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ABSTRACT 
This paper describes our work on applying ensembles of acoustic 
models to the problem of large vocabulary continuous speech 
recognition (LVCSR). We propose three algorithms for 
constructing ensembles. The first two have their roots in bagging 
algorithms; however, instead of randomly sampling examples 
our algorithms construct training sets based on the word error 
rate. The third one is a boosting style algorithm. Different from 
other boosting methods which demand large resources for 
computation and storage, our method present a more efficient 
solution suitable for acoustic model training. We also investigate 
a method that seeks optimal combination for models. We report 
experimental results on a large real world corpus collected from 
the Carnegie Mellon Communicator dialog system. Significant 
improvements on system performance are observed in that up to 
15.56% relative reduction on word error rate is achieved. 

1. INTRODUCTION 
Using ensembles of classifiers to improve the accuracy of 
supervised learning has received increasing attention in recent 
years [1]. An ensemble of classifiers is a collection of single 
classifiers which is used to select a hypothesis based on the 
majority vote from its components. Bagging [2] and boosting [3] 
are the two most successful algorithms for constructing 
ensembles. The application of such techniques to speech 
recognition is at an early stage but appears to be highly 
promising. 

Bagging constructs ensembles in a straightforward way. In 
each round, bagging randomly selects a number of examples 
from the original training set, and produces a new single 
classifier based on the selected subset. The final classifier is built 
by choosing the hypothesis best agreed on by single classifiers. 

 In boosting, the single classifiers are iteratively trained in a 
fashion such that hard-to-classify examples are given increasing 
emphasis. More specifically, a probability distribution is 
maintained for the training data, and initially every example is 
assigned equal weight. In each round, a new single classifier is 
learned from the current distribution. Meantime, a parameter that 
measures the classifier’s importance is determined in respect of 
its classification accuracy. The probability distribution is then 
updated to increase the weight of incorrectly classified examples. 
As a result those examples that are difficult to classify will 
receive more attention from subsequent classifiers. In 
generalization, the final hypothesis is the weighted majority vote 
from the single classifiers. 

Algorithms similar to bagging have been applied to acoustic 
model training. For supervised training, [4] proposed a method 
that emphasizes the “bad” utterance that has high word error rate 
or low confidence score. On the contrary, for unsupervised 
training, [5] suggested focusing on “good” data, measured by 
high confidence score. 

Boosting has also been used to solve problems in speech 
recognition, such as phoneme recognition [6], confidence 
annotation [7] and speaker identification [8]. However, the 
complexity of these problems doesn’t exceed the level of 
standard multi-class classification. [9] is probably the first 
approach that presents a feasible boosting solution for 
continuous speech recognition. In [9], the hypothesis space is 
compressed to the N-best lists, and “a posteriori” probability is 
calculated for each list. The AdaBoost.M2 algorithm is then 
used. Although its feasibility is verified by experiments on word 
recognition, this method raises the concern that the computation 
of word lattice and N-best lists may be an unbearable cost for a 
large continuous speech corpus. Moreover, the decoding score 
based on “a posteriori” probability isn’t likely to be a good 
estimation since the decoding score could vary over a wide 
range. 

The familiar gender-based speech recognition technique, 
that uses separate models for male and female speakers, can be 
regarded as a variant of ensemble of classifiers. Other successful 
examples include multi-band acoustic modeling [10]. 

In applying ensemble of models techniques to acoustic 
model training, one has to bear in mind the characteristics of 
large vocabulary continuous speech recognition (LVCSR) 
decoding. Specifically, LVCSR is more complicated than multi-
class classification. First, it's difficult to create an accurate 
segmentation for phoneme and word from continuous speech. So 
the acoustic model has to be trained on the utterance level. 
Second, the number of decoding hypotheses for an utterance 
could be infinite. Assume that the decoder has 5,000 words in its 
vocabulary, and that the maximum length for utterance is 
confined to 20 words. Theoretically, the decoder could output up 
to 205000  different hypotheses. Third, given present computer 
technology it’s difficult to assimilate the cost of combining 
hundreds of acoustic models. According to our experience, the 
number of acoustic models that can be accommodated by a real-
time LVCSR system would be in the single digits. Additionally, 
the training data for acoustic model usually contains a large 
amount of noise. For such noisy data, the standard boosting 
approach could perform very poorly. 
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Our research aims to develop efficient and effective 
algorithms for constructing ensembles that are suitable for 
LVCSR systems. In this paper we propose three algorithms and 
implemented these on a large real-world corpus. The first two 
are inspired by bagging. We differ from [4] in that the goal of 
our algorithms is to construct ensembles rather than a single 
(optimal) model. The third algorithm attempts to present an 
efficient boosting solution for acoustic model training without 
the need for generating word lattice and N-best lists. We also 
investigate a method that provides optimal combination for 
models. Experimental results show significant improvement on 
system performance, up to 15.56% relative reduction of word 
error rate is achieved. 

2. ALGORITHMS 
Some notations used in this paper are introduced here. 
• X : The training set. 

• ix : The i-th training utterance that ||1 X≤≤ i . 

• tX : The re-sampled training set in round t. 
• T: The number of models in ensemble. 

• t
iw : The weight assigned to ix  in round t. 

• tA : The acoustic model trained in round t. 

• tc : The weight assigned to tA . 

• t
iε : The word error rate of utterance ix  under model tA . 

Its maximum value is set to 1. 

• )(xth : The hypothesis for utterance x  generate by model 
tA . 

• )(xts : The decoding score for utterance x  generated by 

model tA . 

2.1. Algorithm 1 
The first algorithm that we investigated is based on the intuition 
that an incorrectly recognized utterance should receive more 
attention in training. We use word error rate to measure how 
difficult an utterance is to recognize, and associate the weight of 
each training utterance with this metric. Figure 1 shows the 

algorithm in detail. 
The resampling of training data is executed as in the 

following example: if the weight of an utterance is 2.6, we first 

add two copies of the utterance to the new training set, and then 
add its third copy with probability 0.6. 

Different from some bagging and boosting methods, 
Algorithm 1 does not get rid of the correctly recognized 
utterances, since their weights are at least 1. This choice is based 
on the observation that acoustic models are usually improved by 
incorporating more data. Nevertheless, to prevent the training set 
from being too large, parameter λ  is used to soften the weight. 

In generalization, the final hypothesis )(xh  for a new 

utterance x  is determined in such a way that )()( xx thh =  if 

)}(),...,(),(max{)( 21 xxxx Tt ssss = . 

2.2. Algorithm 2 
The exponential increase in the size of training set is a severe 
problem for algorithm 1, especially when T is large or word error 
rate is high. Algorithm 2 is proposed to address this problem, 
and is shown in Figure 2. 

Figure 2: Algorithm 2 
Initialize: 

• Let XX =0 . 

• Assign equal weight to each utterance ix  that 10 =iw . 

For t = 1 to T: 

• Train new acoustic model tA  from data set 1−tX . 

• Test model tA  on the initial training set X , computing 

word error rate t
iε  for each utterance ix  and recoding the 

decoding score )( i
ts x . 

• Determine the hypothesis for ix  by selecting the “best” 

model from 1A , 2A ,…, tA : 

Let )()( i
j

i hh xx =  

if )}(),...,(),(max{)( 21
i

t
iii

j ssss xxxx = . 

• Compute word error rate iε  for )( ih x . 

• Update distribution i
t
iw ε+= 1 . 

• Resample training data according to t
iw , forming new 

training set tX . 

Apparently, the weight t
iw  is always within the range [1,2], 

that guarantees the size of train set is maintained on an 
acceptable level. In generalization, the hypothesis )(xh  for a 

new utterance x  is determined in the same way as algorithm 1. 

2.3. Algorithm 3 
In Algorithms 1 and 2, there is no concern to measure how 
important a model is relative to others. All of the models have 
equal weight, while intuitively, good model should play more 
important role than bad one. Algorithm 3 presents a boosting-

style solution that incorporate a parameter tc  to describe the 

difference in importance between models. The algorithm is based 
on the following cost function. 

Figure1: Algorithm 1 
Initialize: 

• Let XX =0 . 

• Assign equal weight to each utterance ix  that 10 =iw . 

For t = 1 to T: 

• Train new acoustic model tA  from data set 1−tX . 

• Test model tA  on the initial training set X , computing 

word error rate t
iε  for each utterance ix . 

• Update distribution )1(1 t
i

t
i

t
i ww λε+= − . 

• Resample training data according to t
iw , forming new 

training set tX . 
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)( ite x  can be understood as the outside feedback to model 

tA . The incorrect recognition is penalized by the word error 

rate t
iε , while correct recognition is prized with the parameter 

α  which value is empirically set. 

Figure 3: Algorithm 3 
Initialize: 

• Let XX =0 . 

• Assign equal weight to each utterance ix  that 10 =iw . 

For t = 1 to T: 

• Train new acoustic model tA  from data set 1−tX . 

• Test model tA  on the initial training set X , computing 

word error rate t
iε  for each utterance ix . 

• Determine the weight tc  for model tA  through linear 

search that minimizes the cost function 
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• Resample training data according to t
iw , forming new 

training set tX . 

 (1) can be rewritten as the following form. 
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(3) suggests that the cost function can be minimized in an 
iterative way, resulting in Algorithm 3 shown in Figure 3. 

Theoretically, Algorithm 3 determines the final hypothesis 
in such a way that  

)))(({maxarg)(
1

yhch t
T

t
t

y
== ∑

=

xx δ   (4) 

where )(Qδ  is 1 if Q is true and 0 otherwise. However, this 

method did not work very well in our experiments, so a more 
effective solution is discussed in section 3. 

3. METHOD FOR COMBINING MODELS 
In Algorithm 1 and 2, hypothesis is selected by comparing their 

decoding score )(xts . We further associate )(xts  with tc , 

the parameter describing the importance of model tA , forming 

weighted decoding score )(xt
t sc . )(xt

t sc  can be regarded 

as the approximation for the weighted probability 
tcthP )|)(( xx  since )(xts  is the log-likelihood for 

)),(( xxthP . Now the hypothesis is selected by choosing the 

“best” model with the highest weighted decoding score that 

)}(),......,(),(max{)( 2
2

1
1 xxxx T

T
t

t scscscsc = . The 

optimal value of tc  is determined by minimizing the recognition 

error on the whole training corpus. Linear search or “hill 
climbing” are two methods that can be used to find the optimal 
value. 

4. EXPERIMENTS 

4.1. Data Set and Configuration 
The data set used in our experiment was collected using the 
CMU Communicator system, a telephone based dialog system 
that supports planning in a travel domain [11]. The training set 
has 89,735 utterances, which were collected from April 1998 to 
November 2000. The test set consists of 1,689 utterances, which 
were collected from a NIST evaluation during July 2000. All of 
our experiments, both training and decoding, are performed 
using the Carnegie Mellon Sphinx-2 system [12]. There are 
9,769 words in the vocabulary.  

In our experiments, the number of models (T in each 
algorithm) is set to 6. The parameter λ  in Algorithm 1 is set to 
0.6 and the parameter α  in Algorithm 3 is set to 0.65, both of 
which are empirical selected to impose restriction on training 
size. 

The baseline recognition word error rate in our experiments 
is 27.06% and 20.42%, for test and training sets respectively. 

4.2. Experimental Results 
In our experiments, all three algorithms demonstrated significant 
improvements over baseline. Table 1 shows the word error rates 
that are achieved by the three algorithms. For the test set, all of 
them relatively reduced the word error rates by at least 10%; the 
best one, Algorithm 1, realized a relative reduction of 15.56%. 

Algorithm Training 
Error 

Relative 
Reduction 

Test Error Relative 
Reduction 

A. 1 18.19% 10.92% 22.85% 15.56% 
A. 2 18.51% 9.35% 23.89% 11.71% 
A. 3 18.09% 11.41% 23.17% 14.38% 

Table 1 Final Performance of Ensembles 

More details can be found in Figure 4 and 5, which show 
algorithms performance as a function of T (the number of 
acoustic models in the ensemble). Baseline is at T = 1. 

Algorithm 1 and 3 exhibit the most consistent downtrends 
for word error rate. Moreover, from their curves, we can expect 
additional reduction with increasing T. However, the decline 
tendencies are deteriorated after T = 4 for all the three 
algorithms, especially on training set. Another notable 
phenomenon is that the best algorithm on test set is not the best 
one on training set. This may suggest that Algorithm 3 is 
susceptible to overfitting. 
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Table 2 shows the size of training set used in each round. 
Obviously, Algorithm 1 suffers the problem of exponential 
increase of training size. The number of training utterances is 
more than doubled when T = 6. Meantime, the training sizes for 
Algorithm 2 and 3 remain at affordable level. The decline of the 
number of training utterances for Algorithm 2 is due to its 
overall decrease on training error. It’s may be surprising to see 
the size of training set for Algorithm 3, whose cost function has 
the exponential form, doesn’t increase too much. This can be 

explained by the small value of the parameter tc . We observed 

in the experiments that tc  is within [0.01, 0.1] when 2>t .   

Alg. T=1 T=2 T=3 T=4 T=5 T=6 

A. 1 89735 98280 110287 130314 160945 201962 

A. 2 89735 101050 99792 99369 99213 99146 

A. 3 89735 112777 118921 121236 123748 124884 

Table 2 Training Size in each round 

5. DISCUSSION 
We described three bagging and boosting style algorithms for 
constructing ensembles of acoustic models for continuous 
speech recognition. All three of these algorithms achieve 
significant improvements on system performance. The relative 
reductions of word error rate on the test set are 15.56%, 11.71% 
and 14.38% respectively. The results illustrate the potential of 
this approach as a meaningful method for improving the quality 
of acoustic models trained from a fixed corpus. 

Several issues are currently under investigation which are 
expected to lead to further improvement. First, even though the 
three algorithms that we studied have shown good performance 
in our experiments, it’s still hard to say they are the best 
approaches to construct ensembles. So the main task of our 
research is to seek more suitable approach for acoustic model 
training. For example, we’d like to improve the cost function 
defined in Algorithm 3 to incorporate more information. Second, 
we think the combination methods also deserve further study, 
especially the post-optimization techniques. Additionally, 
current computer technology doesn’t allow us to combine large 
number of acoustic models in a real time system, so a possible 
way that could benefit from more models is to select a small 
number of “strong” models from a larger pool. Obviously, this 
brings us the issues such as how to build the larger pool and how 
to select and combine the strongest model. 
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Figure 4 Performance on Test Set
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Figure 5 Performance on Training Set
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