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ABSTRACT 
In this paper, three systems for classification of stress in speech 
are proposed. The first system makes use of linear short time 
Log Frequency Power Coefficients (LFPC), the second employs 
Teager Energy Operator (TEO) based Nonlinear Frequency 
Domain LFPC features (NFD-LFPC) and the third uses TEO 
based Nonlinear Time Domain LFPC features (NTD-LFPC). 
The systems were tested using SUSAS (Speech Under Simulated 
and Actual Stress) database to categorize five stress conditions 
individually. Results show that, the system using LFPC gives the 
highest accuracy, followed by the system using NFD-LFPC 
features. While the system using NTD-LFPC features gives the 
worst performance. For the system using linear LFPC features, 
the average accuracy of 84% and the best accuracy of 95% were 
obtained in classifying five stress categories.  
 
 

1. INTRODUCTION 
 
Intra-speaker variability introduced by a speaker under stress 
degrades the performance of the recognizers trained with neutral 
tokens. A study conducted by Womack [1] showed that speech 
recognition could be made more robust if stress classification 
scores were integrated into it under multi-style training 
approach. A number of studies have been conducted to 
investigate acoustic indicators for stress in speech. The 
characteristics most often considered include fundamental 
frequency (F0) [2],[3], duration [2],[4],[3], intensity [2], spectral 
variation [4] and features derived from Teager Energy Operator 
(TEO)[5],[6]. Most of the studies on the analysis of stress focus 
on fundamental frequency F0. Hansen [3] made extensive 
statistical evaluations on pitch, glottal source, duration, intensity 
and vocal tract to characterize the stress on speech and identified 
pitch period to be one of the best stress discriminating 
parameters. However, these characteristics are not useful in 
discriminating stress arising from moderate versus high task 
workload conditions.  
Distribution of spectral energy also varies on speech produced 
under stress [3]. Unvoiced speech is associated with low energy 
speech sections and voiced speech is associated with high-
energy speech [4]. In the earlier research, features used were 
mostly derived from linear speech production models. In recent 
years, non-linear features derived from Teager Energy Operator 
(TEO) [5],[6] are also explored. TEO based features are 
recognized to reflect the nonlinear airflow structure of speech 
produced under stressful conditions. Although these TEO based 
features are able to distinguish well for pair-wise classification 
between �Neutral� and stress [5], the classification performance 

decreases substantially when classifying stress styles 
individually [6]. 
In this paper, investigation is made to determine the set of 
acoustic features required for both pair-wise (stress/ neutral) 
classification and multi-style classification (classify each stress 
styles individually). The block diagram of the proposed system 
is shown in Figure 1.  
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Figure 1. Block diagram of the proposed systems 

 
The signal samples are segmented into frames. For each frame, a 
feature vector based on Log Frequency Power Coefficients and 
nonlinear TEO based LFPC feature parameters are obtained. 
Five-state HMM (Hidden Markov Model) based stress classifier 
with continuous Gaussian mixture distribution is employed for 
classification. Four stress styles, namely, �Anger�, �Clear�, 
�Lombard� and �Loud� together with �Neutral�, are selected for 
identification. The theory of HMM is well documented in [7]. 
Details of some of the other stages are presented in the 
subsections that follow. 
 

2. ANALYSIS OF STRESS IN SPEECH  
 
Normal speech may be regarded as speech made in a quiet room 
with no task obligations. Stress in speech, on the other hand, is a 
result of speech produced under emotional states, fatigue, heavy 
workload, environmental noise, and/or sleep loss. Some of the 
consequences of physiological stress are respiratory changes 
including increased respiration rate, irregular breathing and 
increased muscle tension of the vocal cords. These factors may 
result in irregular vocal fold movement and other vocal system 
modifications that ultimately affect the quality of the utterances 
[8]. The presence of stress in speech causes changes in phoneme 
production with respect to glottal source factors, pitch, intensity, 
duration, and spectral shape [3].  
In linear acoustic theory, speech production process is described 
in terms of source/filter model [9]. This model assumes plane 
wave propagation in the vocal tract and neglects nonlinear terms. 
Linear acoustic theory suggests that frequency in vocal tract 
filter, intensity and duration of glottal signal may be assumed to 
change due to stressed speech production.  
In this paper, linear acoustic features and nonlinear features in 
frequency domain have been investigated in stress classification 
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since the system performance deteriorate when using nonlinear 
features in time domain in characterizing different stress styles 
[5],[6].  
 

3. SELECTION OF STRESS CLASSIFICATION 
FEATURES 

 
Human auditory system is assumed to have the filtering system 
in which entire audible frequency range is partitioned into 
subbands. It is suggested that stress may affect different 
frequency bands differently and an improved stress classification 
features could be obtained by analyzing energy in different 
frequency bands. Based on these assumptions, a feature based on 
the distribution of energy in different log frequency bands is 
selected. By analyzing these feature data using an HMM 
recognizer, the effects of speaking rate and variation of tone are 
also taken care of.  

 
Figure 2. Waveforms of a segment of the speech signal produced 

under �Neutral� and �Anger� conditions of the word �go� by a 
male speaker (200ms duration) 

 
As can be seen from Figure 2, voiced speech spoken under stress 
is significantly different from voiced speech spoken under 
�Neutral� or �Normal� condition in both frequency and intensity 
variations. This observation suggests that features based on the 
distribution of energy in different frequency bands should be 
useful for stress classification.  
 

4. COMPUTATION OF SPEECH FEATURES  
 
4.1. Log Frequency Power Coefficients (LFPC)  
 
In order to extract DFT based subband features, we make use of 
filter banks in different log frequency bands from 200Hz to 
3.9kHz as represented in Figure 3. A Log frequency filter bank 
can be regarded as a model that follows the varying auditory 
resolving power of the human ear for various frequencies. The 
filter bank adopted in the study is designed to divide speech 
signal into 12 frequency bands that match the critical perceptual 
bands of the human ear. The center frequencies if  and 

bandwidths ib  for a set of 12 bandpass filters are derived as in 
[7].  

 

200Hz 650Hz 1.4 kHz 3.9 kHz2.3 kHz  
Figure 3. Subband frequency divisions 

    
To compute the frame based energy variations in different Log 
Frequency bands, the signal samples are segmented into frames 

of 16ms each with 9ms overlap between consecutive frames. 
The samples of each frame are weighted with a Hamming 
window to reduce spectral leakage. This windowed speech is 
transformed to the frequency domain using the DFT (Discrete 
Fourier Transform) algorithm. The spectral components are 
separated into 12 bands. The thm  filter bank output is given by: 
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where )(kX t = the kth spectral component of the windowed 

signal,  t = frame number, )(mSt = output of the thm  filter 

bank , mf , mb = center frequency and bandwidth of the thm  
subband. 
The parameters, )(mSEt , which provide an indication of 
energy distribution among sub-bands, are calculated as follows. 
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where mN = the number of spectral components in the thm  
filter bank. For each speech frame, 12 Log Frequency Power 
Coefficients are obtained.  

4.2. Nonlinear Time/Frequency Domain LFPC 

The study by Douglas [5], suggested that Teager Energy profile 
alone is not sufficient to reliably separate �Lombard� effect 
speech from �Neutral� speech. They recommended that the 
features relating to spectral shape should be incorporated into 
TEO based features to separate these two speaking conditions. In 
this paper, TEO based nonlinear properties in combination with 
the LFPC are also investigated. TEO is commonly applied in the 
time domain [5],[6]. In this paper, TEO in both time and 
frequency domain are considered. 
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Figure 4. (a) Nonlinear time domain LFPC feature extraction 

(b) nonlinear frequency domain LFPC feature extraction 
 
The process of feature extraction for Nonlinear Time Domain 
LFPC (NTD-LFPC) and Nonlinear Frequency Domain LFPC 
(NFD-LFPC) are shown in Figures 4(a) and 4(b) respectively. 
The same window size and frame rate are employed as for 
LFPC. 
For NTD-LFPC, Teager Energy Operator (TEO) described in 
Kaiser [10] is applied to the time domain windowed speech 
signal as described in the equation below. 
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In the above equation, )(nx  is sampled speech component in 

the time domain and [ ( )]x nΨ  is the TEO operator. Fast Fourier 
Transform is then applied to obtain the LFPCs. 
For NFD-LFPC, time domain windowed speech signal is 
converted to frequency domain using DFT (Discrete Fourier 
Transform) and the following TEO operation is then applied. 

)1()1()()]([ 2 −+−=Ψ fxfxfxfx     (5) 

In (5), )( fx  is sampled speech component in the frequency 
domain. As an illustration, the time domain and frequency 
domain representations together with the results after the TEO 
operation of a segment of the neutral and �Anger� speech signals 
of the word �destination� are shown in Figure 5. 
 

5. EXPERIMENTS AND RESULTS  
 
5.1. Conduct of experiments 
 
The proposed system is evaluated using the simulated portion of 
SUSAS (Speech Under Simulated and Actual Stress) database. 
SUSAS has been employed extensively in the study of the effect 
on speech production and recognition when speaking under 
stressed conditions [1],[2],[3],[5],[6]. The stress classifier 
consists of five-state continuous density HMM model with two 
Gaussian mixtures per states for each stress style. 
For pair-wise classification, the stress style for the model that 
gave the higher score was taken as the style to be identified. For 
multi-style stress classification, the HMM model with the 
highest score was selected among five models with five speaking 
styles. 

Table 1. Average classification performance 
 

FEA1 (%) FEA2 (%) FEA3 (%) Speaker 
Mul Pw Mul Pw Mul Pw 

S1 95 99 86.4 94 76.4 89.6 
S2 82.9 96.4 78.6 89.6 70.7 89.5 
S3 84.3 95.7 78.6 92.5 71.4 92 
S4 89.3 97.1 87.9 95.9 81.4 92.3 
S5 82.1 97 72.9 96.1 62.9 89.3 
S6 74.3 90.4 74.3 93.2 67.1 86.6 
S7 85 95.7 77.9 91.8 62.1 83.9 
S8 90 96.6 81.4 95.2 65.7 76.1 
S9 77.1 95.5 70.7 93.2 62.9 85.2 

Mean 84.4 96 78.7 93.5 69 87.2 
FEA1= LFPC, FEA2=NFD-LFPC, FEA3=NTD-LFPC 

Mul=Multi-style, Pw=Pair-wise 
  
First, the performance of the system in classifying stress/neutral 
(pair-wise) speech was assessed. From the results shown in 
Table 1 it is observed that all four stress styles �Anger�, �Clear�, 
�Lombard� and �Loud� can be well differentiated from �Neutral�  

  
 

 

 
 

 
Figure 5. (a),(b) Wave forms of a segment of the word 

�destination�  spoken  by a male speaker  under   �Neutral� and 
�Angry� conditions respectively . (c),(d) Teager Energy 

operation of the respective signals in  the time domain. .  (e),(f) 
Intensity variation of respective signals in the frequency domain 
(g),(h) Teager Energy Operation of the respective signals in  the 

frequency domain 
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style. The classification performances are also consistent across 
all stress styles. The mean pair-wise classification rates by LFPC 
and NFD-LFPC are higher than the mean pair-wise classification 
accuracy (89.1%) reported by Cairns and Hansen [5] where the 
same database was used to evaluate the same set of speaking 
styles and where TEO based nonlinear features in time domain 
was used. Furthermore, the performance of their system 
degrades when classifying �Clear� speech from neutral [5]. 
From the results summarized in Table 1 for the multi-style 
classification, the system using LFPC gives the highest 
accuracy, followed by the system using NFD-LFPC features. 
While the system using NTD-LFPC features gives the worst 
performance. The classification accuracies are also consistent 
across all speaking styles using LFPC and NFD-LFPC features. 
The high accuracy of classification by LFPC suggests that 
variation of intensity values across subbands in DFT based log 
frequency scale provides essential information for distinguishing 
stress and neutral speech. The comparative performance between 
NTD-LFPC and NFD-LFPC also shows that nonlinear variation 
of energy distribution in frequency domain is more significant 
than that in time domain for discriminating stressed speech.  
Comparing Figure 5(e) and Figure 5(f), which show the LFPC 
representations of �Anger� and �Neutral� respectively, it can be 
observed that the difference is the most conspicuous among all 
the figures grouped under Figure 5. Furthermore, as can be seen 
from Figures 5(f) and (h) for �Anger� stress, TEO operation 
suppresses certain intensity values in the frequency range 
3.2kHz to 3.5kHz down to near zero because of nonlinear 
property analysis. This results in the loss of important 
information on high frequency energy, which is an essential 
feature of �Anger� stress style [11]. This further explains the 
superior performance of LFPC over the TEO-based LFPC. 
Between NFD-LFPC (Figure 5(g) and Figure 5(h)) and NTD-
LFPC (Figure 5(c) and Figure 5(d)), it can also be observed that 
nonlinear energy variations in frequency domain present more 
significant discrimination between �Anger� and �Neutral� 
conditions. �Anger� has higher intensity in higher frequency 
scales and �Neutral� style has higher intensity values in lower 
frequency scales. This shows that Teager Energy operation in 
frequency domain is more capable than in time domain to detect 
stress.  

6. CONCLUSION  
 
In this paper, a novel system for stress classification is proposed 
that focus on the application of linear Log Frequency Power 
Coefficients (LFPC) and nonlinear acoustic features (Teager 
Energy Operation based LFPC) in both time and frequncy 
domain to represent speaking styles. The system is evaluated for 
both pair-wise and multi-style stress classification. Results show 
that very high classification rates can be achieved using the 
LFPC and NFD-LFPC as features for both pair-wise and multi-
style stress classification. The average accuracy of classification 
using LFPC is higher than that using nonlinear LFPC. It can 
therefore be said that energy distribution of the signal in the 
different log frequency bands provides a good representation of 
the stress styles. Comparing the two approaches for TEO 
operation, nonlinear variation of energy distribution in 
frequency domain provides a better representation than that in 
time domain.  
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