
OPTIMIZING FEATURES AND MODELS USING THE MINIMUM CLASSIFICATION
ERROR CRITERION

Alain Biem

IBM T. J. Watson Research Center,
P. O. Box 218, Yorktown Heights, NY 10598, USA

biem@us.ibm.com

ABSTRACT

Discriminative Feature Extraction (DFE) has been proposed as a
extension of MCE/GPD for the joint optimization of features and
models. This study presents various configurations of this dis-
criminative framework aimed at optimizing filter-bank parameters,
using cepstrum and delta cepstrum as features, within an HMM-
based system. Features and models are optimized either jointly
or separately. Experimental results on the ISOLET database show
that the joint optimization of features and models realizes the best
performance: more than 13% absolute error rate reduction on the
E-set task compared to an MLE-trained system using MFCCs and
more than 1.85% absolute error rate reduction compared to an
MCE-trained system using MFCCs.

1. INTRODUCTION

A speech recognizer is primarily composed of two modules: a fea-
ture extraction module, which maps the input signal into a form
suitable for recognition by removing noisy components and en-
hancing relevant-to-recognition characteristics, and a modeling mod-
ule, which relies on the statistics of the feature space to create mod-
els. Although these two modules constitute an essential part of
any recognition system, most systems do not fully integrate them.
The feature extraction process and the modeling process are de-
signed separately, each process using its own optimization crite-
rion, meaning that the overall system is sub-optimal.

In previous work [1, 2], we proposed Discriminative Feature
Extraction (DFE) as a framework for the joint optimization of fea-
tures and models using the Minimum Classification Error (MCE)
criterion. DFE applies discriminative training to an integrated recog-
nition system, where a unique criterion is used to optimize both
modules simultaneously. However, integrated optimization and
discrimination of the front-end and the back-end of the system are
two separate paradigms that can be applied independently of each
other. Integrated optimization, that is, the joint optimization of
the front-end system and the back-end system, can be done using
any optimizable criterion, and discriminative training can be ap-
plied selectively on the front-end system or the back-end system.
It has been argued that the integrated optimization scheme may
have difficulties in converging while selective optimization, where
DFE training is applied first to optimize the front-end and then the
models in turn, is more stable in convergence. Indeed since the
introduction of the DFE method in [1], various implementations

of the algorithm have been carried out. Rathivanelu and Deng [3],
Rahim and Lee [4] use DFE on an Hidden Markov Model (HMM)-
based integrated system that optimizes feature transformations; De
La Torreet al. [5] uses DFE to generate feature transformation in
a pre-training stage using simple models; B. Maket al. [6] uses
DFE to optimize auditory filters and HMMs separately. Although,
all these DFE variants have shown great improvement on perfor-
mance within their relative context, it remains unclear how these
DFE paradigms compare to each other.

In this paper, we carried out an exhaustive study of various
DFE configurations on the ISOLET database using HMM as data
modeling and filter-bank based cepstrum as features. Similar to
our previous work in [2], DFE is aimed at optimizing center fre-
quencies, bandwidths, and gains of a filter-bank. In this study, we
extend the previous work by using a continuous HMM and em-
bedding dynamic cepstrum in the DFE optimization process on a
publicly-available database.

2. DISCRIMINATIVE FEATURE EXTRACTION FOR
ISOLATED WORD RECOGNITION

DFE is an extension of MCE [7] that embeds the feature extrac-
tor’s parameters within the optimizable parameters of the overall
recognizer. LetΛ denotes the parameter set of all models andΘ
the parameter set of the feature extraction module. The parameter
set of the overall recognizer is referred to asΦ = {Θ,Λ}.

Given an input signalS, recorded prior to feature extraction,
the discriminative functiongk(S; Φ) of word Wk is defined as
the log likelihood of the Viterbi path. The misclassification mea-
suredk(S; Φ), which is positive for correct recognition and nega-
tive otherwise, is defined asdk(S; Φ) = −gk(S; Φ) + gk(S; Φ)
where gk(S; Φ), the anti-discrimination function, is defined as

gk(S; Φ) = log{ 1
M−1

∑M
j 6=k e

gj(S;Λ)η}
1
η with a positiveη and

M being the number of words in the lexicon. The objective func-
tion to be minimized is the expected lossL(Φ) = Es[`(S; Φ)]
where the loss̀(S; Φ) = `(dk(S; Φ)) is a smooth approximation
of the 0-1 cost function, and is typically a sigmoid. The General-
ized Probabilistic Descent (GPD) update is applied at each itera-
tion after presentation of each patternS as

Λτ+1 = Λτ − ετU1
∂`(S; Φ)

∂Λ

∣∣∣∣
Λ = Λτ

(1)

Θτ+1 = Θτ − ρτU2
∂`(S; Φ)

∂Θ

∣∣∣∣
Θ = Θτ

(2)
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whereU1 andU2 are positive definite matrices;τ is the training
time index;ετ andρt are the models’ and feature extraction mod-
ule’s learning rates; andΛτ andΘτ indicate the models’ and the
feature extractor’s parameter status at training timeτ .

The chain rule of differential calculus is used to adjust the fea-
ture extraction module. As argued in [2], the use of the above
modular GPD framework enables one to deal with the instability
within the DFE training process that may occur due to differences
in the type of parameters between the feature extraction module
and the models. This is especially the case when DFE is applied
to a low-end feature extraction module as in [2] [6]. Forρt = 0
training is equivalent to classical MCE and forεt = 0 training
optimizes the front-end while models are unchanged.

3. HMM-BASED DFE OPTIMIZATION OF
FILTER-BANK PARAMETERS

Here, we only describe derivatives for filter-bank parameters. HMM
derivatives can be found in [8] and [9].

3.1. Cepstrum-based Filter-bank modelling of speech

The cepstrum coefficients are computed at the output of the filter-
bank, which is simulated in the DFT domain by weighting of the
DFT bins with the magnitude frequency response of the filter. For
a sequence of speech spectral vectorssT1 = {s1, . . . , st, . . . , sT }
in which st is the magnitude spectrum of the frame andst,f is
the magnitude at time-frequency(t, f). An I-channel filter-bank
model transforms eachst into a vector of log-energiesxt such
that an output featurext,i is the windowed log-energy of thei-th
channel:

xt,i = log10(
∑
f∈Bi

wi,fst,f ) for i = 1, . . . , I, (3)

whereBi represents the channel interval andwi,f the weight-
ing at frequencyf provided by thei-th filter. From the vector
of log energies, the cepstrum vectorct is computed via an in-
verse discrete cosine transform (IDCT) asct,q =

∑I
i=1 xt,iui,q

for q = 1, . . . , Q, whereQ is the number of cepstral coefficients
andui,q = qπ

I
(i − 1

2
). Similar to [2], the magnitude response of

the filterwi,f in i-th channel is constrained to a Gaussian-form:

wi,f = αi exp
[
−βi {p(γi)− p(f)}2] , for i = 1, · · · , I,

for i = 1, . . . , I, where the trainable parametersβi > 0 andγi
determine bandwidth and center frequency, andαi is the trainable
“gain” parameter in thei-th channel. p(f) maps the linear fre-
quencyf onto the perceptual representation, which in this paper is
the Mel scale. Here,Θ is the set ofαi, βi andγi.

3.2. Filter-bank optimization

Below, we summarize the filter-bank derivatives of center frequen-
cies, bandwidths and gains. Full details can be found in [8]. Letφ
be any adjustable filter-bank parameter. The transformationφ =
log(φ) is used to constrain the filter-bank’s parameter to stay pos-
itive. The update rule is

φ[τ + 1] = exp
(
log(φ[τ ])− ρτU2δφ

)
(4)

whereδφ =
∂`(sT1 ; Φ)

∂φ
. The chain rule of differential calculus

gives

δφ =

T∑
t=1

Q∑
q=1

∂`(sT1 ; Φ)

∂ct,q

I∑
i=1

∂ct,q
∂xt,i

∂xt,i

∂φ
(5)

=

T∑
t=1

Q∑
q=1

I∑
i=1

ui,qIt,qOt,i. (6)

whereIt,q =
∂`(sT1 ; Φ)

∂ct,q
andOt,i =

∂xt,i

∂φ
=
∑F
f=1 υt,i,fξi,f

with υt,i,f =
∂xt,i
∂wi,f

=
st,f

log(10)10
xt,i andξi,f =

∂wi,f

∂φ
.

Let ψjt corresponds to the state occupied by the cepstrum-
vectorct along the Viterbi path for wordWj ; The state hasN

ψ
j
t

mixture components andµ
ψ
j
t ,n,q

is the q-th component of the

means vectorµ
ψ
j
t ,n

of n-th Gaussian component. Then,

It,q = −
∑M
j=1

∑N
ψ
j
t

n=1 δµψjt ,n,q
whereδµ

ψ
j
t ,n,q

=
∂`(dk(s

T
1 ; Φ))

∂µ
ψ
j
t ,n,q

is the derivative of means described elsewhere [9].
Ot,i solely depends on the nature of the parameterφ and is

defined below for each parameter type.

3.2.1. Center frequency adjustment

Let φ = Γı̂ = p(γı̂), whereΓı̂ represents the center frequency of
channel̂ı in the perceptual domain. ForΓı̂ = log(Γı̂), it follows
that

∂wi,f

∂Γı̂
= −2βı̂p(γı̂) (p(γı̂)− p(f))wi,f χ(i, ı̂). (7)

whereχ(a, b) = 1 if a equalsb and zero otherwise.

3.2.2. Bandwidth adjustment

Hereφ is the parameterβı̂ of the ı̂-th channel. Letβı̂ = log(βı̂).
It follows that,

∂wi,f

∂βı̂
= −βi (p(γı̂)− p(f))2 wi,f χ(i, ı̂) (8)

3.2.3. Gain adjustment

φ is the parameterαı̂ of channel̂ı. Forαı̂ = log(αı̂),

∂wi,f
∂αı̂

= wi,f χ(i, ı̂). (9)

3.3. Embedding dynamic features

The inclusion of dynamic features in the DFE optimization frame-
work is as follows. Let∆ct = [∆ct,1, . . . ,∆ct,q, . . . ,∆ct,Q]T,
where∆ct,q is theq-th feature-index (quefrency). The polynomial
regression coefficients are defined as∆ct,q = C

∑R
ρ=−R ρct+ρ,q

whereC = 1/2
∑R
ρ=1 ρ

2 andR is the number of forward and
backward frames used for calculating the regression coefficients.
If the feature vector contains delta parameters, optimization of the
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filter-bank’s parametersφ should take this fact into account which
finally gives [8]:

δφ =

T∑
t=1

Q∑
q=1

I∑
i=1

ui,q

{
It,qOt,i + It,q+Q

(
C

R∑
ρ=−R

ρOt+ρ,i

)}
(10)

4. EXPERIMENTAL EVALUATION

4.1. Database

The task is isolated word recognition from the ISOLET database
[10]. The database consists of two examples of each letter of the
English alphabet uttered by 150 American English speakers, 75
males and 75 females. The database is divided into 5 portions of
30 speakers. We used the first 4 portions for training (120 speak-
ers, 6240 utterances) and the last portion for testing (30 speakers,
1560 utterances). The ISOLET database is a highly confusable
task, with many letters sharing similar vowels. In particular, the
E-set subset, the set of nine letters ending with the sound /e/, has
been a good framework for testing the performance of various dis-
criminative algorithms. All training scenarios were done targeting
the discrimination of all letters.

The speech signal was downsampled to 8 kHz. For all experi-
ments, we used 12 cepstral coefficients from a 24-order filter-bank
at a 5ms frame rate. The initial configuration of the filter-bank
emulated Mel-based filter-bank cepstrum (MFCC) with Gaussian
filters. DFE was carried out optimizing center frequencies, band-
widths, and gain simultaneously; we refer to this feature set as
discriminative filter-bank-based cepstrum (DFCC).

4.2. Experimental setup

Each word is modeled by a 5-mixture density left-to-right continu-
ous HMM consisting of 5 states. Only the mean vectors were opti-
mized. The baseline systems use MFCC with either MLE or MCE-
trained models. We tested the following DFE configurations.

The first configuration is MLE-estimated models using DFCC
as features. DFCC was precomputed through an iterative process
that optimizes the features while models are untrained and then re-
estimates models by MLE. This iterative process was run twice.
This configuration is referred to as MLE/DFCC. The second con-
figuration is classical MCE training of HMM using DFCC as fea-
tures, starting from models generated by the MLE/DFCC config-
uration. The third configuration jointly optimizes the features and
the HMM within an integrated system by MCE. This configuration
is referred to as MCE-I/DFCC-I.

4.3. Dependency on the classifier structure

The first experiment examines whether DFCCs optimized on a
particular structure of the recognizer can be used on a different
structure in the context of the MLE/DFCC configuration. DFCCs
were generated using a 5-state left-to-right HMM with 5 Gaussian
mixtures per state. We simulate different recognizer structures by
varying the number of mixture components per state.

Table 1 summarizes the results on the ISOLET database and its
E-set sub-task. As expected, DFE training shows the best perfor-
mance within the configuration for which it has been optimized on
both the ISOLET task and the E-set task. On the E-set task, DFE

Table 1. Recognition rate on ISOLET and E-set using MLE with
various mixture components for MFCC and DFCC. The DFCC has
been generated using the 5-mixture density HMM.

# of mixtures ISOLET E-set
MFCC DFCC MFCC DFCC

3 77.05 76.08 53.88 50.37
5 77.82 78.78 52.59 55.00
8 79.16 78.26 55.74 54.62
12 78.20 76.98 55.37 53.88

Table 2. Recognition rate on ISOLET and E-set using MLE,
classical MCE, and various configurations of DFE.

Criterion Task
models features ISOLET E-set
MLE MFCC 77.82 52.59
MLE DFCC 78.78 55.00
MCE MFCC 83.84 66.85
MCE DFCC 83.84 68.14

MCE-I DFCC-I 84.35 68.70

realizes more than 2.4% absolute improvement in recognition rate
from the MLE/MFCC configuration. Also, the MLE/DFCC sys-
tem of 5-mixture density HMM produces similar performance to
bigger MLE/MFCC systems with a higher number of mixtures,
showing that DFE can realize a smaller and more efficient recog-
nizer.

4.4. DFE configurations

Table 2 shows the results of the various DFE configurations on
the ISOLET task and its E-set sub-task, using a 5-mixture den-
sity HMM. The results of the MLE optimization are also shown.
From this table, it is quite obvious that all MCE-based approaches
outperform MLE-based ones across all feature sets.

The first row of results in the table shows the baseline perfor-
mance of MLE-derived models using MFCCs. The second row
shows the result of the MLE/DFCC configuration, in which mod-
els are not discriminatively trained but the features are. This con-
figuration exhibits a 0.96% absolute reduction in error rate on the
ISOLET task and a 2.41% absolute reduction in error rate on the
E-set task compared to the MLE/MFCC configuration, confirming
the well-known observation that the using MLE on discriminative
features leads to improved performance.

The third row shows results of the classical use of MCE train-
ing using MFCC. In this context, models are discriminatively trained
and features are not. This MCE/MFCC configuration clearly out-
performs all MLE-based configurations. The fourth row on the ta-
ble displays the results of the MCE/DFCC configuration, in which
both models and features are discriminatively trained but not inte-
grated. Although, the MCE/DFCC configuration gives similar per-
formance to the MCE/MFCC’s one on the ISOLET task, it is more
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efficient in the context of acoustically similar words: 1.29% abso-
lute error rate reduction on the E-set from the MCE/MFCC con-
figuration. The last row displays the results of the MCE-I/DFCC-I
configuration, where both models and feature are discriminatively
trained and integrated. This configuration exhibits the best result
on both tasks. Compared to the MCE/DFCC configuration, the
integrated system is more efficient.

4.5. Using Dynamic Features

In this section we performed the same experiment similar to the
previous section, this time, including dynamic features in the fea-
ture set. Within the DFE framework, dynamic parameters can be
included in two ways. One technique is to embed dynamic features
within the DFE training process as was described in section 3.3;
these features are referred to as∆DFCC-E. Another method is to
compute the linear regression from the DFE-trained static features;
these features are referred to as∆DFCC-R. This later approach
may be an attractive solution when the front-end is a complex pro-
cess that may lead to instability in the training process. We im-
plemented two methods and tested them against the baseline delta
MFCCs.

Table 3. Recognition rate on ISOLET and E-set for MLE, clas-
sical MCE and DFE, using dynamic features.∆DFCC-R refers to
calculating delta parameters using the regression formula on pre-
viously optimized static DFCC.∆DFCC-E refers to delta param-
eters, optimized within the DFE training.

Criterion Task
models features ISOLET E-SET
MLE MFCC+∆MFCC 85.32 68.88
MLE DFCC +∆DFCC-R 86.31 68.70
MLE DFCC +∆DFCC-E 85.57 67.77
MCE MFCC+∆MFCC 90.25 80.37
MCE DFCC+∆DFCC-R 87.69 84.25
MCE DFCC +∆DFCC-E 89.55 81.66

MCE-I DFCC-I +∆DFCC-E 90.44 81.85

Table 3 displays the performance of various optimization method-
ologies when using dynamic parameters. The use of discrimina-
tive dynamic parameters does not show a clear-cut improvement.
Embedded optimization of delta parameters may have generated a
system highly sensitive to training parameters. Few points, how-
ever, are worth mentioning: the MCE/DFCC+∆DFCC-R, where
the features and the models are both discriminatively trained but
not integrated, displays disappointing results on the ISOLET task
while outperforming all configurations on the E-set task. The MCE-
I/DFCC-I + ∆DFCC-E, where models and features are discrimi-
natively trained within an integrated system shows the best perfor-
mance on the ISOLET task.

5. CONCLUSION

We described a study of the Discriminative Feature Extraction (DFE)
method to filter-bank optimization in the context of HMM-based

isolated word recognition. The study applied various configura-
tions of the algorithm, where discriminative training was selec-
tively used to optimize features and models either jointly or sepa-
rately. Having a level of discriminative training applied to either
the front-end or the models leads to improved performance. The
best performance is obtained when discriminative training is ap-
plied to both the front-end and the model simultaneously in an
integrated fashion.
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