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ABSTRACT

In this paper, three systems for classification of stress in speech
are proposed. The first system makes use of linear short time
Log Frequency Power Coefficients (LFPC), the second employs
Teager Energy Operator (TEO) based Nonlinear Frequency
Domain LFPC features (NFD-LFPC) and the third uses TEO
based Nonlinear Time Domain LFPC features (NTD-LFPC).
The systems were tested using SUSAS (Speech Under Simulated
and Actual Stress) database to categorize five stress conditions
individually. Results show that, the system using LFPC gives the
highest accuracy, followed by the system using NFD-LFPC
features. While the system using NTD-LFPC features gives the
worst performance. For the system using linear LFPC features,
the average accuracy of 84% and the best accuracy of 95% were
obtained in classifying five stress categories.

1. INTRODUCTION

Intra-speaker variability introduced by a speaker under stress
degrades the performance of the recognizers trained with neutral
tokens. A study conducted by Womack [1] showed that speech
recognition could be made more robust if stress classification
scores were integrated into it under multi-style training
approach. A number of studies have been conducted to
investigate acoustic indicators for stress in speech. The
characteristics most often considered include fundamental
frequency (FO) [2],[3], duration [2],[4],[3], intensity [2], spectral
variation [4] and features derived from Teager Energy Operator
(TEO)[5],[6]. Most of the studies on the analysis of stress focus
on fundamental frequency F0O. Hansen [3] made extensive
statistical evaluations on pitch, glottal source, duration, intensity
and vocal tract to characterize the stress on speech and identified
pitch period to be one of the best stress discriminating
parameters. However, these characteristics are not useful in
discriminating stress arising from moderate versus high task
workload conditions.

Distribution of spectral energy also varies on speech produced
under stress [3]. Unvoiced speech is associated with low energy
speech sections and voiced speech is associated with high-
energy speech [4]. In the earlier research, features used were
mostly derived from linear speech production models. In recent
years, non-linear features derived from Teager Energy Operator
(TEO) [5],[6] are also explored. TEO based features are
recognized to reflect the nonlinear airflow structure of speech
produced under stressful conditions. Although these TEO based
features are able to distinguish well for pair-wise classification
between ‘Neutral’ and stress [5], the classification performance
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decreases substantially when stress
individually [6].

In this paper, investigation is made to determine the set of
acoustic features required for both pair-wise (stress/ neutral)
classification and multi-style classification (classify each stress
styles individually). The block diagram of the proposed system

is shown in Figure 1.
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Figure 1. Block diagram of the proposed systems

The signal samples are segmented into frames. For each frame, a
feature vector based on Log Frequency Power Coefficients and
nonlinear TEO based LFPC feature parameters are obtained.
Five-state HMM (Hidden Markov Model) based stress classifier
with continuous Gaussian mixture distribution is employed for
classification. Four stress styles, namely, ‘Anger’, ‘Clear’,
‘Lombard’ and ‘Loud’ together with ‘Neutral’, are selected for
identification. The theory of HMM is well documented in [7].
Details of some of the other stages are presented in the
subsections that follow.

2. ANALYSIS OF STRESS IN SPEECH

Normal speech may be regarded as speech made in a quiet room
with no task obligations. Stress in speech, on the other hand, is a
result of speech produced under emotional states, fatigue, heavy
workload, environmental noise, and/or sleep loss. Some of the
consequences of physiological stress are respiratory changes
including increased respiration rate, irregular breathing and
increased muscle tension of the vocal cords. These factors may
result in irregular vocal fold movement and other vocal system
modifications that ultimately affect the quality of the utterances
[8]. The presence of stress in speech causes changes in phoneme
production with respect to glottal source factors, pitch, intensity,
duration, and spectral shape [3].

In linear acoustic theory, speech production process is described
in terms of source/filter model [9]. This model assumes plane
wave propagation in the vocal tract and neglects nonlinear terms.
Linear acoustic theory suggests that frequency in vocal tract
filter, intensity and duration of glottal signal may be assumed to
change due to stressed speech production.

In this paper, linear acoustic features and nonlinear features in
frequency domain have been investigated in stress classification
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since the system performance deteriorate when using nonlinear
features in time domain in characterizing different stress styles

[51.6].

3. SELECTION OF STRESS CLASSIFICATION
FEATURES

Human auditory system is assumed to have the filtering system
in which entire audible frequency range is partitioned into
subbands. It is suggested that stress may affect different
frequency bands differently and an improved stress classification
features could be obtained by analyzing energy in different
frequency bands. Based on these assumptions, a feature based on
the distribution of energy in different log frequency bands is
selected. By analyzing these feature data using an HMM
recognizer, the effects of speaking rate and variation of tone are
also taken care of.
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Figure 2. Waveforms of a segment of the speech signal produced
under ‘Neutral’ and ‘Anger’ conditions of the word ‘go’ by a
male speaker (200ms duration)

As can be seen from Figure 2, voiced speech spoken under stress
is significantly different from voiced speech spoken under
‘Neutral” or ‘Normal’ condition in both frequency and intensity
variations. This observation suggests that features based on the
distribution of energy in different frequency bands should be
useful for stress classification.

4. COMPUTATION OF SPEECH FEATURES
4.1. Log Frequency Power Coefficients (LFPC)

In order to extract DFT based subband features, we make use of
filter banks in different log frequency bands from 200Hz to
3.9kHz as represented in Figure 3. A Log frequency filter bank
can be regarded as a model that follows the varying auditory
resolving power of the human ear for various frequencies. The
filter bank adopted in the study is designed to divide speech
signal into 12 frequency bands that match the critical perceptual

bands of the human ear. The center frequencies f; and
bandwidths b; for a set of 12 bandpass filters are derived as in
[7

3.9kHz

T

200Hz 650Hz 1.4 kHz 2.3 kHz
Figure 3. Subband frequency divisions

To compute the frame based energy variations in different Log
Frequency bands, the signal samples are segmented into frames

of 16ms each with 9ms overlap between consecutive frames.
The samples of each frame are weighted with a Hamming
window to reduce spectral leakage. This windowed speech is
transformed to the frequency domain using the DFT (Discrete
Fourier Transform) algorithm. The spectral components are
separated into 12 bands. The m" filter bank output is given by:

S
2
s,m = 2 (XW)
k=fm= ="
m=12,..12 @)

where X, (k)= the k™ spectral component of the windowed
th

signal, ¢= frame number, S,(m)= output of the m" filter
bank , f,,,b, = center frequency and bandwidth of the m™
subband.

The parameters, SE,(m), which provide an indication of
energy distribution among sub-bands, are calculated as follows.
10log,o (S, (m))

1049 3)

SE, (m) = o

m

where N, = the number of spectral components in the m'"

filter bank. For each speech frame, 12 Log Frequency Power
Coefficients are obtained.

4.2. Nonlinear Time/Frequency Domain LFPC

The study by Douglas [5], suggested that Teager Energy profile
alone is not sufficient to reliably separate ‘Lombard’ effect
speech from ‘Neutral’ speech. They recommended that the
features relating to spectral shape should be incorporated into
TEO based features to separate these two speaking conditions. In
this paper, TEO based nonlinear properties in combination with
the LFPC are also investigated. TEO is commonly applied in the
time domain [5],[6]. In this paper, TEO in both time and
frequency domain are considered.

Speech Signal
—

| Windowing | ) TEO > FFT — LFPC

(a)

Speech Signal | Windowing || FFT Ly TEO —» LFPC

(b)
Figure 4. (a) Nonlinear time domain LFPC feature extraction
(b) nonlinear frequency domain LFPC feature extraction

The process of feature extraction for Nonlinear Time Domain
LFPC (NTD-LFPC) and Nonlinear Frequency Domain LFPC
(NFD-LFPC) are shown in Figures 4(a) and 4(b) respectively.
The same window size and frame rate are employed as for
LFPC.

For NTD-LFPC, Teager Energy Operator (TEO) described in
Kaiser [10] is applied to the time domain windowed speech
signal as described in the equation below.
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Plx(n)] = x> (1) — x(n + Dx(n 1) 4)
In the above equation, x(7n) is sampled speech component in

the time domain and W[x(n)] is the TEO operator. Fast Fourier

Transform is then applied to obtain the LFPCs.

For NFD-LFPC, time domain windowed speech signal is
converted to frequency domain using DFT (Discrete Fourier
Transform) and the following TEO operation is then applied.

WLx()] =27 () = x(f + Dx(f =) ®)
In (5),x(f) is sampled speech component in the frequency

domain. As an illustration, the time domain and frequency
domain representations together with the results after the TEO
operation of a segment of the neutral and ‘Anger’ speech signals
of the word ‘destination’ are shown in Figure 5.

5. EXPERIMENTS AND RESULTS
5.1. Conduct of experiments

The proposed system is evaluated using the simulated portion of
SUSAS (Speech Under Simulated and Actual Stress) database.
SUSAS has been employed extensively in the study of the effect
on speech production and recognition when speaking under
stressed conditions [1],[2],[3],[5],[6]. The stress classifier
consists of five-state continuous density HMM model with two
Gaussian mixtures per states for each stress style.

For pair-wise classification, the stress style for the model that
gave the higher score was taken as the style to be identified. For
multi-style stress classification, the HMM model with the
highest score was selected among five models with five speaking
styles.

Table 1. Average classification performance

Speaker FEA1 (%)  FEA2(%) FEA3 (%)
Mul Pw Mul Pw Mul Pw
S1 95 99 864 94 764 89.6
S2 829 964 786 89.6 70.7 895
S3 843 957 786 925 714 9N
S4 89.3 97.1 879 959 814 93
S5 8.1 97 729 961 629 893
S6 743 904 743 932 671 86.6
87 85 957 779 91.8 621 839
S8 90  96.6 814 952 657 76.1
S9 771 955 707 932 629 852
Mean 844 96 787 935 69 872

FEA1=LFPC, FEA2=NFD-LFPC, FEA3=NTD-LFPC
Mul=Multi-style, Pw=Pair-wise

First, the performance of the system in classifying stress/neutral
(pair-wise) speech was assessed. From the results shown in
Table 1 it is observed that all four stress styles ‘Anger’, ‘Clear’,
‘Lombard’ and ‘Loud’ can be well differentiated from ‘Neutral’
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Figure 5. (a),(b) Wave forms of a segment of the word
‘destination’ spoken by a male speaker under ‘Neutral’ and
‘Angry’ conditions respectively . (c),(d) Teager Energy
operation of the respective signals in the time domain. . (e),(f)
Intensity variation of respective signals in the frequency domain
(g),(h) Teager Energy Operation of the respective signals in the

frequency domain
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style. The classification performances are also consistent across
all stress styles. The mean pair-wise classification rates by LFPC
and NFD-LFPC are higher than the mean pair-wise classification
accuracy (89.1%) reported by Cairns and Hansen [5] where the
same database was used to evaluate the same set of speaking
styles and where TEO based nonlinear features in time domain
was used. Furthermore, the performance of their system
degrades when classifying *Clear’ speech from neutral [5].
From the results summarized in Table 1 for the multi-style
classification, the system using LFPC gives the highest
accuracy, followed by the system using NFD-LFPC features.
While the system using NTD-LFPC features gives the worst
performance. The classification accuracies are also consistent
across all speaking styles using LFPC and NFD-LFPC features.
The high accuracy of classification by LFPC suggests that
variation of intensity values across subbands in DFT based log
frequency scale provides essential information for distinguishing
stress and neutral speech. The comparative performance between
NTD-LFPC and NFD-LFPC also shows that nonlinear variation
of energy distribution in frequency domain is more significant
than that in time domain for discriminating stressed speech.
Comparing Figure 5(e) and Figure 5(f), which show the LFPC
representations of ‘Anger’ and ‘Neutral’ respectively, it can be
observed that the difference is the most conspicuous among all
the figures grouped under Figure 5. Furthermore, as can be seen
from Figures 5(f) and (h) for ‘Anger’ stress, TEO operation
suppresses certain intensity values in the frequency range
3.2kHz to 3.5kHz down to near zero because of nonlinear
property analysis. This results in the loss of important
information on high frequency energy, which is an essential
feature of ‘Anger’ stress style [11]. This further explains the
superior performance of LFPC over the TEO-based LFPC.
Between NFD-LFPC (Figure 5(g) and Figure 5(h)) and NTD-
LFPC (Figure 5(c) and Figure 5(d)), it can also be observed that
nonlinear energy variations in frequency domain present more
significant discrimination between ‘Anger’ and ‘Neutral’
conditions. ‘Anger’ has higher intensity in higher frequency
scales and ’Neutral’ style has higher intensity values in lower
frequency scales. This shows that Teager Energy operation in
frequency domain is more capable than in time domain to detect
stress.

6. CONCLUSION

In this paper, a novel system for stress classification is proposed
that focus on the application of linear Log Frequency Power
Coefficients (LFPC) and nonlinear acoustic features (Teager
Energy Operation based LFPC) in both time and frequncy
domain to represent speaking styles. The system is evaluated for
both pair-wise and multi-style stress classification. Results show
that very high classification rates can be achieved using the
LFPC and NFD-LFPC as features for both pair-wise and multi-
style stress classification. The average accuracy of classification
using LFPC is higher than that using nonlinear LFPC. It can
therefore be said that energy distribution of the signal in the
different log frequency bands provides a good representation of
the stress styles. Comparing the two approaches for TEO
operation, nonlinear variation of energy distribution in
frequency domain provides a better representation than that in
time domain.
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