these previous works,
DPFs have been used together with conventiona MFCC
parameters for an input to an HMM classifier.

We aim to achieve high performance in noise-robust ASR by
using DPFs only. The main differences between our proposed
method and the previous works are:

(1) Input acoustic features of an MLN are not MFCC but
local features (LFs) [7] described in section 2, and

(2) Output DPFs of an MLN, which are extracted using a
single MLN, are context-dependent, that is, DPFs with 33
dimensions consist of 11 DPFs, 11 preceding context DPFs,
and 11 following context DPFs.

In this paper, firstly the proposed method is compared with a
baseline HMM-based ASR system with a standard parameter set
of MFCC and dynamic features on an isolated spoken-word
recognition task using a clean speech database. Experiments are
also carried out to evaluate the differences in input and output
parameters. Finally, noise robustness is evaluated using various
types of additive noise.

This paper is organized as follows. Section 2 outlines the
implementation of a DPF extractor, Section 3 describes the
experimental setup and results, and provides a discussion, and
Section 4 finishes with some conclusions.

2. DPFEXTRACTOR

2.1 Distinctive Phonetic Features (DPFs)

Figure 1 shows a three-dimensional DPF space converted
from an origina 11-dimensiona space of Japanese distinctive
features (vocalic, consonantal, high, back, low, anterior, coronal,
obstruent, voiced, continuant, nasa) by using the
multi-dimensional scaling (MDS) method. As shown in Figure 1,
phonologically similar phonemes, such as the group of vocalic
and consonantal phonemes, are distributed closely while the
others are separated. The merits of using DPFs in speech
recognition are described as follows.

A) DPFs can express those phonemes for which the manner
of utterance is similar, as close distance vectors.

ICASSP 2003




Figure 1.

Three-dimensional DPF space by using MDS.
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Figure 2. DPF feature extractor.

B)  The intermediate expression of DPFs is located between
continuous  acoustic-feature  vectors and discrete
representations of words and might be more robust
because DPFs explicitly characterize the property in
speech production.

We conjecture that the DPFs will achieve accurate recognition

in adverse environments.

In the actual implementation of a feature extractor, two
articulatory features of “vocalic/non-vocalic” and “consonantal/
non-consonantal” were replaced by “semi-vowe (/j, w, r/)/
non-semi-vowel” and “fricative(/s, z, h/) /non-fricative’.

2.2 Design of a DPF Extractor
It is difficult to directly apply DPFs to speech recognition

because articulatory gestures are not always the same between
individuals, speech acquisition environments and speakers
articulatory organs vary, and so forth. This section describes the
mapping procedure from acoustic features to DPFs with asingle
MLN.

The proposed feature extractor is illustrated in Figure 2. At
the acoustic feature extraction stage, firstly, an input speech is
converted into LFs. The LFs are then entered into an MLN after
combining a current frame X; with the other two frames that are
N-points before and after from the current frame (Xen, Xwn)-
The MLN has 33 output units (11x3) corresponding to
context-dependent DPFs that consist of 11 DPFs, 11 preceding
context DPFs, and 11 following context DPFs. The MLN is
trained to output the value of 1 for the corresponding DPF
elements with an input phoneme and its adjacent phonemes.
Findly, the outputs of the MLN are used for an input to an
HMM classifier as a sequence of DPF vectors.

3. EXPERIMENTS

3.1 Speech and Noise Database

The following three data sets were used:
D1. Acoustic model design set with clean speech:
A subset of “ASJ(Acoustic Society of Japan) Continuous
Speech Database”, consisting of 4,503 sentences uttered by 30
male speakers (16 kHz, 16-bit).
D2. Test dataset with clean speech:
A subset of “Tohoku University and Matsushita Spoken Word
Database”, consisting of 100 words uttered by 10 unknown male
speakers each. The sampling rate was converted from 24 kHz to
16 kHz.
D3. Additive noise data set:
A subset of “RWCP Sound Scene Database in Real Acoustical
Environments’, consisting of the following three kinds of noise:
- Mobile Phone: the ring tone of a mobile phone.
- Particles: the sound when particles fall onto ameta plate.
- Whistle: the sound when awhistle is blown.
In addition to these three types of noise, white noise is also

applied.
3.2 Spectrogram of Noise

Figure 3 shows the spectrum patterns of the three types of
additive noise used in the experiments. As shown in Figure 3,
“Mobile Phone” and “Whistle” are consecutive sounds in a
certain frequency band, while “Particles” will contaminate the
clean speech in all frequency bands like white noise.

3.3 Experimental Setup

331 Acoustic feature parameters

The following two acoustic features were investigated for the
input of MLN.
(A) DPF(MFCC)

An input speech is sampled at 16 kHz and a 512-point FFT of
the 25 ms Hamming-windowed speech segments is applied
every 10 ms. Theresultant FFT power spectrum is then integrat-
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Figure 3. Spectrogram of noise.

ed into 24-ch BPFs output with mel-scaled center frequencies.
Then, 25 feature parameters including 12 static parameters
(mel-cepstrum), 12 dynamic features (4;) and AP (logarithmic
power) are extracted after converting the output of BPFs into
cepstrum  coefficients (MFCC) by using DCT. MFCC
parameters are processed with CMN for every utterance.

(B) DPF(LF: Local Features)

Two LFs are firstly extracted by a three-point linear
regression (LR) calculation along the time and frequency axis
on a time spectrum pattern [8]. Then, after converting the two
LFs into cepstrum with 12 dimensions by using DCT,
respectively, 25 feature parameters including AP are composed.
332 MLN structure

The acoustic feature parameters described above were used to
train asingle MLN with four layersincluding two hidden layers.
Each layer consists of 75, 256, 64, and 33 units from the input
layer, respectively. An MLN input of MFCC-based parameters
is combined with continuous three frames, while the input of
LF-based parameters is combined with the current frame and
two adjacent frames that are three points before and after.

Two input acoustic feature parameters of DPF(MFCC) and
DPF(LF) use the same frame length. The MLN is trained using
a back-propagation algorithm. The number of training data of
each tri-phone is limited to a maximum of 30 and the data is
selected using nearest neighborhood clustering.
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Figure 4. Comparison of the configuration of

MLN output unit.
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Figureb. Experimental result: clean speech.
333 HMM acoustic model

The D1 data set was used to design 43 Japanese monophone
HMMs with five states and three loops. In the HMM, output
probabilities are represented in the form of Gaussian mixtures,
and diagona matrices are used.

34 Experimental Resultsand Discussion

Speaker-independent isolated spoken-word recognition tests
were carried out with the D2 data set.
(A) Comparison of MLN structure

The difference of MLN structures was evaluated. Figure 4
shows the experimental result. The MLN with 33 context-
dependent output units yields higher performance than that with
11 context-independent output units at the comparatively higher
mixtures of 8 and 16.

The improvement of performance by MLN with
context-dependent is considered to be as follows. The MLN
with context-independent could separate the phonological
information between phonemes by mapping into 11-dimensional
DPFs, however, the performance was not increased at the higher
mixtures because it often occurred the mapping error in an
adjacent phoneme boundary. On the other hand, athough the
MLN with context-dependent also occurred the mapping error,
the context of output could reduce the effect of that.
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(B) Comparison of input acoustic parametersof MLN

Figure 5 shows the experimental result. In the baseline, the
input of HMM s the conventional acoustic feature set with 38
dimensions which consists of MFCC with CMN, dynamic
features (4, Ad), AP and AAP. DPF(MFCC) degraded the
performance regardless of the number of mixtures while
DPF(LF) showed better performance than DPF(MFCC). The
proposed DPF(LF) without MFCC parameters achieved the
same performance in comparison with the baseline parameter.
(C) Evaluation of noise robustness

Figures 6 and 7 illustrate the recognition result after adding
D3 noise data set and white noise to the D2 data set with
SNR=10 dB and SNR=5 dB, respectively. The proposed
DPF(LF) showed word error reduction for the three types of
noise except “Particles’. Particularly, in “Mobile Phone”,
DPF(LF) significantly improved the word error rate from 12.0%
to 7.3% in SNR=10 dB and from 20.0% to 15.2% in SNR=5 dB.

The LF parameter represents the variance of the log-power
spectrum along the time and frequency axis. Thus, when speech
is contaminated by noise distributed over al frequency bands
such as “Particles’, then LFs obtain little phonologic
information, and hence the proposed DPF(LF) parameter
reduces the performance. With respect to the “Particles’ in
another experiments, by using the DPFs together with the
conventional MFCC, we obtained the improvement of error rate
from 26.2% to 23.7% in SNR=10 dB and from 60.4% to 55.9%

in SNR=5 dB in comparison with the use of only DPFs. We
need further study on this point.

4. CONCLUSION

A novel feature extractor based on distinctive phonetic
features was proposed. Acoustic parameters were mapped to
DPFs by using an MLN with context-dependent output units.
LFs showed better performance than MFCC as an input of the
MLN. The proposed DPF without the conventionad MFCC
parameter provided amost the same results as the standard
MFCC-based feature parameter in HMM-based isolated
spoken-word recognition experiments with clean speech, and
could significantly reduce the effect of high-level additive noise,
particularly the ring tone of a mobile phone.

In future work, we will discuss how to improve the DPF
extractor, and investigate the use of DPF in practica
environments.
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