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ABSTRACT of the algorithm have been carried out. Rathivanelu and Deng [3],
o ] Rahim and Lee [4] use DFE on an Hidden Markov Model (HMM)-
Discriminative Feature Extraction (DFE) has been proposed as apased integrated system that optimizes feature transformations; De
extension of MCE/GPD for the joint optimization of features and | 5 Torreet al. [5] uses DFE to generate feature transformation in
models. This study presents various configurations of this dis- 4 pre-training stage using simple models; B. Malkal. [6] uses
criminative framework aimed at optimizing filter-bank parameters, DFE to optimize auditory filters and HMMs separately. Although,
using cepstrum and delta cepstrum as features, within an HMM- | these DFE variants have shown great improvement on perfor-

based system. Features and models are optimized either jointlynance within their relative context, it remains unclear how these
or separately. Experimental results on the ISOLET database showhrg paradigms compare to each other.

that the joint optimization of features and models realizes the best |, this paper, we carried out an exhaustive study of various
performance: more than 13% absolute error rate reduction on theprp configurations on the ISOLET database using HMM as data

E-set task compared to an MLE-trained system using MFCCs andyodeling and filter-bank based cepstrum as features. Similar to
more than 1.85% absolute error rate reduction compared to ang,,, previous work in [2], DFE is aimed at optimizing center fre-

MCE-trained system using MFCCs. quencies, bandwidths, and gains of a filter-bank. In this study, we
extend the previous work by using a continuous HMM and em-
1. INTRODUCTION bedding dynamic cepstrum in the DFE optimization process on a

publicly-available database.

A speech recognizer is primarily composed of two modules: a fea-

ture extraction module, which maps the input signal into a form 2. DISCRIMINATIVE FEATURE EXTRACTION FOR

suitable for recognition by removing noisy components and en- ISOLATED WORD RECOGNITION

hancing relevant-to-recognition characteristics, and a modeling mod-

ule, which relies on the statistics of the feature space to create modDFE is an extension of MCE [7] that embeds the feature extrac-

els. Although these two modules constitute an essential part oftor's parameters within the optimizable parameters of the overall

any recognition system, most systems do not fully integrate them. recognizer. Let\ denotes the parameter set of all models énd

The feature extraction process and the modeling process are dethe parameter set of the feature extraction module. The parameter

signed separately, each process using its own optimization crite-Set of the overall recognizer is referred todas= {©, A}.

rion, meaning that the overall system is sub-optimal. Given an input signab, recorded prior to feature extraction,
In previous work [1, 2], we proposed Discriminative Feature the discriminative functiory,(S; ®) of word W is defined as

Extraction (DFE) as a framework for the joint optimization of fea- the log likelihood of the Viterbi path. The misclassification mea-

tures and models using the Minimum Classification Error (MCE) suredy(S; ®), which is positive for correct recognition and nega-

criterion. DFE applies discriminative training to an integrated recoglive otherwise, is defined a,(S; ®) = —gx(S; ®) + g, (S; @)

nition system, where a unique criterion is used to optimize both Whereg, (S; ®), the anti-discrimination function, is defined as

modules simultaneously. However, integrated optimization and g, (S; ®) = 1og{ﬁ E;V;k egﬂs'»/\)’l}% with a positiver; and

discrimination of the front-end and the back-end of the system are M being the number of words in the lexicon. The objective func-

two separate paradigms that can be applied independently of eachion to be minimized is the expected log§®) = FE;[¢(S; ®)]

other. Integrated optimization, that is, the joint optimization of where the losg(S; ®) = £(d(S; ®)) is a smooth approximation

the front-end system and the back-end system, can be done usingf the 0-1 cost function, and is typically a sigmoid. The General-

any optimizable criterion, and discriminative training can be ap- ized Probabilistic Descent (GPD) update is applied at each itera-

plied selectively on the front-end system or the back-end system.tion after presentation of each pattefras

It has been argued that the integrated optimization scheme may

introduction of the DFE method in [1], various implementations

have difficulties in converging while selective optimization, where Aryr = Ay —e UL oL(S; @) ‘ 1)
DFE training is applied first to optimize the front-end and then the OA A=A,
models in turn, is more stable in convergence. Indeed since the 0L(S; ®
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whereU1 andU2 are positive definite matrices;is the training wheresg = 34(8@ P)

time index;e, andp; are the models’ and feature extraction mod-

ule’s learning rates; and, and®©, indicate the models’ and the  9Ives

feature extractor’s parameter status at training time "
The chain rule of differential calculus is used to adjust the fea- 53 = Z Z 0l(s1;9P) Oc,q 0Ty (5)

ture extraction module. As argued in [2], the use of the above 0ct q — Oxti O

. The chain rule of differential calculus

modular GPD framework enables one to deal with the instability tTl qu s
within the DFE training process that may occur due to differences _ Z Z Z wi T oOr s ©)
in the type of parameters between the feature extraction module Pt paThaEhy
and the models. This is especially the case when DFE is applied
to a low-end feature extraction module as in [2] [6]. per= 0 813(317; D) O =
training is equivalent to classical MCE and far = 0 training whereZ; , = T and0;,; = 85’ =2 o1 Vi f&if
optimizes the front-end while models are unchanged. i Oz ’q oo g d dw;
WITN vy 5, 8wi,f Tog (10)10°F7 and¢; s 65 .
3. HMM-BASED DFE OPTIMIZATION OF Let ¢/ corresponds to the state occupied by the cepstrum-
FILTER-BANK PARAMETERS vectorc, along the Viterbi path for wordV;; The state hasv, ;

t
mixture components anpiwj na is the ¢g-th component of the
{ng
means vectop, ,; , of n-th Gaussian component. Then,

7,

N Ol (dy(s]; @
Tiqg=— Z?il Zn:; 5ﬂwz1n,q Whereéuw{v"’q - %
Py mq

o ] is the derivative of means described elsewhere [9].
The cepstrum coefficients are computed at the output of the filter- .. solely depends on the nature of the paramétend is
bank, which is simulated in the DFT domain by weighting of the definea below for each parameter type.

DFT bins with the magnitude frequency response of the filter. For
a sequence of speech spectral vecigrs= {s1,...,s:,..., 57}
in which s, is the magnitude spectrum of the frame angd is

the magnitude at time-frequency, f). An I-channel filter-bank | et = I'; = p(v;), wherel; represents the center frequency of

Here, we only describe derivatives for filter-bank parameters. HMM
derivatives can be found in [8] and [9].

3.1. Cepstrum-based Filter-bank modelling of speech

3.2.1. Center frequency adjustment

model transforms each; into a vector of log-energies; such channeli in the perceptual domain. Fdk = log(T';), it follows
that an output feature, ; is the windowed log-energy of theth that
channel:
| Ot = —2fp() (pl) — plF) wig X(0)- ()
@i =logyo( Y wiygsey) fori=1,...,1, (3) or; :

feB;
wherex(a, b) = 1if a equalsh and zero otherwise.

where B; represents the channel interval aad ; the weight-
ing at frequencyf provided by thei-th filter. From the vector

. . ) - 3.2.2. Bandwidth adjustment
of log energies, the cepstrum vectoy is computed via an in-

verse discrete cosine transform (IDCT)@s, = S°/_, 2+, q Here¢ is the parametes; of thei-th channel. Le3; = log(3;).
forg = 1,...,Q, whereQ is the number of cepstral coefficients It follows that,

andu; , = 2 (i — 5). Similar to [2], the magnitude response of 5

the filterw; ; in i-th channel is constrained to a Gaussian-form: % = 8 () — p(f))2 wis x(5,2) ®)

Wi, = Qi €XP [_ﬁz {p(v:) _p(f)}ﬂ , fori=1,---.1,

for: = 1,...,1I, where the trainable paramete?s > 0 and-~;

determine bandwidth and center frequency, anis the trainable ¢ is the parameten; of channek. Fora; = log(as),

“gain” parameter in the-th channel. p(f) maps the linear fre- 9

guencyf onto the perceptual representation, which in this paper is wif = w;,r x(4,7). 9)
the Mel scale. Here®) is the set ofv;, 8; and~y;. 9a;

3.2.3. Gain adjustment

3.2. Filter-bank optimization 3.3. Embedding dynamic features

The inclusion of dynamic features in the DFE optimization frame-
work is as follows. LetAc; = [Act,l,l.wAct,q,...,Act,Q]T,
whereAc; , is theg-th feature-index (quefrency). The polynomial
regression coefficients are defined&s, , = C Zf:_R PCtipg

Below, we summarize the filter-bank derivatives of center frequen-
cies, bandwidths and gains. Full details can be found in [8]dLet
be any adjustable filter-bank parameter. The transformatien
log(¢) is used to constrain the filter-bank’s parameter to stay pos-

itive. The update rule is whereC' = 1/2 Zf:l p® and R is the number of forward and
B backward frames used for calculating the regression coefficients.
dlr+1] = exp (log(¢[r]) — p-U259) 4 If the feature vector contains delta parameters, optimization of the
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filter-bank’s parameterg should take this fact into account which

finally gives [8]; Table 1. Recognition rate on ISOLET and E-set using MLE with

various mixture components for MFCC and DFCC. The DFCC has

1 ) } been generated using the 5-mixture density HMM.

T Q R
5p = Z Z Z Uiq {It,qot,i +Zt.q+Q (C POt+p,i

t=1g=1 i=1 p=—R

(10)

# of mixtures ISOLET E-set
MFCC | DFCC || MFCC | DFCC
77.05 | 76.08 || 53.88 | 50.37
77.82 | 78.78 || 52.59 | 55.00
79.16 | 78.26 || 55.74 | 54.62
The task is isolated word recognition from the ISOLET database 12 7820 | 76.98 || 55.37 | 53.88
[10]. The database consists of two examples of each letter of the
English alphabet uttered by 150 American English speakers, 75
males and 75 females. The database is divided into 5 portions of
30 speakers. We used the first 4 portions for training (120 speak-Table 2. Recognition rate on ISOLET and E-set using MLE,
ers, 6240 utterances) and the last portion for testing (30 speakersglassical MCE, and various configurations of DFE.

1560 utterances). The ISOLET database is a highly confusable

4. EXPERIMENTAL EVALUATION

ool U1f W

4.1. Database

task, with many letters sharing similar vowels. In particular, the Criterion Task

E-set subset, the set of nine letters ending with the sound /e/, has models]| features|| ISOLET | E-set
been a good framework for testing the performance of various dis- MLE MECC 77.82 | 52.59
criminative algorithms. All training scenarios were done targeting MLE DECC 78.78 | 55.00

the discrimination of all letters.
The speech signal was downsampled to 8 kHz. For all experi- MCE MFCC 83.84 | 66.85

ments, we used 12 cepstral coefficients from a 24-order filter-bank MCE DFCC 83.84 | 68.14

at a 5ms frame rate. The initial configuration of the filter-bank MCE-I | DFCC-I 84.35 | 68.70

emulated Mel-based filter-bank cepstrum (MFCC) with Gaussian

filters. DFE was carried out optimizing center frequencies, band-

widths, and gain simultaneously; we refer to this feature set as ] ] N
discriminative filter-bank-based cepstrum (DFCC). realizes more than 2.4% absolute improvement in recognition rate

from the MLE/MFCC configuration. Also, the MLE/DFCC sys-
tem of 5-mixture density HMM produces similar performance to
bigger MLE/MFCC systems with a higher number of mixtures,
Each word is modeled by a 5-mixture density left-to-right continu- showing that DFE can realize a smaller and more efficient recog-
ous HMM consisting of 5 states. Only the mean vectors were opti- nizer.
mized. The baseline systems use MFCC with either MLE or MCE-
trained models. We tested the following DFE configurations. 4.4. DFE configurations

The first configuration is MLE-estimated models using DFCC
as features. DFCC was precomputed through an iterative procesdaPle 2 shows the results of the various DFE configurations on
that optimizes the features while models are untrained and then rethe ISOLET task and its E-set sub-task, using a 5-mixture den-
estimates models by MLE. This iterative process was run twice. Sity HMM. The results of the MLE optimization are also shown.
This configuration is referred to as MLE/DFCC. The second con- From this table, it is quite obvious that all MCE-based approaches
figuration is classical MCE training of HMM using DFCC as fea- ©outperform MLE-based ones across all feature sets.
tures, starting from models generated by the MLE/DFCC config- The first row of results in the table shows the baseline perfor-
uration. The third configuration jointly optimizes the features and Mance of MLE-derived models using MFCCs. The second row
the HMM within an integrated system by MCE. This configuration Shows the result of the MLE/DFCC configuration, in which mod-
is referred to as MCE-I/DFECC-I. els are not discriminatively trained but the features are. This con-
figuration exhibits a 0.96% absolute reduction in error rate on the
ISOLET task and a 2.41% absolute reduction in error rate on the
E-set task compared to the MLE/MFCC configuration, confirming
The first experiment examines whether DFCCs optimized on a the well-known observation that the using MLE on discriminative
particular structure of the recognizer can be used on a differentfeatures leads to improved performance.
structure in the context of the MLE/DFCC configuration. DFCCs The third row shows results of the classical use of MCE train-
were generated using a 5-state left-to-right HMM with 5 Gaussian ing using MFCC. In this context, models are discriminatively trained
mixtures per state. We simulate different recognizer structures byand features are not. This MCE/MFCC configuration clearly out-
varying the number of mixture components per state. performs all MLE-based configurations. The fourth row on the ta-

Table 1 summarizes the results on the ISOLET database and itsle displays the results of the MCE/DFCC configuration, in which
E-set sub-task. As expected, DFE training shows the best perfor-both models and features are discriminatively trained but not inte-
mance within the configuration for which it has been optimized on grated. Although, the MCE/DFCC configuration gives similar per-
both the ISOLET task and the E-set task. On the E-set task, DFEformance to the MCE/MFCC's one on the ISOLET task, it is more

4.2. Experimental setup

4.3. Dependency on the classifier structure
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efficient in the context of acoustically similar words: 1.29% abso- isolated word recognition. The study applied various configura-
lute error rate reduction on the E-set from the MCE/MFCC con- tions of the algorithm, where discriminative training was selec-
figuration. The last row displays the results of the MCE-I/DFCC-I tively used to optimize features and models either jointly or sepa-
configuration, where both models and feature are discriminatively rately. Having a level of discriminative training applied to either
trained and integrated. This configuration exhibits the best resultthe front-end or the models leads to improved performance. The
on both tasks. Compared to the MCE/DFCC configuration, the best performance is obtained when discriminative training is ap-
integrated system is more efficient. plied to both the front-end and the model simultaneously in an
integrated fashion.

4.5. Using Dynamic Features

In this section we performed the same experiment similar to the 6. ACKNOWLEDGEMENTS

previous section, this time, including dynamic features in the fea-
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