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ABSTRACT

This paper describes our work on applying ensembles of acoustic
models to the problem of large vocabulary continuous speech
recognition (LVCSR). We propose three agorithms for
constructing ensembles. The first two have their roots in bagging
agorithms; however, instead of randomly sampling examples
our agorithms construct training sets based on the word error
rate. The third one is a boosting style algorithm. Different from
other boosting methods which demand large resources for
computation and storage, our method present a more efficient
solution suitable for acoustic model training. We also investigate
a method that seeks optima combination for models. We report
experimental results on a large real world corpus collected from
the Carnegie Melon Communicator dialog system. Significant
improvements on system performance are observed in that up to
15.56% relative reduction on word error rateis achieved.

1. INTRODUCTION

Using ensembles of classifiers to improve the accuracy of
supervised learning has received increasing attention in recent
years [1]. An ensemble of classifiers is a collection of single
classifiers which is used to select a hypothesis based on the
majority vote from its components. Bagging [2] and boosting [3]
are the two most successful algorithms for constructing
ensembles. The application of such techniques to speech
recognition is a an early stage but appears to be highly
promising.

Bagging constructs ensembles in a straightforward way. In
each round, bagging randomly selects a number of examples
from the origina training set, and produces a new single
classifier based on the selected subset. The final classifier is built
by choosing the hypothesis best agreed on by single classifiers.

In boosting, the single classifiers are iteratively trained in a
fashion such that hard-to-classify examples are given increasing
emphasis. More specifically, a probability distribution is
maintained for the training data, and initially every example is
assigned equal weight. In each round, a new single classifier is
learned from the current distribution. Meantime, a parameter that
measures the classifier's importance is determined in respect of
its classification accuracy. The probability distribution is then
updated to increase the weight of incorrectly classified examples.
As a result those examples that are difficult to classify will
receilve more attention from subsequent classifiers. In
generalization, the fina hypothesis is the weighted majority vote
from the single classifiers.
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Algorithms similar to bagging have been applied to acoustic
model training. For supervised training, [4] proposed a method
that emphasizes the “bad” utterance that has high word error rate
or low confidence score. On the contrary, for unsupervised
training, [5] suggested focusing on “good” data, measured by
high confidence score.

Boosting has also been used to solve problems in speech
recognition, such as phoneme recognition [6], confidence
annotation [7] and speaker identification [8]. However, the
complexity of these problems doesn't exceed the level of
standard multi-class classification. [9] is probably the first
approach that presents a feasible boosting solution for
continuous speech recognition. In [9], the hypothesis space is
compressed to the N-best lists, and “a posteriori” probability is
caculated for each list. The AdaBoost.M2 agorithm is then
used. Although its feasibility is verified by experiments on word
recognition, this method raises the concern that the computation
of word lattice and N-best lists may be an unbearable cost for a
large continuous speech corpus. Moreover, the decoding score
based on “a posteriori” probability isn't likely to be a good
estimation since the decoding score could vary over a wide
range.

The familiar gender-based speech recognition technique,
that uses separate models for male and female speakers, can be
regarded as a variant of ensemble of classifiers. Other successful
examples include multi-band acoustic modeling [10].

In applying ensemble of models techniques to acoustic
model training, one has to bear in mind the characteristics of
large vocabulary continuous speech recognition (LVCSR)
decoding. Specificaly, LVCSR is more complicated than multi-
class classification. First, it's difficult to create an accurate
segmentation for phoneme and word from continuous speech. So
the acoustic model has to be trained on the utterance level.
Second, the number of decoding hypotheses for an utterance
could be infinite. Assume that the decoder has 5,000 words in its
vocabulary, and that the maximum length for utterance is
confined to 20 words. Theoretically, the decoder could output up
to 5000% different hypotheses. Third, given present computer
technology it's difficult to assimilate the cost of combining
hundreds of acoustic models. According to our experience, the
number of acoustic models that can be accommodated by area-
time LVCSR system would be in the single digits. Additionally,
the training data for acoustic model usually contains a large
amount of noise. For such noisy data, the standard boosting
approach could perform very poorly.
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Our research ams to develop efficient and effective
agorithms for constructing ensembles that are suitable for
LVCSR systems. In this paper we propose three agorithms and
implemented these on a large real-world corpus. The first two
are inspired by bagging. We differ from [4] in that the goal of
our algorithms is to construct ensembles rather than a single
(optimal) model. The third agorithm attempts to present an
efficient boosting solution for acoustic model training without
the need for generating word lattice and N-best lists. We also
investigate a method that provides optimal combination for
models. Experimental results show significant improvement on
system performance, up to 15.56% relative reduction of word
error rateis achieved.

2. ALGORITHMS

Some notations used in this paper are introduced here.

« X :Thetraining set.

*  X;:Thei-thtraining utterance that 1< i <| X |.

. X': The re-sampled training set in round t.

e T: Thenumber of modelsin ensemble.

. V\/it : The weight assigned to X; inroundt.

«  A': Theacoustic model trained in round t.

+  C,:Theweight assignedto A".

. Eit : The word error rate of utterance X, under model A'.
Its maximum valueis set to 1.

« h'(x): The hypothesis for utterance X generate by model
At

«  s'(X): The decoding score for utterance X generated by
model A'.

2.1. Algorithm 1

The first algorithm that we investigated is based on the intuition
that an incorrectly recognized utterance should receive more
attention in training. We use word error rate to measure how
difficult an utterance is to recognize, and associate the weight of
each training utterance with this metric. Figure 1 shows the

add two copies of the utterance to the new training set, and then
add its third copy with probability 0.6.

Different from some bagging and boosting methods,
Algorithm 1 does not get rid of the correctly recognized
utterances, since their weights are at least 1. This choice is based
on the observation that acoustic models are usually improved by
incorporating more data. Nevertheless, to prevent the training set

from being too large, parameter A is used to soften the weight.

In generalization, the final hypothesis h(X) for a new
utterance X is determined in such away that h(X) =h'(X) if
s'(x) = max{s'(x),s*(X),...,S" (X)} .

2.2. Algorithm 2

The exponentia increase in the size of training set is a severe
problem for algorithm 1, especially when T islarge or word error
rate is high. Algorithm 2 is proposed to address this problem,
and isshown in Figure 2.

Figure 2: Algorithm 2

Figurel: Algorithm 1

Initiaize:

. La X°=X.

+  Assign equal weight to each utterance X; that V\/iO =1

Fort=1toT:

«  Train new acoustic model A" from dataset X' ™.

« Test model A' on the initial training set X , computing
word error rate Eit for each utterance X; .

+  Updatedistribution W' =w 1+ Ag).
e Resample training data according to Wit , forming new

training set X'.

Initiaize:

. Let X°=X.

+  Assign equal weight to each utterance X; that V\/iO =1

Fort=1toT:

«  Train new acoustic model A" from dataset X '™

«  Test model A' on the initial training set X , computing
word error rate Eit for each utterance X; and recoding the
decoding score S' (X; ).

»  Determine the hypothesis for X; by selecting the “best”
model from A*, A?,..., A':
Let h(x;) =h’(x;)
it s1(x,) = max{s"(x;),s*(X;),.., S (X, )} -

+  Compute word error rate £, for h(X;).

+  Updatedistribution W =1+¢, .

e Resample training data according to Wit , forming new

training set X'.

agorithmin detail.
The resampling of training data is executed as in the
following example: if the weight of an utterance is 2.6, we first

Apparently, the weight Wit is aways within the range [1,2],
that guarantees the size of train set is maintained on an
acceptable level. In generdization, the hypothesis h(X) for a
new utterance X is determined in the same way as algorithm 1.

2.3. Algorithm 3

In Algorithms 1 and 2, there is no concern to measure how
important a model is relative to others. All of the models have
equa weight, while intuitively, good model should play more
important role than bad one. Algorithm 3 presents a boosting-

style solution that incorporate a parameter C, to describe the

difference in importance between models. The algorithm is based
on the following cost function.
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IX| T
L= exp(-5 ce(x,)) @
Z 2 &
where
Da  if& =0
)= ! 2
&(x) EF & otherwise

€ (X;) can be understood as the outside feedback to model

A'. The incorrect recognition is penalized by the word error
rate Eit , While correct recognition is prized with the parameter
Q which valueisempiricaly set.

Figure 3: Algorithm 3

Initialize:

. Le X°=X.

+  Assign equal weight to each utterance X; that Wio =1

Fort=1toT:

«  Trainnew acoustic model A" from dataset X'™.

«  Test model A' on the initial training set X , computing
word error rate Eit for each utterance X; .

+  Determine the weight C, for model A' through linear
search that minimizes the cost function
IX|
L= w " exp(-c& (X))
1=

e Update distribution
.0 wt if & =0

EWiH exp(c, (& +a)) otherwise

e Resample training data according to Wit , forming new

training set X'.

(1) can be rewritten as the following form.
IX|

L= Zexp(—z'ctet(xi)) exp(=cr e (x;))
& & 3

X]

=Yy w " exp(-crer (x,))

=
(3) suggests that the cost function can be minimized in an
iterative way, resulting in Algorithm 3 shown in Figure 3.

Theoretically, Algorithm 3 determines the final hypothesis
in such away that

h(x) = arg max{i ¢.3(h' (x) = y)) @

where 5(Q) is 1 if Q is true and O otherwise. However, this
method did not work very well in our experiments, so a more
effective solution is discussed in section 3.

3. METHOD FOR COMBINING MODELS
In Algorithm 1 and 2, hypothesis is selected by comparing their
decoding score S'(X) . We further associate S'(X) with C,

the parameter describing the importance of model A', formi ng

weighted decoding score C,S'(X). C,S'(X) can be regarded
as the approximation for the weighted probability
P(h'(x)|x)® since S'(X) is the log-likelihood for
P(h'(x),X) . Now the hypothesis is selected by choosing the
“best” model with the highest weighted decoding score that
¢, s' (x) = max{c,;s'(x),c,S*(X),-...., &; ST (X)} . The
optimal value of C, isdetermined by minimizing the recognition

error on the whole training corpus. Linear search or “hill
climbing” are two methods that can be used to find the optimal
value.

4. EXPERIMENTS

4.1. Data Set and Configuration

The data set used in our experiment was collected using the
CMU Communicator system, a telephone based dialog system
that supports planning in a travel domain [11]. The training set
has 89,735 utterances, which were collected from April 1998 to
November 2000. The test set consists of 1,689 utterances, which
were collected from a NIST evaluation during July 2000. All of
our experiments, both training and decoding, are performed
using the Carnegie Mellon Sphinx-2 system [12]. There are
9,769 words in the vocabulary.

In our experiments, the number of models (T in each
algorithm) is set to 6. The parameter A in Algorithm 1 is set to
0.6 and the parameter @' in Algorithm 3 is set to 0.65, both of
which are empirical selected to impose restriction on training
size.

The baseline recognition word error rate in our experiments
is27.06% and 20.42%, for test and training sets respectively.

4.2. Experimental Results

In our experiments, all three algorithms demonstrated significant
improvements over baseline. Table 1 shows the word error rates
that are achieved by the three algorithms. For the test set, all of
them relatively reduced the word error rates by at least 10%; the
best one, Algorithm 1, realized arelative reduction of 15.56%.

Algorithm | Training Relative | Test Error | Relative
Error Reduction Reduction
Al 18.19% 10.92% 22.85% 15.56%
A.2 18.51% 9.35% 23.89% 11.71%
A.3 18.09% 11.41% 23.17% 14.38%

Table 1 Final Performance of Ensembles

More details can be found in Figure 4 and 5, which show
agorithms performance as a function of T (the number of
acoustic models in the ensemble). Basdineisat T=1.

Algorithm 1 and 3 exhibit the most consistent downtrends
for word error rate. Moreover, from their curves, we can expect
additional reduction with increasing T. However, the decline
tendencies are deteriorated after T = 4 for dl the three
algorithms, especially on training set. Another notable
phenomenon is that the best algorithm on test set is not the best
one on ftraining set. This may suggest that Algorithm 3 is
susceptible to overfitting.
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Table 2 shows the size of training set used in each round.
Obvioudly, Algorithm 1 suffers the problem of exponentia
increase of training size. The number of training utterances is
more than doubled when T = 6. Meantime, the training sizes for
Algorithm 2 and 3 remain at affordable level. The decline of the
number of training utterances for Algorithm 2 is due to its
overall decrease on training error. It's may be surprising to see
the size of training set for Algorithm 3, whose cost function has
the exponential form, doesn’t increase too much. This can be

explained by the small value of the parameter C, . We observed
in the experiments that C, iswithin[0.01, 0.1] when t > 2.

Alg. | T=1 T=2 T=3 T=4 T=5 T=6
A.1 | 89735 | 98280 | 110287 | 130314 | 160945 | 201962
A.2 | 89735 | 101050 | 99792 | 99369 | 99213 | 99146
A.3 | 89735 | 112777 | 118921 | 121236 | 123748 | 124884

Table 2 Training Size in each round

5. DISCUSSION

We described three bagging and boosting style algorithms for
constructing ensembles of acoustic models for continuous
speech recognition. All three of these agorithms achieve
significant improvements on system performance. The relative
reductions of word error rate on the test set are 15.56%, 11.71%
and 14.38% respectively. The results illustrate the potentia of
this approach as a meaningful method for improving the quality
of acoustic models trained from afixed corpus.

Several issues are currently under investigation which are
expected to lead to further improvement. First, even though the
three algorithms that we studied have shown good performance
in our experiments, it's still hard to say they are the best
approaches to construct ensembles. So the main task of our
research is to seek more suitable approach for acoustic model
training. For example, we'd like to improve the cost function
defined in Algorithm 3 to incorporate more information. Second,
we think the combination methods also deserve further study,
especialy the post-optimization techniques. Additionaly,
current computer technology doesn’t allow us to combine large
number of acoustic models in a real time system, so a possible
way that could benefit from more models is to select a small
number of “strong” models from a larger pool. Obvioudly, this
brings us the issues such as how to build the larger pool and how
to select and combine the strongest model.
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